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ABSTRACT

In international weightlif ting competition there are two categories of

lifts: the "snatch" and the "clean-and-jerk. " A lifter's score is the sum

of his scores in these two lift categories. The lifter has three attempts in

each category; his "score" is the weight of his best lift. Once he selects

a weight for a lift, he cannot select a lower weight on a subsequent lift in

the same category. Two problems are explored here: selection of lift weights

and methods for updating that selection as more information becomes avail-

able during the competition. Several numerical examples are included.
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1. Introduction

There are two categories of lifts in international weight lifting —

first the "snatch" and then the "clean-and-jerk" (in that order). In the

snatcli, the lifter must take the weight in a single motion from the ground to

ahove Ills head, arms extended. In the clean-and-jerk, the lifter first "cleans"

ttie welglit (brings it up to his chest) then thrusts it above his head, or "jerks"

it. Each lift category is run as a separate competition; however, one's overall

score is the sum of the separate scores in the two categories.

In each category the lifter faces the problem of selecting weights. A

competitor has a maximum of three lift attempts in each category. His score

in that category is the weight he lifts on his best lift. He cannot, however,

go down in his selected weight. Once a weight is selected for a lift, the

weight chosen on the next lift must be at least as high. A lifter who attempts

too little may have almost no chance of winning; a lifter who attempts too

much may have a significant chance of "bombing out" (scoring zero)

.

In previous work [2], consideration was given to the problem of optimizing

performance within a single lift category. This paper expands those results.

In particular, the joint, two-lift problem is explicitly treated. A theorem

is proven indicating when separate, independent consideration of the lift-

categories will lead to an optimal, joint policy. In addition, the important

problem of updating strategy during competition is considered: if the favorite

bombed out of the "snatch" in a particular competition, one's strategy in the

"clean-and-jerk" should incorporate that information.

The weight selection problem demands explicit consideration of the value

of scoring a certain weight as well as the chances of making the lift. These

considerations are developed in the next section.
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Game theoretic and team strategy issues are not developed here; the strategy

of an individual in a competition-group that is indifferent to his performance

is used for our analysis here. This clearly is a simplification of the real

problem in which other competitors influence lift probabilities and coaches

exert "team-strategy" pressure. Such problems deserve further, separate

analysis.
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2. The General Model

We refer here to the partial decision tree in Figure 1. The areas occu-

pied by X's and Y's indicate decision points; the splits or forks are chance

node. A lifter moves to the high branch after a chance node if he is success-

ful in the lift; if he misses, he passes to tlie lower branch.

Define the following:

X = weight selected for snatch-lift i in Figure 1, 1=0,..., 7.

Q. = probability that score in snatch competition is X., 1=0,... 7.
' Xq=0.

p. = probability of lifting X. in Figure 1.

Y.. = weight selected for clean-and-jerk lift j, given snatch-weight =
^^ X^, j=0,...7. Y.- = O, i=0,...7.

i lO

s , = unconditional probability of lifting Y .

.

R. . = probability that the competitor's score is Y, . + X..
ij ij 1

Assuming independence, Q is displayed in terras of (p, } in Table 1 and

R is displayed in terms of {Q } and (s,.) in Table 2.

\

(1-p^) (l-p^) (1-p^)

1 p^ (I-P3) (1-p^)

2 (1-p^) (p^) (I-P5)

3
p-,^ P3 (I-P7)

4 (1-p^) (I-P2) P^

5 (1-p^) P2P5

6 p^ (I-P3) (p^)

7 P^P3P7

TABLE 1: Snatch-Lift Outcome Probabilities





R. . , i=0, ... ,7

(l-s.^)(l-s.2)(l-s^^)Q^

4 (1-s^^) (l-s.^) s^^Q^

5 (1-s.^) s^^^s^i

6 s^^ (I-S.3) s^^

TABLE 2: Total Lift Outcome Probabilities

If we let V(X +Y ) = value or utility associated with a particular lift-

sum, then we can formulate the general problem as follows:

find {X^}J^ . (Y.^lJ^ ^l^ to

max Z = y y VCX^+Y^ .) K.^„ >„ i ij ij

7 7

j=0 i=0

(1) subject to competition rules

\ Ih'-h

(la) <' ^3-^6

^1 ^ ^2 ^ S

^2^^
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^il^^3^^i7 '=''-'

(lb) < Y^2 1 Y.^ 1=0,...,

7

Y^0=0 1=0,...,

7

^1 - °' ^ij - ° ^ " ^' •••' ^' ^ " •^••••' '^'

The above is a general non-linear program when no information about the

form of the objective function is available. The relatively small number of

variables (56) and the simple nature of the constraints makes it small enough

to be solved by existing codes. The structure of the tree in Figure 1 suggests

a dynamic programming solution strategy. However, the nature of the constraint

structure makes such a strategy awkward in general.
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3. Evaluation of Lift Probabilities

One could evaluate a lifter's previous performances to attempt to assign

probabilities to various lift-weights. However, this assumes that we can take

account of day-to-day variations in performance and relate that to his

performance on a particular day. Clearly, any estimate of lift probabilities

would have to be modified to reflect the lifter's mental and physical state

on a particular day. The procedure we suggest, basically asking the lifter

what he thinks he can lift, assumes he has enough knowledge of his past per-

formance to incorporate that knowledge in an estimate of his performance on

a particular occasion. Thus we shall "ask the horse," although experience with

particular lifters may call for modifications.

