

WORKING PAPER

SCHOOL OF INDUSTRIAL MANAGEMENT

Notes on Paretian Distribution Theory

G. M. Kaufman

School of Industrial Management

Mass. Institute of Technology

November 1962 27-63

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 50 MEMORIAL DRIVE CAMBRIDGE 39, MASSACHUSETTS

Notes on Paretian Distribution Theory

G. M. Kaufman

School of Industrial Management

Mass. Institute of Technology

November 1962

27-63

Notes on Paretian Distribution Theory

G. M. Kaufman School of Industrial Management Mass. Institute of Technology Nov. 1962

Mandelbrot (see [1] for example) has suggested that many real-world random processess--first differences of stock market prices over time, the size distribution of income, etc. - are particular instances of processes characterized by "stable non-Gaussian" probability laws called "Pareto-Levy" laws (cf: M. Loève [2]).

One particular member of the class of probability laws stable in the Pareto-Levy sense is the (strong) <u>Pareto process</u>. It is defined as a stochastic process generating independent random variables $\tilde{x}_1, \ldots, \tilde{x}_i \ldots$ with identical Pareto density functions

$$f_{\alpha}(x_{i}|\alpha,x_{o}) = \begin{cases} 0 & \text{if } x_{i} \leq x_{o} \\ & & , i=1,2,\dots (1) \\ \alpha x_{o}^{\alpha} x_{i}^{-}(\alpha+1) & \text{if } x_{i} > x_{o} \end{cases}$$

where $\alpha > 0$ and $x_{0} > 0$ are parameters of the above density function. The density function (1) possesses properties which make life difficult for the Bayesian: when $1 < \alpha \le 2$ the variance of f_{α} is infinite and when $0 < \alpha \le 1$, both the mean and variance of f_{α} are infinite.

Our interest here is in the following question: How do we derive distribution-theoretic results needed for a "Bayesian" analysis of decision problems where the consequences of adopting one of a set of available (terminal) acts depends on the true underlying value of α , and where information

about α can be obtained by observation of values of $\tilde{x}_1, \dots, \tilde{x}_i, \dots$ when the \tilde{x}_i 's are independent random variables, identically distributed according to (1)?

We follow the pattern of [3] (ASDT) and present the following:

- 1. Definition of and properties of Pareto density function.
- Definition and characterization of the Pareto process and its properties.
- 3. Likelihood of a sample and the sufficient statistic.
- 4. Conjugate prior distribution of α and binary operation for going from the prior parameter and sample statistic to the posterior parameter.
- 5. Conditional distribution of the sufficient statistic for a given value of α and a fixed size sample from the process.
- Unconditional sampling distribution of the sufficient statistic.
- 7. Some facts about the (prior) distribution of the mean of the process when α is not known with certainty.

A subsequent note will discuss further aspects of analysis of decision problems under uncertainty, when the underlying data generating process is of the strong Pareto type.

1. The Pareto Function

The Pareto density function is defined by (1). The first k

moments of f about the origin are

<u>Proof</u>: To prove that f_{α} is a density function, note that it is positive for all $\times \mathfrak{l}(x_0,\infty)$ and that

$$\int_{x_{o}}^{\infty} f_{\alpha}(z | \alpha, x_{o}) dz = \alpha x_{o}^{\alpha} \int_{x_{o}}^{\infty} z^{-(\alpha+1)} dz$$
$$= \alpha x_{o}^{\alpha} \left[-\lim_{z \to \infty} \frac{1}{\alpha z^{\alpha}} + \frac{1}{\alpha x_{o}^{\alpha}}\right]$$
$$= (\alpha x_{o}^{\alpha}) (\alpha x_{o}^{\alpha})^{-1} = 1$$

To prove (1.2), we have

$$E(\tilde{x}^{k}) = \int_{0}^{\infty} z^{k} f_{\alpha}(z | \alpha, x_{0}) dz$$

= $\alpha x_{0}^{\alpha} \int_{0}^{\infty} z^{k-\alpha-1} dz$
= $\alpha x_{0}^{\alpha} \left[\lim_{z \to \infty} \frac{z^{k-\alpha}}{k-\alpha} - \frac{x_{0}^{k-\alpha}}{k-\alpha} \right]$,

