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Abstract

We provide sufficient conditions for the existence of a solution to a consumption and portfolio

problem in continuous time under uncertainty with an infinite horizon. When the price processes
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1 Introduction and Summary 1

1 Introduction and Summary

Recent advances in the understanding of dynamic asset markets have made available a set of new

tools to analyze the optimal consumption and portfolio decision of an individual in continuous time

under uncertainty; see Cox and Huang (1989, 1990), Karatzas, Lehoczky, and Shreve (1987), He and

Pearson (1989), Pages (1988), and Pliska (1986). There are several attractive features of these new

tools. First, the existence problem of an optimal consumption and portfolio policy for an individual

can be analyzed with much ease while the admissible policies do not take their values in a compact

set and the consumption must obey a positive constraint. Second, when securities prices follow

a diffusion process, the optimal policies can be computed by solving a linear partial differential

equation in contrast to a highly nonlinear Bellman equation in dynamic programming. Third, in

some situations, optimal policies can even be computed directly by evaluating some integrals.

The aforementioned papers, however, address the optimal consumption and portfolio problem in

economies with a finite horizon. The purpose of this paper is to show how this set of new tools can

be brought to bear on the same problem in economies with an infinite horizon. Our conclusions are

that, except for some important technical departures, the existence and computation of an optimal

policy can be analyzed similarly with the same attractive features as in finite horizon economies.

We also study the convergence of optimal policies in finite horizon economies to those in infinite

horizon economies. We show that pointwise convergence always occurs for optimal consumption

policies. But we do not know whether this occurs for optimal portfolio policies. However, optimal

portfolio policies converge in a certain norm involving taking expectations. Thus, if the optimal

portfolio policies for finite horizon economies do converge at all pointwise, they must converge to

the optimal policy in the infinite horizon economy. Note that this type of convergence result is very

difficult to get by using dynamic programming.

The analysis in this paper utilizes Cox and Huang (1989, 1990) extensively, which the reader may

want to consult. Two other papers complement our study. First, Merton (1989) uses the Cox-Huang

technique to solve, in infinite horizon, the optimal consumption and portfolio policy in closed-form

for a class utility functions when asset prices foUow a geometric Brownian motion. Second, Foldes

(1989), using a different but related technique, also analyzes the optimal consumption and portfolio

problem with an infinite horizon in a stochastic environment more general than ours. He however,

does not give explicit conditions for existence nor does he study convergence properties of optimal

policies.

The rest of this paper is organized as follows. Section 2 formulates the model. The existence

and computation of optimal policies are analyzed in Section 3 and Section 4, respectively. Section 5
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gives closed-form solutions for some commonly used utility functions. Section 6 gives results on

convergence and Section 7 contains concluding remarks.

2 Formulation

We consider a securities market under uncertainty in continuous time with an infinite horizon. We

will use an iV-dimensional Brownian motion to model the evolution of exogenous uncertainty. Thus

we take the "state space" Q, to be the space of continuous functions from [0,oo) to 3?^ equipped

with the topology of uniform convergence on compact subintervals of [0,oo). The collection of

distinguishable events is the Borel sigma-field of Q. denoted by T and the probability belief of

the agent to be considered is the Wiener measure on {0,,J^) denoted by P. It is well-known that

under P the coordinate process

w{u,t) = u){t), Vw G fi,

is an iV-dimensional standard Brownian motion^, where ij{t) is the value at time t of the Jf^-valued

continuous function u £ Q.. Since a state of nature is a complete realization of tt; on the time interval

[0, oo) and one learns the true state of nature by observing w over time, we model the intertemporal

resolution of uncertainty by an increasing and right-continuous family of sub-sigma-field of .7^ or a

filtration F = {J^t\i G 3?+}, where ft = n,>(.?^° and T° is the smallest sigma-field generated by

{w{s);0 < s < t}.^ One can verify that T — ^txiTu that is, all the distinguishable events are

generated by sample paths of w. As a standard Brownian motion starts from zero at time i =

with probability one, Tq contains only subsets of T that are probability one or zero.

All the processes to appear wiU be adapted processes. In our setup, adapted processes are

progressively measurable; see Stroock and Varadhan (1979, exercises 1.5.6 and 1.5.11). Since

progressively measurable processes are naturally adapted, thus the set of adapted processes is

equivalent to the set of progressively measurable processes. A martingale X under P here is a

(progressive) process that has right-continuous paths and has continuous paths with P probability

one so that f;[X(5)|.7^(] = X{i) for all 5 > (, where i;[-|.Ft] is the expectation under P conditional

on Ti. For any integrable random variable Y on (1),.^, P), there exists a (P)-martingale X so

that X{t) = E[Y\Tt], P-a.s.; see Jacod and Shiryaev (1987, remark 1.37). All the conditional

expectations to appear wiU be martingales.