One simple method for obtaining this information from a lifter would be

to ask for three points on a (bounded) probability-of-lif t curve as follows:

Question 1: "What is the maximum weight you feel certain you can lift?"

Call this L.

Question 2: "What is the most weight you feel you have the slightest

chance of lifting?" Call this U.

Question 3: "What weight do you feel you have 50-50 chance of lifting?"

Call this M,

If we then assume that the lifter's probability-of-lif t curve is well behaved,

we might approximate it by a quadratic function between L and U as follows:

Assume p.(X.) = probability of lifting X., is of the form

1 ^i^L; or U>X.>L and f(z)>l.

t' 2
pIX.) =]f(z) = az +bz+c U>X.>L and l>f(z)>011) 1 -

^i^U; or U>X.>L and f(z)<0.

for all i.
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X-L
where z = —- = proportion of a lifter's "weight-range" attempted. If

2

we let k = ^ , then it can be shown that a =
'^^'^

^0 , b = ^0 ~ ^^^

and c = 1 in (2) . We have assumed for simplicity that this function is the

same for any lift; clearly if a lifter were able to quantify a different

function for each i in (2), a set of probability functions could be estimated

and used in (1)

.





-9-

A . Objectives

Many methods have been suggested for assessing utility measures (see

[31, e.g.). Several with some intuitive appeal are suggested in [2] which

we will investigate further here.

Expected Weight Maximization : This assumes a lifter's utility is linearly

related to the amount he lifts. A problem exists: there is (relatively) a

very high negative utility associated with "bombing-out" or lifting zero here.

This negative utility may be higher than that which exists in lifters' minds.

Weight-Range Maximization: Here it is assumed tlie lifter wishes to maxi-

mize the proportion of his "weight range" he achieves; i.e., a lifter who

lifts 350 pounds with U = 400, L = 300, scores .5. This suggests more risk

prone strategies, since the utility of 300 to this lifter is which is the

same as the utility of his bombing out (actually lifting 0). Hence he would

be indifferent between 300 and 0, while an expected weight maximizer clearly

would not. This may or may not be the case but observation of liftings sug-

gest some (at least psychological) penalties for bombing out. One might

attempt to assess that penalty directly and include it as V(0). In that case,

"Weight-Range" and Weight Maximization could be made to imply the same policy

(they would differ only by a linear transformation, which would have no effect

on optimal policies)

.

Medal Winning : This, after all, is what competition is about. One method

of assessment of chances of winning medals calls for analysis of prior scores

by competing lifters. Assume N lifters are involved in the competition, and

an evaluation of lifter k's past performance yields a snatch- density ,
poten-

tially of the mixed variety, dF k(x) and a clean-and-jerk density dF k(y).
A Y

Thus, the following (prior) information is available:
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Lifter Snatch Dens
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For example, if an Individual is only satisfied with first place,

N N

%) =J^ ]I/z'S)<%)dG

and V(T) = /dG (w ) = "value" of lift-total T in terms of proba-
W^ N

bility of winning.

We have assumed we can analyze snatch-lifts and clean-and-jerk lifts

independently here. This assumption allows simpler analysis of past lifts

to form densities; assuming dependent, joint distributions could be beyond

our ability to annly/.o past data. It is unlikely that more than the last

six or seven meet-results should bo used for estimating a lifter's current

competitive lift distributions. This is clearly not enough data to estimate

a joint density but could be used to estimate single-lift densities.



I
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5. Updating During Competition

Suppose that (competitive) lifter i has already lifted X . It no longer

makes sense to consider events including X <. X ; thus lifter i's lift-density

should be updated. The updating procedure is simple; using the rule of condi-

tional probability.

cjx>xi ^^^ y "^

dF^ (x)
^1 -i

X > X
OO

/dF (x)

? ^i

Then the updated dF (or dF ) replaces the prior distribution arid a new dH* is
X^ Y.

developed in (3). Then the objective function and the the lift-strategy can be

updated.

Suppose also that, after lifting X , a lifter wishes to update his proba-

billty-of-lif t curve, say, by increasing his 50-50 weight by 10 pounds. Then a

new, optimal strategy, incorporating this new probability-of-lif t information

in the calculation of the {p.} should be developed.