Thus if $k\geq \alpha$, ${\tt E}(\tilde{x}{}^k)$ = + ∞ , and if $k<\alpha$,

$$E(x^{\sim k}) = \frac{\alpha x^{k}}{\alpha - k}$$

The incomplete kth moment about the origin follows directly and is, for $z_0 \ge x_0$, $E_{z_0}^{\infty}(\tilde{x}^k) = \begin{cases} +\infty & \text{if } k \ge \alpha \\ & & & \\ & &$

The cumulative distribution function is

$$F_{\alpha}(x|\alpha, x_{0}) = 1 - (\frac{x}{x_{0}})^{-\alpha}$$
 (1.4)

2. The Pareto Process

The Pareto process is defined as a stochastic process generating independent random variables $\tilde{x}_1, \ldots, \tilde{x}_i, \ldots$ with identical Pareto density functions

$$f_{\alpha}(x_{i}|\alpha,x_{o}) = \alpha x_{o}^{\alpha} x_{i}^{-(\alpha+1)}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ - > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \begin{array}{c} \alpha > 0 \\ i \end{array}, \qquad \qquad \end{array}$$

From (1.2) we may obtain the mean and variance of the process:

and

$$V(\tilde{x}|\alpha, x_{o}) = \begin{cases} +\infty & \text{if } \alpha \leq 2 \\ \frac{\alpha x_{o}^{2}}{(\alpha-2)(\alpha-1)^{2}} & \text{if } \alpha > 2 \end{cases}$$
(2.3)

<u>Proof</u>: Formula (2.2) follows from setting k=1 in (1.2). Formula 2.3 is determined by use of the fact that

$$V(\widetilde{x}|\alpha,x_{o}) = E(\widetilde{x}^{2}|\alpha,x_{o}) - E^{2}(\widetilde{x}|\alpha,x_{o})$$
, and

that

$$\mathbb{V}(\widetilde{\mathbf{x}}|\alpha,\mathbf{x}_{o}) \equiv \int_{\mathbf{x}_{o}}^{\infty} [z - \mathbb{E}(\widetilde{\mathbf{x}}|\alpha,\mathbf{x}_{o})]^{2} f_{\alpha}(z|\alpha,\mathbf{x}_{o}) dz$$

By (1.2) $z \in 0 \le \alpha \le 1$ then $E(\widetilde{x}|\alpha, x_0) = +\infty$. Thus for all values of the integrand z, $[z - E(\widetilde{x}|\alpha, x_0)]^2$ is unbounded and hence $V(\widetilde{x}|\alpha, x_0) = +\infty$. If $1 \le \alpha \le 2$ then $V(\widetilde{x}|\alpha, x_0) = +\infty$ for

$$W(\widetilde{x}|\alpha,x_{o}) = E(\widetilde{x}^{2}|\alpha,x_{o}) - E^{2}(\widetilde{x}|\alpha,x_{o})$$
,

and

$$E(\tilde{x}^2 | \alpha, x_0) = +\infty$$
 and $E^2(\tilde{x} | \alpha, x_0) < \infty$

by (1.2). When $\alpha > 2$, by (1.2) again

$$= \frac{\alpha x_{o}^{2}}{\alpha - 2} - \frac{\alpha x_{o}}{\alpha - 1}^{2}$$
$$= \frac{\alpha x_{o}^{2}}{(\alpha - 2)(\alpha - 1)^{2}}$$

A "unique and important" property of a Poisson process is that if the independent random variables

$$\tilde{u}_1, \ldots, \tilde{u}_i, \ldots$$

are generated by a Poisson process, then

$$P(\tilde{u}_{i} > \xi + u | \tilde{u}_{i} > \xi) = P(\tilde{u}_{i} > u), \quad \substack{i=1,2,\cdots\\\xi > 0}$$
(2.4)