'a standard Brownian motion is a Brownian motion that starts at zero with probability one.

^Throughout this paper we will use weak relations. For example, positive means nonnegative, increasing means
nondecreasing, etc.
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Remark 1 In the above setup, the probability space {il,J^, P) is not complete'^ and the filtration F

does not satisfy the usual conditions*. This is a departure from the earlier literature such as Cox

and Huang (1989, 1990). This departure is important for our purpose; otherwise. Proposition 1 to

follow is not valid.

We will use the following notation: if i is a matrix, then \x\ = ftrace(a;x^)j , where ^ denotes

"transpose."

There are A'^ + 1 securities traded continuously on the infinite time horizon [0,oo) indexed by

n = 0, 1, 2, . .
.

, iV. Security n ^ is risky and is represented by a process of right-continuous and

bounded variation sample paths Dn with Dn{t) representing cumulative dividends paid by security

n from time to time t. Denote the ex-dividend price of security n / at time t by 5„(<) and

let S{t) = {Si{t),...,SN{t))'^ and Dit) = (I)i(f),. . . ,D;v(0)^- As these securities are traded

ex-dividends, assume without loss of generality that Dn{0) = for all n = 1,2,.. . ,N. We assume

also that S + D is s-n iV-vector process:

S{t)+D{t) = SiO)+ f bis)ds+ f ais)dw{s), te^+, (1)
Jo Jo

where b and <t, respectively, are iV-vector and N x iV-matrix predictable processes^ satisfying, for

all n,

i:

T
"\b{s)\ds < oo, P-a.5., V<>0, (2)

(T{s)\^ds < oo, P-a.5., Vt>0, (3)

for some sequence of optional times (T„) with T^ t oo P-a.s., and the second integral of (1) is a

stochastic integral.^

We assume that a{t) is a.s. of full rank for all t. The zero-th security, called the bond, is locally

riskless. Its price at time t, B{t), is expj/J r{s)ds}. One can view this security as a bank account

that pays an instantaneous interest rate r{t) at time t. So $1 invested at time grows to B{t) at

'a probability space (fl,/", P) is complete if any subset of a probability zero set is an element of ^.

*A filtration F satisfies the usuaJ conditions if (i) it is right-continuous: ^, = A,>,^j for all t g S?+; (ii) it is

complete: the probability space (Q,^, P) is complete and /o contains all the P-measure zero sets.

'a process is predictable if it is measurable with respect to the predictable sigma-field, which is the sigma-field

generated by all adapted processes with continuous paths.

'The usual definition of a stochastic integral depends on the completion of a probability space and a filtration

satisfying the usuai conditions; see, for example, Liptser and Shiryayev (1977, chapter 4). The definition of a stochastic

integral here is based on Jacod and Shiryaev (1987, chapter 1) and has all the usual properties. In particular, the

stochastic integral of a continuous local martingale is a continuous local martingale and Ito's formula is valid, where

we recall that a process X is a local martingale under P if there exists a sequence of optional times T„ t oo. P-a.s.,

so that the process {X{T„ A <);( € ??+} is a (uniformly integrable) martingale for all T„.
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time t. For B to be well-defined, we assume that the interest rate process r satisfies

/ \r{s)\ds < oo, P- U.S., Vf > 0. (4)

Now consider an agent with a time-additive utility function for consumption, u{c^t) and an

initial wealth Wo > 0. Assume throughout that u{c, t) is continuous in (c,<), concave and increasing

in c, and is possibly unbounded from below at c = 0. This agent wants to manage a portfolio of the

risky securities and the bond, and withdraw funds out of the portfolio to maximize his expected

utility of consumption over time. Our task here is to find conditions on the utility function and on

the price processes to guarantee the existence of a solution to the agent's problem.

We refer to the price system as the A'^-vector of normalized prices defined by S*{t) = S{t)/ B{t).

Ito's formula implies that

*•'"
+

i'

W)'"^'''
= ''°'

^

i'

"""bw"'' "' + i' §w ^'"'"- ^ - »'• ""*

The process on the left-hand side is called the gains process and here it is expressed in units of the

bond. Putting

Git) = S'{t)+ f-^dDis),
Jo B{s)

one sees that the difference G{t) — 5(0) represents the accumulated capital gains and accumulated

dividends on risky assets in units of the bond, where we note that since 5(0) = 1, 5'*(0) = 5(0).

