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Mandelbrot (see [1] for example) has suggested that many real-world ran-

dom processess--f irst differences of stock market prices over time, the size

distribution of income, etc -are particular instances of processes charac-

terized by "stable non-Gaussian" probability laws called "Pareto-Levy" laws

(cf: M. Loeve [2]).

One particular member of the class of probability laws stable in the

Pareto-Levy sense is the (strong) Pareto process . It is defined as a

stochastic process generating independent random variables x^...,x..,. with

identical Pareto density functions

if X. < X
1 ~ o

fcjC^Ja.^o) = S . i=l,2,... (1)

I

« -(a+1) _ ^ ^
I ax X. if X, > X
V- O 1 1 O

where a > and x > are parameters of the above density function. The
o

density function (1) possesses properties which make life difficult for the

Bayesian: when 1 < a < 2 the variance of f is infinite and when '^ < a < 1,— a ~

both the mean and variance of f are infinite.
a

Our interest here is in the following question: How do we derive

distribution- theoretic results needed for a "Bayesian" analysis of decision

problems where the consequences of adopting one of a set of available

(terminal) acts depends on the true underlying value of a, and where information





about a can be obtained by observation of values of x^...,x.^... when the

x.'s are independent random variables, identically distributed according

to (D?

We follow the pattern of [3] (ASDT) and present the following:

1. Definition of and properties of Pareto density function.

2. Definition and characterization of the Pareto process
and its properties.

3. Likelihood of a sample and the sufficient statistic.

4. Conjugate prior distrilniLlor. ol; ;i: aid binary operation
for going from the prior pai\-i..ci.ur aud sample statistic
to the posterior parameter.

5. Conditional distribution of the sufficient statistic for
a given value of a and a fixed size sample from the
process

,

6. Unconditional sampling distribution of the sufficient
statistic

.

7. Some facts about the (prior) distribution of the mean
of the process when a is not known with certainty.

A subsequent note will discuss further aspects of analysis of decision prob-

lems under uncertainty, when the underlying data generating process is of

the strong Pareto type.





1 = The Pareto Function

The Pareto density function is defined by (1) . The first k

moments of f about the origin are
a

/+ CO if k > a
~k \

E(x'') =\ . (1.2)

r^^o if k < a
(a-k

Proof ; To prove that f is a density function, note that it is positive

for all X 3 (x ,oo) and that
o'

w 00

j^f^(z|a,x^)dz =ax^"j^z-<«-*-^>dz

X X
o o

ax " [-lim -^ + -^]
az ax

o

(ax^ ) (ax^ ) = 1 ,

To prove (1.2), we have

00

E(x^ =j z^f^(z|a,x^)dz

X
o

00

_ a r k-a-K
= ax z dz

° J

k-a X
'^^^

= ax« [lin> f— ~ -f-] .o 'r >oo k-a k-a

~k
Thus if k > a , E(x ) = + oo , and if k < a ,

^ ~k. ax
E(x ) = o

a-k





The incomplete kth moment about the origin follows directly and is

for z > X ,o - o'

if k > a
00 ~k

o a k-a
ax z

o o

a-k
if k < a

(1.3)

The cumulative distribution function is

F^(x|a,x^) = 1 - (I
)-^

o
(1.4)

2. The Pareto Process

The Pareto process is defined as a stochastic process generating

independent random variables x ,,,.^x.,... with identical Pareto

density functions

f (x. |a,x )
a 1 o

a -(a+1)
ax X.

O L

a > ,

" > ,

X.> X ,

1 O

(2.1)

From (1.2) we may obtain the mean and variance of the process;

E(x|a,x^) =

+ 00

ax

if a < 1

o_ if a > 1

a-1

(2.2)

and

1 +

v(x|a,x^)

ax

(a- 2) (a-1)'

if a < 2

if a > 2

(2.3)





Proof : Formula (2.2) follows from setting k=l in (1.2). Formula 2,3 is

determined by use of the fact that

V(x|a,x^) = E(x |a,x^) - E (x|a,x^) , and

that
00

v(x|a,x^) s J [z - E(x|a,x^)]^ f^(z|a,x^)dz .

By (1.2) : < a < 1 then E(x|a,x ) = + « . Thus for all values of

the integrand z, [z - E(x|(' ,x )] is unbounded and hence V(x|a,x ) = + »

If 1 < a < 2 then V(x|a,x ) = + « for

v(x|a,x^) = E(x |a,x^) - E (x|a,x^)
,

and

E(x |a,x ) = + 00 and E (x|a,x ) < oo

by (1.2). When a > 2, by (1.2) again

2 2
ax - ax

o g
a-2 a-1

2
ax

o

(a-2) (a- I)

^





A "unique and important" property of a Poisson process is that

if the independent random variables

u. ^ . .

.