This is interpretable as "independence of past history," and is a <u>unique</u> property of the Poisson process among all processes generating continuous random variables $\tilde{x} \ge 0$. (See [1] for discussion of thi property). By analogy, it is easy to show that for independent random variables $\tilde{x}_1, \ldots, \tilde{x}_i, \ldots$ generated according to (1) and $\xi' \equiv e^{\xi} > 1$,

$$P(\tilde{x}_{i} > \xi' x | \tilde{x}_{i} > \xi') = P(\tilde{x}_{i} > x) = (x/x_{o})^{-\alpha}, \quad \frac{i=1,2,\dots}{x > x_{o}}, \quad (2.5)$$

and that the (strong) Pareto process is the only process among all processes generating continuous random variables $\tilde{x}_i > x_o > 0$ to possess this property.

<u>Proof</u>: Make the integrand transform $u_i = \log (x_i/x_0)$ in (1) and observe that (2.5) implies (2.4) and conversely since this transform is one to one from x_i to u_i , and from α_i to x_i , since $x_0 e^{u_i} = x_i$.

3. Independent Pareto Process When x is Known

3.1 Likelihood of a Sample When x_0 is Known

The likelihood that an independent Pareto process will generate r successive values $x_1, x_2 \dots x_r$ is the product of their individual likelihoods (1):

$$(\alpha x_{o}^{\alpha})^{r} \begin{bmatrix} r \\ \Pi \\ i=1 \end{bmatrix}^{-(\alpha+1)} .$$
(3.1)

If we define the statistic

$$t = \begin{bmatrix} r \\ i = 1 \end{bmatrix} x_i$$
 (3.2)

we may write (3.1) as

$$(\alpha x_0^{\alpha})^r t^{-(\alpha+1)}$$
 (3.1)

Alternatively, (3.1) may be written as

$$\xi \alpha^r e^{-\lambda \alpha}$$
 (3.3)"

where

$$\xi \equiv 1/t$$
 and $\lambda \equiv \log_e(t/x_o^r)$. (3.4)

Since ξ in no way depends on the unknown parameter α , it is clear that

$$\alpha^{r}e^{-\lambda\alpha}$$
 (3.5)

is the kernel of the likelihood. If the sampling process is non-informative then clearly (r,t) is a sufficient statistic when x_0 is known.

3.2. Conjugate Distribution of α

When x is known but $\widetilde{\alpha}$ is regarded as a random variable, the most convenient distribution of $\widetilde{\alpha}$ is a gamma-l distribution which may be written as

$$f_{\gamma 1}(\alpha | \mathbf{r}, \mathbf{t}) = \frac{\lambda}{\Gamma(\mathbf{r})} (\lambda_{\alpha})^{\mathbf{r}-1} e^{-\lambda \alpha}, \qquad \lambda > 0 , \alpha > 0 , \qquad (3.6)$$

where $\lambda = \log_{e}(t/x_{o}^{r})$. If such a distribution with parameter (r',t') has been assigned to α and if then a sample from the process yields a

sufficient statistic (r,t) the posterior distribution of $\stackrel{\sim}{lpha}$ will be gamma-1 with parameter (r",t") where

$$r'' \equiv r' + r$$
, $t'' = t't$, (3.7a)

or alternatively (r'',λ'') where

$$\lambda^{\prime\prime} = \lambda^{\prime} + \lambda \quad . \tag{3.7b}$$

<u>Proof</u>: Formula (3.6) follows directly from the discussion of sufficiency. Formulas (3.7) follow from Bayes Theorem; i.e. the posterior density of $\tilde{\alpha}$ is proportional to the product of the kernel of (3.6), the prior density of \tilde{c} and the kernel (3.5) of the sample likelihood:

D''(
$$\alpha$$
|r',t';r,t) ~ $\alpha^{r}e^{-\lambda\alpha}$. $\alpha^{r'-1}e^{-\lambda\alpha}$
= $\alpha^{r+r'-1}e^{-\alpha(\lambda+\lambda')}$

where

$$\lambda = \log_e(t/x_o^r)$$
 and $\lambda' = \log_e(t'/x_o^{r'})$

so that if we define r'' = r' + r and

$$\lambda^{\prime\prime} = \lambda + \lambda^{\prime} = \log_{e} \left[\left(\frac{t}{x_{o}r} \right) \left(\frac{t^{\prime}}{x_{o}r'} \right) \right]$$
$$= \log_{e} \left(t^{\prime\prime}/x_{o}r^{\prime\prime} \right) ,$$

the posterior density has a kernel of the form (3.5).

The mean, variance, and partial moments of the distribution of \widetilde{lpha} are from ASDT:

$$E(\widetilde{\alpha} | \mathbf{r}, \mathbf{t}) \equiv \widetilde{\alpha} = \frac{\mathbf{r}}{\mathbf{t}} , \qquad (3.7)$$

$$E_{\alpha}^{\alpha}(\alpha | r, t) \equiv \bar{\alpha} F_{\alpha \star}(\alpha t | r+1) , \qquad (3.8)$$

$$V(\alpha'|r,t) = \frac{r}{t^2} \qquad (3.9)$$

In ASDT it is shown that the linear (in α) loss integrals are

$$L_{\ell}(\alpha) \equiv \int_{0}^{\alpha} (\alpha - z) f_{\gamma 1}(z | r, t) dz =$$

= $\alpha F_{\gamma *}(\alpha t | r) - \bar{\alpha} F_{\gamma *}(\alpha t | r+1)$ (3.10a)

and

$$f_{r}(\alpha) \equiv \int_{\alpha}^{\infty} (z - \alpha) f_{\gamma 1}(z | r, t) dz$$
$$= \bar{\alpha} G_{\gamma *}(\alpha t | r + 1) - \alpha G_{\gamma *}(\alpha t | r)$$
(3.10b)

although these are <u>not</u> loss integrals in which we will be interested subsequently.

3.3 Distribution of the Mean a

If $\alpha > 1$ then the mean

$$a \equiv \frac{\alpha x_{o}}{\alpha - 1}$$
, for $\alpha > 1$,

of

$$\widetilde{\mathbf{x}} | \alpha \sim \mathbf{f}_{\alpha}(\mathbf{x} | \alpha, \mathbf{x}_{o})$$

exists by (1.2). If α is not known with certainty then provided that we assume that

$$\tilde{\alpha} \sim f_{\gamma 1}(\alpha | r, t)$$
,

it follows that for $\widetilde{lpha}>1$, (conditional on $\widetilde{lpha}>1$),

$$\tilde{\bar{a}} \sim p^{-1} f_{\gamma 1} (h(\bar{a}) | r, t) \frac{x_0^2}{(\bar{a} - x_0)^2}$$
, $\bar{a} > x_0$, (3.11)

where

$$h(\bar{a}) \equiv \frac{\bar{a}}{\bar{a}-x_{o}}$$
 and $p \equiv G_{\gamma 1}(1|r,t)$.

<u>Proof</u>: Since $\bar{a} = \alpha x_0 / (\alpha - 1)$ when $\alpha > 1$,

$$\alpha \equiv h(\bar{a}) = \bar{a}/(\bar{a}-x_0)$$
 .

The function $h(\bar{a})$ is continuous and monotonic decreasing for $\bar{a} > \max \{1, x_0\}$, so that

$$\widetilde{\tilde{a}} | \widetilde{\alpha} > 1 \sim p^{-1} f_{\gamma 1} (h(\tilde{a}) | r, t) | \frac{dh(\tilde{a})}{d\tilde{a}} | , \tilde{a} > x_{o};$$

as

$$\frac{dh(\bar{a})}{d\bar{a}} = \frac{x_{o}^{2}}{(\bar{a}-x_{o})^{2}},$$

(3.11) follows directly.