A trading strategy is a iV -|- 1-vector predictable process (a,^^) = {a,{6^ ,. . . ,0^)), where a{t)

and 6^{t) are the number of shares of the bond and of risky asset n, respectively, owned by the

investor at time t before trading. The investor's wealth in units of the bond at time t after the

receipt of dividends is

Wit) = ait) + dit)'^iS'it) + ADit)/Bit)).

For now, a consumption plan c is a process that is positive (except on a set that is negligible with

respect to the product measure generated by P and Lebesgue measure on 5f+) with c(t) denoting

the consumption rate at time t. A trading strategy is said to finance the consumption plan c if the

following intertemporal budget constraint holds:

f 4r\ds + Wit) = WiO) + r m'^dGit), P - a.s., vt e JJ+, (5)
Jo B(S) Jo

provided that the stochastic integral on the right-hand side is well-defined. This equation says

that, in units of the bond, the value of the portfolio at time t is equal to its initial value plus

accumulated capital gains or losses and minus accumulated withdrawals for consumption. For the
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stochastic integral of (5) to be well-defined, we introduce the class C{G) of trading strategies {a, 9),

the of which satisfies

i
9{s)^a{s)

'

ds < oo, P - a.s.
Bis)

for a sequence of optional times Tn 1 oo, P-a.s.

For the agent's problem to be well-posed, however, it is necessary that something cannot be

created from nothing through trading using reasonable trading strategies. This is the subject to

which we now turn.

Up to now nothing was said about the existence of arbitrage opportunities. In fact with the

strategies we have defined it is well known that such arbitrage opportunities do exist, even in finite

time; see the doubling strategy of Harrison and Kreps (1979). Were this the case, the consumption

and portfolio choice problem would not be well-posed. To rule out arbitrage opportunities, we will

impose a regularity conditions on the parameters of the price system and a natural institutional

constraint that wealth cannot be strictly negative. This constraiint has been ansdyzed by Dybvig

and Huang (1989) and Harrison and Pliska (1981).

We make the following assumption throughout our analysis:

Assumption 1 Let K{t) = -a{t)~^{b{t) - r{t)S{t)). There exists a positive constant K < oo such

that \k(u, t)\ < K for all t, P-a.s.

This assumption is in particular satisfied in the models originally considered by Samuelson

(1965) and Merton (1971). Now define a martingale under P that is almost surely strictly positive:

m = exp y^ K{sfdw{s) - i jf* \Kis)\^ ds^ te^+.

By Assumption 1, it is easily verified that £^[^(t)] = 1. Thus

Qt{A)= h{u,t)P{du) VA6jr„
Ja

is a probability measure equivalent to P. The family of probability measures {Qut G [0,oo)} is

"consistent" in that Q, equals Qt on Tt, where oo > 5 > f > 0. We have the following result.

Proposition 1 There exists a probability Q on {^,T) such that its restriction on Tt is equivalent

to the restriction of P on Tt for all t 6 5?+ . Moreover, under Q

,

G{t) = S{0)+ [ ^dw'is), te[0,<x>),
Jo i>{s)

and thus is a local martingale^ under Q, where w'{t) = w{t) - jQK,{s)ds is an N -dimensional

standard Brownian motion under Q.

See footnote 6 foi a definition
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Proof. Define a consistent family Qt on {Q,Tt) as above. Stroock (1987, lemma 4.2) shows that

there exists a unique Q on {il,J^) so that Qll't = Qt for all f G §?+• Since Q is equivalent to P on

!Ft, we have the first assertion. The second assertion follows from the definition of k and Girsanov's

theorem (see, e.g., Stroock (1987, lemma 4.3)). I

Since P and Q are equivalent on (fi, J^t) for any finite t, they are said to be locally equivalent.

On the other hand, P and Q may be mutually singular on the cr-field .F, as shown in the following

lemma.

Lemma 1 The measures Q and P are mutually singular if and only if J^ |/c(<)p(ii = oo, Q-a.s.

Proof. By the Radon-Nikodym theorem, there exists a extended-valued random variable ^oo

such that P(^oo = oo) = and

QiA) = E[UlA] + QiAn{^ = oo}), VAGJ^;

see, e.g., Jacod (1979, theorem 7.1). For P and Q to be mutually singular, it is necessary and

sufficient that Q{^oo < oo) = 0. But theorem 8.19 of Jacod [1979] shows that in fact

{^oo<oo} = |y \K{t)\'^ dt < oo \
,

Q-a.s.,

and so P and Q are mutually singular if and only if /q°° |«(0P ^* = '^» Q-a.s., as desired. I

In the models of Samuelson or Merton, the process « is constant, so by the lemma above P and Q

are mutually singular. The a.lmost surely statements on !F can no longer be applied indifferently

with respect to either probability, as they can be in the finite horizon case. However, one can still

use Almost surely with respect to both P and Q in restriction to J^t? for all f G 3?+.