)^.>

•

•

•

are generated by a Poisson process, then

P(u^ > I +u|u^ > I) = P(u^ > u),
|">'o''*' (2.4)

This is interpretable as "independence of past history/' and is a

unique property of the Poisson process among all processes generating

continuous random variables x > '- . (See [1] for discussion of thi

property) . By analogy, it is easy to show that for independent

random variables x. ,...,x , ... generated according to (1) and

P(x > ^'x|x > i') = P(x. > X) = (x/x )"°'
,

i-1,2,...
1 ' X 1 o'x>x J \ ^

and that the (strong) Pareto process is the only process among all

processes generating continuous random variables x. > x > to
1 o

possess this property.

Proof : Make the integrand transform u. = log (x./x ) in (1) and
1 10

observe that (2.5) implies (2.4) and conversely since this transform
u.

is one to one from x. to u. and from a. to x , since x e = x .11 1 i' o i

3. Independent Pareto Process When x is Known
o





3.1 Likelihood of a Sample When x is Known
o

The likelihood that an independent Pareto process will generate

r successive values x, ,x„...x is the product of their individual
1' 2 r

likelihoods (1)

to-o")' Illl -ll''"-'" . (3.1)





If we define the statistic

r

t = [ ^n^ X.]
, (3.2)

we may write (3.1) as

, a.r -(a+1)
(ax^ ) t ' ^ . (3.1)'

Alternatively, (3.1) may be written as

la e (3.3)"

where

i = 1/t and \ £ log (t/x ^)
. (3,4)

e o

Since | in no way depends on the unknown parameter a, it is clear that

a. e (3.5)

is the kernel of the likelihood. If the sampling process is non-inform-

ative then clearly (r^t) is a sufficient statistic when x is known.

3.2. Conjugate Distribution of g

When X is known but a is regarded as a random variable, the most

convenient distribution of a is a gamma- 1 distribution which may be

written as

7^ r(r)
r > ,

where \ = log^(t/x ). If such a distribution with parameter (r',t')

has been assigned to a and if then a sample from the process yields a





sufficient statistic (r^t) the posterior distribution of a will be

gamma-l with parameter (r",t") where

r" = r' + r , t" = t't , (3.7a)

or alternatively (r",X") where

\" = \' + \ . (3.7b)

Proof ; Formula (3.6) follows directly from the discussion of sufficiency.

Formulas (3.7) follow from Bayes Theorem; i.e. the posterior density of

a is proportional to the product of the kernel of (3.6), the prior density

of a and the kernel (3.5) of the sample likelihood:

^..^ I I I X r "^ r'-l -\a
D"(a|r',t' jr,t) ~ a e .a e

r+r'-l -a(\+\')
= a e

where

r r
\ = log (t/x ) and \

' = log (t'/x )°e o °e o

so that if we define r" = r' + r and

\" = \ +\' = log [(-i-) (-^,)]
e r r

X X
o o

= log^ (f/x^'")
,

the posterior density has a kernel of the form (3.5).

The mean, variance, and partial moments of the distribution of a are

from ASDT:

E(3|r,t) =a =^ , (3.7)





E "(3|r,t) = a F ^(at|r+L) , (3.8)

V(3|r,t) = -^ . (3.9)

t

In ASDT it is shown that the linear (in a) loss integrals are

a

L^(a) =J
(a-z) f^^(z|r,t)dz =

= a F ^(Q:t|r) - a F ^(at|r+l) (3.10a)

and
CO

Lj.(a) «/ (z-a) f ^(z|r,t)dz

a

= a G (at|r+l) - a G ^(at|r) (3.10b)

although these are not loss integrals in which we will be interested

subsequently.

3.3 Distribution of the Mean a

If a > 1 then the mean

ax.
o

a = —
a-1

for a > 1

of

^|a ~ f^(xlQ:,x^)

exists by (1.2). If a is not known with certainty then provided that we

assume that

5 ~ f^^(a|r,t) ,





it follows that for a > 1^ (conditional on a > 1),

2

a ~ p f
j^

(h(a)|r,t) ^o ,
a > x^ , (3.11)

where

h(a) = and p = G , (1 |r,t) .
a-x -yl '

'

o

Proof ; Since a = ax /(a-l) when a > 1
,

a = h(a) = a/(a-x )

The function h(a) Is continuous and monotonic decreasing for a > max {l,x
} ^

so that

i|S>l ~ p-lf^^ (h(i)[r,t)| ^1 ,a>x^j

as

2

dh(a) ^ ""o ,

da (a-x )^ o

(3.11) follows directly.

Of more interest than the loss integrals (3.10) are loss integrals

linear in a -- which, as we would expect, have certain undesirable prop-

erties if a < 1 with positive probability. However, we can make a step

in the direction of doing (prior) terminal analysis of a two action

linear loss decision problem if we assume that a > 1 with probability 1.