Of more interest than the loss integrals (3.10) are loss integrals linear in \bar{a} -- which, as we would expect, have certain undesirable properties if $\alpha < 1$ with positive probability. However, we can make a step in the direction of doing (prior) terminal analysis of a two action linear loss decision problem if we assume that $\alpha > 1$ with probability 1. In order to proceed in this direction we will need to know the conditional expectations $E(\bar{a} | \alpha \leq \epsilon)$ and $E(\bar{a} | \alpha \geq \epsilon)$ for values of ϵ

between 0 and $+\infty$. We show that

$$\overline{m}_{\epsilon} \equiv E(\widetilde{a} | \widetilde{\alpha} \geq \epsilon) = \begin{cases} + \infty & \text{for} & \epsilon \leq 1 \\ \\ \\ \frac{x_{o}e^{-\lambda}}{p\Gamma(r)} \left[\left\{ \sum_{i=1}^{r} \Gamma(i) \left(\sum_{i}^{r} \right) \lambda^{r-i} \right\} \\ + O_{o}(\boldsymbol{\ell}) \right] & \text{for } \epsilon > 1 \end{cases}$$

where

$$O_{o}(\epsilon) \equiv \int_{0}^{\infty} y^{-1} e^{-y} dy$$
, $\lambda \equiv \log_{e}(t x_{o}^{r})$ and $p \equiv G_{\gamma 1}(\epsilon | r, t)$.

Proof: Formula (3.10) follows directly from (1.2). Now suppose that

$$\widetilde{\alpha} \sim f_{\gamma 1}(\alpha | \mathbf{r}, t) = \frac{\lambda}{\Gamma(\mathbf{r})} (\lambda \alpha)^{\mathbf{r}-1} e^{-\lambda \alpha} , \qquad \begin{array}{c} \lambda > 0 \\ \mathbf{r} > 0 \end{array}$$

Then for $\epsilon > 1$,

$$E(\vec{a} \mid \epsilon > 1) = \frac{x_{o}}{p} \int_{\epsilon}^{\infty} (\frac{z}{z-1}) f_{\gamma 1}(z \mid r, t) dz$$
$$= \frac{x_{o}}{p\lambda\Gamma(r)} \int_{\epsilon}^{\infty} (z-1)^{-1} e^{-\lambda z} (\lambda z)^{r} d(\lambda z) .$$

Letting u = z-1, we may write the above as

$$\frac{x e^{-\lambda}}{p\lambda\Gamma(r)} \int_{\epsilon=1}^{\infty} y^{-1} e^{-y} [\lambda u + \lambda]^{r} d(\lambda u) ,$$

or letting $y = \lambda u$, as

$$\frac{x}{\frac{e^{-\lambda}}{p\Gamma(r)}} \int_{\epsilon=1}^{\infty} y^{-1} e^{-y} \begin{bmatrix} r \\ i \sum_{i=0}^{r} \\ i \end{bmatrix} y^{i} \lambda^{r-i} \end{bmatrix} dy$$
$$= \frac{x}{\frac{e^{-\lambda}}{p\Gamma(r)}} \frac{r}{i \sum_{i=0}^{r}} \begin{pmatrix} r \\ i \end{bmatrix} \lambda^{r-i} \int_{\epsilon-1}^{\infty} y^{i-1} e^{-y} dy .$$

Since

$$G_{\gamma^{\star}}(\epsilon-1|i,1) = \frac{1}{\Gamma(i)} \int_{\epsilon-1}^{\infty} y^{i-1} e^{-y} dy , \quad i > 0 ,$$

we may write

$$\mathbb{E}(\widetilde{a}|\widetilde{\alpha} \geq \epsilon) = \frac{x_{o}e^{-\lambda}}{p\Gamma(r)} \left(\sum_{i=1}^{r} \Gamma(i) (i)\lambda^{r-i} G_{\gamma*}(\epsilon|i,1) + G_{o}^{\epsilon} \right)$$

where

$$0_{o}(\epsilon) \equiv \int_{\epsilon-1}^{\infty} y^{-1} e^{-y} dy \quad \bullet$$

For any $\varepsilon > 1$, the integral immediately above is bounded, and is unbounded for ε = 1.