The above procedures allow updating and rerunning of the model during

a competition, incorporating information available at that time so that best

decisions can be made.
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6. An Independence Theorem for Lift Optlmality

Under what conditions can a lifter in the second category, the clean

and-jcrk, neglect the results of his first category lift in choosing an opti-

mal strategy? That q<iestion is treated in the following:

Theorem: If V(X. + Y^ J is a separable function of Y
,

^ and X., then Y" = Y..
,

i ij ij i ij i*j

i,i*j= 1, ... 7; that is, clean-and-jerk strategy is independent of

snatch results.

Proof: Assume the snatch competition is over, that X = X.^, i*e (0,1, . . . 7)

The current, conditional problem is now to

y yv(Y_, . + x,^) R,, I, .^^ ' ij i* ij I i=i*
max

subject only to constants on (Y } or (lb)

Looking at Table 2,

^ij|i=i* can be written as f({s } f>^

where 6_, . is , 1 if i=i*
i*

otherwise

The objective function above is then

yyv(X + Y. .) R.

.

yyVj^(X)R^. + yyV2(Y^.)R.. (by the given separability)

Vi(X)nRij +):iV2(Y^.)f({s.})6.,

\W + I V2(Y. )f({s })

j=0
7

Constant + I V (Y .^ . ) f ({ s. })

2=0 ^ ^ J
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The above objective will be the same for any i* , and strictly depends only

on j.

Thus Y^ . = Y..., i, i* c (0,...7), proving the theorem.

A particular case of this theorem is the following:

Lemma: When tlio objective Is expected weight maximization or weight-range

maximization, 1st and 2nd category lift strategies are independent.

Proof : Result follows as a special case of the theorem.

Thus, we have the useful result that if our objective is one of the

above types, we need only concern ourselves with the current competition

and not be concerned about other category performance.
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7. Some Numer ical Examp les

It is most convenient to study the general case numerically, using a

nonlinear optimization method. In this section we will give a variety of

examples to illustrate the sensitivity of optimal policies to changes in

objectives and input parameters.

Consider an individual whose value of U=400, L=300 and M=330, 350 or

370 (see Section 3), in clean-and-jerk competition. Probability curves for

these parameter values are included in Figure 2.

Three objectives were considered:

A = Maximizing expected proportion of lift-range

B = Maximizing expected weight

C = Maximizing chances of medal winning given a score of X* in the snatch.

For objective C, it was assumed that on the basis of prior data analysis,

ones chances of winning a medal = T =

for clean-and-jerk Weight Total (WT) < 350

T = ^QQ^° , 350<WT<450

1 WT<450

i.e., the minimum weight needed to win a medal is a random variable uniformly

distributed between 350 and 450. There is no inherent difficulty in making

this function more complicated since the solution was calculated numerically

anyway; this simple example was used for ease of exposition.

The numerical solutions listed in Table 3 were calculated using RAC's

nonlinear programming package SUMT [1]. Each case took about six seconds of

CPU time to run on an IBM model 370-165. The program is currently in a batch

mode although it could be adapted for real time use.
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A "solution" from Table 3 is rend as follows: Line 1 indicates that

the lifter is an expected proportion maximizer whose 50-50 weight (M) = 330.

His optimal first lift weight is 338 pounds (X ) . If he makes that lift his

next lift should be 360 (X_) pounds; if he misses, 338 (X ) again and so

on in accordance with the notation in Figure 1. On the average he will lift

33% of his weight-range.

Line 4 has blanks under X , X , X • this is due to the fact that X =

300, a certain event, making X , X , X events of probability zero. Here

the value of the objective corresponds to the average weight he will be ex-

pected to lift in the long run. Line 7 has medal-winning probability as an

objective. Thus, under the sequence indicated in line 7, one's chance for

a medal would be 6%.

Lift probabilities have been assumed constant across lifts; they could

of course have been updated as in Section 5.
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8. Conclusions and Uses

An analytic procedure has been proposed here to aid in the selection of

optimal weights for a weightlif ter . The weight selection policies have been

shown to be quite sensitive to a lifter's objectives and utilities, indicating

that careful consideration of those utilities is essential in any application.

Cases 1, 4 and 7 in Table 3, for example, are identical except for objectives

and they result in vastly different policies.

The numerical procedure has been found to be efficient enough to allow

for real-time operation at an actual meet. Thus a lifter (whose utilities

have been determined beforehand) could wait until just before he was ready

to select his lift weight to answer the lift probability questions in Section

3. On the basis of his first or second lift he could then come back to the

computer terminal and update his probabilities in time for his next lift.

He could also enter competitive, current scores to update his objective func-

tion. He would then receive an updated, "best" lift suggestion for the next

round of competition.
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Figure 2: Probability Structure for Case Studies

(1) = 50-50 weight = 330

(2) = 50-50 weight = 350

(3) = 50-50 weight - 370
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