Lemma 2 Suppose {a, 9) G C{G). Then the integral f^ d{s)^dG{s) is an ltd process under both P

and Q and is the same whether it is computed relative to (F,P) or to (F,Q).

Proof. From the definition of G one has

Since {a,0) G C{G), the stochastic integral on the right hand side is well defined under P. On the

other hand by Assumption 1, there exists K < oo such that |k| < K . By the definition of /c, we

have thus
h{t)-r{t)S{t)

9{tY-
B{t)

^(t)T -(*)«(')

B{t)
'^'^'^^'Kit)

Bit)
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and so

0{t)
jb{t)-rit)S{t)

5(0
< K

e{t)^ait)

B{t)

Thus the Lebesgue integral is finite, and /q 9{s)^ dG{s) is an Ito process under P. The rest of the

assertion follows from Stroock (1987, 111.4.3). I

We are ready to show that there are no arbitrage opportunities when the positive wealth con-

straint is in force. Our proof is a direct generalization of Dybvig and Huang (1989, theorem 2). We

first recall the following usual definition of an arbitrage opportunity.

Definition 1 An arbitrage opportunity is a strategy {a,0) G jO{G) with W{0) = that finances a

consumption plan c that is positive and nonzero.

We need a technical lemma to proceed:

Lemma 3 Let c be a consumption plan. Then

E' fJo
c{t)

B{t)
dt = E r

Jo B{t)
dt

where E' denotes expectation under Q.

Proof. For any finite t.

E' l
' c{s)

Bis)
ds

I B{s)
ds

see DeUacherie and Meyer (1982, VI. 57). Given that P and Q are locally equivalent, c is positive

on any finite subinterval of [0,oo) under either P and Q. Thus the integrands on both sides of

the above relation are positive and increase in t. Thus letting t —- oo, by monotone convergence

theorem we have the assertion. I

Proposition 2 Let c be a consumption plan financed by {a,0) G C{G) with W{0) = and with

^i^) ^ 0( P-a.s. for all <€§?+. Then P-almost surely, c is identically zero.

Proof. From (5) we have

r -Er\ '^^ + ^(0 = w{0) + f e{tfdG{t), v< e »+.
Jo B(s) Jo

By Proposition 1 and the fact that (a, 6) G C{G), the right-hand side of the above relation is

a positive local martingale under Q since by the positive wealth constraint the left-hand side is
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positive. It is known that a positive local martingale is a supermartingale; see, e.g., lemma 1 of

Dybvig and Huang (1989).

By the fact that c is a positive process under P and P and Q are locally equivalent, we know

c is a positive process under Q on any finite subinterval [0,t]. This implies that

E'
[Jo Bit/']
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where Ua+{a,t) denotes the right-hand partial derivative ofu(a,t) with respect to its first argument.^

Note that the first hypothesis of Assumption 2 implies impatience, while relation (6) requires

that impatience to be sufficiently strong. Relation (7) will later be used to show that the space of

admissible consumption plans to be specified is invariant with respect to the choices of a among

those a's so that u{a, t) > for all t.

Remark 2 Ifu{c,t) - t;(c)e~*'' with 6t > for all t > 0, then it satisfies Assumption 2.

Pick some a > and define a finite measure by

\a{A) = j \u{a,t)\ dt, VA G B{^+),

and denote the product measure generated by P and \a by Ua- Note that X^ is equivalent to

Lebesgue measure since by impatience |u(a,f)| > except possibly for one t. Fix p £ [l,oo). We

will say that a consumption plan c is admissible if

r\c{t)nu{a,t)\dt
Jo

< 00.

Then the space of admissible consumption plans is the positive orthant of the space L^{i^a) =

L^{Q X lfi+,'PM,i'a), where VM denotes the progressive sigma-field.^ We will denote the positive

orthant of L^iva) by X^(/^a)-

The following lemma shows that the space of admissible consumption plans is invariant with

respect to choices of a > 0.

Lemma 4 For any strictly positive scalars, a and a' such that u{a,t) > and u{a',t) > for all

t, Lli,.,) = Ll{u,.).

Proof. Let c G L^it^a)- We can write

E /
\c{t)\P\u{a\t)\dt <E / \c{t)\^\u{a,t)\dt +E / \cit)\P\uia',t) - uia,t)\dt .