4. Sampling Distribution and Preposterior Analysis With Fixed Sample Size r

We assume that a sample of size r is taken from an independent Pareto process, and that the statistic \tilde{t} is left to chance. It is also assumed that x is known and fixed and that the parameter $\tilde{\alpha}$ has a gamma-1 distribution of the type (3.6). We need the following theorem in the sequel:

4.4 Convolution of r Pareto Density Functions

We define the (multiplicative) convolution g* of any r density functions,

$$g^* = f_1^* f_2^* \dots f_r^*$$
, (4.1)

Ъy

$$g^{*}(t) = \int_{R_{t}} f_{1}(z_{1}) f_{2}(z_{2}) \dots f(z_{r}) dA$$
(4.2)

where R_t is the r-1 dimensional hypersurface

$$\prod_{i=1}^{r} z_i = t \qquad (4.3)$$

<u>Theorem</u>: The convolution g^* of $r \ge 1$ Pareto densities, each with parameter $(\alpha, 1)$ is

$$g^{*}(t|\alpha,1) = \frac{1}{\Gamma(r)} \alpha^{r} t^{-(\alpha+1)} (\log_{e} t)^{r-1} , \quad \substack{r \ge 1 \\ t \ge 1 \\ \alpha \ge 0 } , \quad (4.4)$$

Proof: We prove this by showing that if

$$\widetilde{\mathbf{x}}_{i} | \alpha \sim \mathbf{f}_{\alpha}(\mathbf{x} | \alpha, \mathbf{x}_{o})$$
, $i=1,2,\ldots,r$

and we scale all \tilde{x}_i into units of x_o , then g* may be represented as an (additive) convolution g of gamma-1 densities. We then show that the fact that g is a gamma-1 density(ASDT, p. 224) implies that g* is as stated above.

Define
$$\tilde{z}_{i} = \tilde{x}_{i}/x_{o}$$
 and $e^{\tilde{y}_{i}} = \tilde{z}_{i}$, so that
 $\tilde{z}_{\perp} \cdot f_{\alpha}(z_{i}|\alpha,1)dz_{i} = az_{i}^{-(a+1)}dz_{i}$, $\begin{array}{c} z_{i} > 1 \\ \alpha^{i} > 0 \\ i = 1, 2, \dots r \end{array}$, (4.5)

or

$$\widetilde{y}_{i} \sim f_{e}(y_{i}|\alpha)dy_{i} = \alpha e^{-\alpha y_{i}} dy_{i}, \qquad \begin{array}{c} \alpha > 0 \\ y_{i} > 0 \\ i = 1, 2, \dots r \end{array}, \qquad (4.6)$$

or letting $u_i = \alpha y_i$,

$$u_{i} \sim f_{e}(u_{i}|1)du_{i} = e^{-u_{i}}du_{i}, \quad i=1,2,...r$$
 (4.7)

By the Theorem on page 224 of ASDT, the convolution g of the r density functions (4.7) is a standardized gamma-l density with parameter r:

$$\widetilde{\mathbf{v}} \equiv \sum_{i=1}^{r} \widetilde{\mathbf{u}}_{i} \sim \mathbf{f}_{\gamma^{\star}}(\mathbf{v} | \mathbf{r}) = \frac{1}{\Gamma(\mathbf{r})} e^{-\mathbf{v}} \mathbf{v}^{r-1} .$$
(4.8)

If we define

$$\widetilde{v} \equiv \sum_{i=1}^{r} \widetilde{u}_{i} = \sum_{i=1}^{r} \log_{e} \widetilde{z}_{i}^{\alpha} = \log_{e} \prod_{i=1}^{r} \widetilde{z}_{i}^{\alpha} = \log_{e} \widetilde{t}^{\alpha},$$

since $\alpha > 0$, log t^{α} is a monotonic increasing function of t. Hence (4.8) implies that

$$g^{\star}(t) = f_{\gamma^{\star}}(\log_{e} t^{\alpha}) \mid \frac{d}{dt} \log_{e} t^{\alpha} \mid$$
$$= \frac{1}{\Gamma(r)} e^{-[\log t^{\alpha}]} [\log t^{\alpha}]^{r-1} . (\alpha t^{-1})$$
$$= \frac{1}{\Gamma(r)} \alpha^{r} t^{-(\alpha+1)} [\log_{e} t]^{r-1} , r > 0 ,$$
$$t > 1 .$$