In order to proceed in this direction we will need to know the

conditional expectations E(a|a - e) and E(a|a S e) for values of e





between and + » , We show that

+ CO for ^ < 1

m = E(a|Q! > €)

""o^ 0,^1 rcixpx.'^"^ G .(e-l|i,l)j

pr(r)
"-' ^

+ (£)1 for € > 1 ,

o '

where

0^(e) =
/

y'^e'^dy , X « log^lt 'x^'') and p = G^^(e| r,t) .

Proof ; Formula (3,10) follows directly from (1.2). Now suppose that

a ~ f^^(a|r,t) =— ^ (\a) e , ^ >

Then for e > 1
,

00

E(i|e> 1) = !° J(-i^) f^^(z|r,t) dz

e

00

°
' (z-l)'^e"^^(\z)''d(\z) .

P^r(r) ,

e

Letting u = z-1, we may write the above as

^o^ / y"-^e"y [Xu +xf d(\u) ,

P^r(r) e-1





or letting y = \u, as

Since

V_ f y'^e'y[ L (Oy^"""'] dy

pr(r) J^^^

""o^ 5 /^^r-i r i-1 -y

€-1

00

V^"'"'''^ ~-Fa)I
y^'^'^^dy

,
i>0

,

e-1

we may write
-X.

X e r r .

o r ^ _/ . X ^ . V, r-1
E(a|5 > e) = ^p^ {.Z^ r(i) (i)X " G^(e|i,l. + C#^

where
00
o -1

0^(e) = / y" e'^dy .

e-1

For any € > 1 , the integral immediately above is bounded, and is unbounded

for e = 1.

4. Sampling Distribution and Preposterior Analysis With Fixed Sample Size r

We assume that a sample of size r is taken from an independent Pareto

process, and that the statistic t is left to chance. It is also assumed

that X is known and fixed and that the parameter a has a gamma- 1 distri-

bution of the type (3.6). We need the following theorem in the sequel:





4.4 Convolution of r Pareto Density Functions

We define the (multiplicativs)convolution g* of any r density functions.

by

g* = f^ * f^ *...* f^ , (4.1)

g*(t) =j f^(zp f2(z2)...f(z^)clA (4.2)

R

where R is the r-1 dimensional hypersurface

r

.n, z. = t . (4.3)
1=1 1

Theorem : The convolution g* of r > 1 Pareto densities, each with parameter

(a,l) is

r > 1

8*<M«^1) =
f77)

OL't'^'^^^\lo&^tf-'^ , t > 1 ; (4.4)
a > .

Proof; We prove this by showing that if

\\oL ~ fa(x|a,x^) , i=l,2,...,r

and we scale all x. into units of x , then g* may be represented as an

(additive) convolution g of gamma-1 densities. We then show that the fact

that g is a gamma-1 density(ASDT, p. 224) implies that g* is as stated

above.

Define z. = x./x and e = z , so that
1 1 o 1

~ - Ca+1 '^
2

. > 1 ,

?.. 'f (z.|a,l)dz. = az ^^^dz. , a >0 , (4.5)





or
•ay.





4.2 Conditional Distribution of t|a

Using the results of section 4,1^ the conditional probability given a.

and X that the product of r identically distributed Pareto random variables

will have a value t may be written as

D(t|a,x^;r) = f^(t|a,x^jr)

= g*(t) . (4.9)

4o3 Unconditional Distribution of t

If a sample of size r is drawn from a Pareto process with unknown

parameter a regarded as a gamma- 1 random variable distributed with parameter

(r'^t') as shown in (3.6) and all sample observations are scaled into units

of X , then

r' logt)''"^
D(t|x =l,r',f;r) = i^-2-, (4.11a)

B(r,r') tL(iog^t)+\']- '

t > 1 ,

r,r'^\ > ,

where

\' - loe t' r.r. -^ r(r+r')
, (4.11b)

\ = l°8e' '
^(^'^ > =r(r) r(r')

Alternatively, the unconditional distribution of the sufficient statistic

y = log t is inverted beta -2:
e

D(y|x^=l,r',f;r) = f . ^^(y |

r,r ' A '

)

_
q')'"' y"""^

, (4.12)
B(r,r') • ,r"

^ ' (y-+^-)

y > ,

r,r',A' >





Proof ; To prove (4,11a) note that from (4.4) and (3.6)

00

D(t|x^=l,r',t';r) =j g*(tH,a) f .^j^(a| r ' , t ' ) da

. r-1 , , ^ r ' 00

<^°ge^) ^^ > r r"-l -X'W

tr(r)r(r') J
cc e 6a

B(r,r') ° t[(log^t) 4^']'' ^ ^ > ^

Formula (4.12) follows by making the integrand substitution y = log t in (4.11a).
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