It follows from the aboved stated theorem that the convolution g* of r Pareto densities each with parameter (α, x_0) is

$$g^{*}(t) = \frac{1}{\Gamma(r)} \alpha^{r} (x_{o}^{r})^{\alpha+1} t^{-(\alpha+1)} [\log_{e} t - \frac{k}{\alpha}]^{r-1} , t > x_{o}^{r} , (4.9)$$

where $t \equiv \prod_{i=1}^{r} x_i$ and $k \equiv r \log_e x_e$

4.2 Conditional Distribution of $\tilde{t} \mid \alpha$

Using the results of section 4.1, the conditional probability given α and x that the product of r identically distributed Pareto random variables will have a value t may be written as

$$D(t|\alpha, x_{o}; r) \equiv f_{t}(t|\alpha, x_{o}; r)$$
$$= g^{*}(t) \qquad (4.9)$$

4.3 Unconditional Distribution of \tilde{t}

If a sample of size r is drawn from a Pareto process with unknown parameter α regarded as a gamma-l random variable distributed with parameter (r',t') as shown in (3.6) and all sample observations are scaled into units of x_o, then

$$D(t|x_{o}=1,r',t';r) = \frac{(\lambda')^{r'}}{B(r,r')} \cdot \frac{\log_{e}t}{t[(\log_{e}t)+\lambda']}r'', \quad (4.11a)$$

$$t > 1,$$

$$r,r',\lambda > 0,$$

where

$$\lambda' \equiv \log_e t'$$
, $B(r,r') \equiv \frac{\Gamma(r+r')}{\Gamma(r) \Gamma(r')}$ (4.11b)

Alternatively, the unconditional distribution of the sufficient statistic $\tilde{y} \equiv \log_{e} \tilde{t}$ is inverted beta-2:

$$D(y|x_{0}=1,r^{*},t^{*};r) = f_{1\beta2}(y|r,r^{*},\lambda^{*})$$

$$= \frac{(\lambda^{*})^{r^{*}}}{B(r,r^{*})} \cdot \frac{y^{r-1}}{(y+\lambda^{*})^{r^{*}}}, \qquad (4.12)$$

$$r,r^{*},\lambda^{*} > 0 ,$$

Proof: To prove (4.11a) note that from (4.4) and (3.6)

$$\begin{split} D(t|x_{0}=1,r',t';r) &= \int_{0}^{\infty} g^{*}(t|1,\alpha) f_{\gamma 1}(\alpha|r',t') d\alpha \\ &= \frac{(\log_{e} t)^{r-1} (\lambda')^{r'}}{t \Gamma(r) \Gamma(r')} \int_{0}^{\infty} \alpha^{r''-1} e^{-\lambda'' \alpha} d\alpha \\ &= \frac{(\lambda')^{r'}}{B(r,r')} \circ \frac{(\log_{e} t)^{r-1}}{t [(\log_{e} t)^{r-1}]} r'' , \quad t > 1 . \end{split}$$

Formula (4.12) follows by making the integrand substitution $y = \log_{e} t$ in (4.11a).

- [1] Mandelbrot, B., "The Pareto-Levy" Law and the Distribution of Income," International Economic Review (May 1960, Vol. I, No. 2).
- [2] Loeve, M. Probability Theory (Van Nostrand, 1960, 2nd ed.) pp. 326-331.
- [3] H. Raiffa and R. O. Schlaifer, <u>Applied Statistical Decision Theory</u> (Division of Research, Harvard Graduate School of Business Administration, 1961)

.