Jo J Uo J L^o

The first term on the right-hand side of the inequality is finite by assumption. If we can show that

the second term is finite, then c G L^{i^a')- Assume first that a' > a. We have

foo 1 r ^oo

/ \c{t)\''\uia',t)-uia,t)\dt < E / \c{t)fua+ia,t){a-a)dt
Jo J L^o

< {a'-a)E r \c{t)\^K,\ui<^,t)\dt
Jo

< 00,

Right-hand derivatives of a concave function always exist.

'Note that a process is progressively measurable if and only if it is measurable with respect to the progressive

sigma- field.



3 Existence of An Optimal Policy 10

where the first inequality follows from the concavity of u and the second inequality follows from (7).

Next suppose that a' < a. Arguments identical to those above prove the assertion by noting

that

\u{a',t) - u{a,t)\ < u+{a',t){a - a') < Kau{a',t){a - a') < Kau{a,t){a - a').

Similar arguments prove that c G L^'ii^a') implies c G L^ii^a)- i

Now we are ready to specify completely the agent's problem. He wants to solve the following

program:

sup(a,e)e/:(G) E[f^ u{c{t),t)dt]
W(t)>0

s.t. W{0) = Q{0)B(0) + e{0)'^SiO)<WQ,
(8)

c is financed by (a,^)

and c G L^{i>a).

We will say that there exists a solution to the program (8) if the value of the program, val (Wo),

is finite and is attained by a consumption plan financed by an admissible trading strategy that

satisfies the positive wealth constraint.

3 Existence of An Optimal Policy

We provide in this section sufficient conditions for the existence of a solution to (8). Our technique

follows Cox and Huang (1990). We first transform the dynamic maximization problem into a static

variational problem whose solution is well-understood. The solution of the static problem is then

implemented with a dynamic trading strategy uncovered by a martingale representation theorem.

Consider the following static variational problem:

SUPc€LP^(.,) E[!^u{c{t),t)dt]

(9)
s-t. E[l-^-^dt < Wo.

We first show that the dynamic program (8) is equivalent to the static variational program

of (9).

Proposition 3 c is a feasible consumption plan in (8) if and only if it is one in (9).

Proof. Let c G L\{i>a) be financed by (a,^) G C{G) satisfying the positive wealth constraint

and with W(0) < Wq. From the proof of Proposition 2 we know that

f ^^ds^W{t) = W{Q)-V f e{t)'dG{t), VOO, P-a.s.
Jo B(sj Jo
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is a supermartingale under Q. Thus

f C(5)
E' iw/'^'^^'i

< W{0) Vi G 5?+.

Because W(t) > and c(t) > under P, by the local equivalence of P and Q, we know

rt c{s)
E' r

Jo B{s)
ds <W{0) V<G»+,

and

E' r 3h
Jo B{t

c(0

)

dt < W{0),

where the monotone convergence theorem is used for the second inequality. It then follows from

Lemma 3 that

)Jo B{t
dt < W{0) < Wq.

Thus c is feasible in (9).

Conversely, let c G L^ii'a) be feasible in (9). Lemma 3 implies that

'
[Jo B{t

c(0

J

dt <Wo.

Thus

f ||*.m^,e).

Since all P-local martingales have the representation property relative to w (see Jacod and Shiryaev,

theorem III. 4.33), and since Q and P are locally equivalent, aU Q-local martingales also have the

representation property relative to w' (op. cit., theorem 111.5.24). Hence there exists an A'^-vector

process p and a sequence of optional times (T„) with limTn T oo Q-a.s. so that for all T^,

/"|P(^)|-
Jo

ds < oo, Q - a.s.,

and

E'
B{s)

Let 0{t)'^ = B{t)pit)^(Tit)-\

rwM = ^" [fwM +
i'"*^'""--*^'

'

^ "-

«

w(,) = E-
[j;

B{3)
a.s.

ds\Tt > Vt P - a.s.,

and

B{s)

ait) = W{t) - e{t)'^{S'{t) + AD{t)/B{t)).

(10)



3 Existence of An Optimal Policy 12

Since c > under P, W{t) >0,Q and P-a.s. Since Q and P are locally equivalent, T„ j oo, P-a.s.

Hence {a, 6) G 'C(G). Also by construction and the local equivalence of P and Q we have

W{t) + /* 4^d5 = a(0) + e{OfS{0) + r ^(5)'^dG(5), P - a.s., teU+.
Jo rs(s) Jo

That is, (a, 6) finances c. Finally, it is easily seen that W{0) < Wq. Thus c is feasible in (8). I

We record an immediate corollary of Proposition 3.

Corollary 1 c is a solution to (8) if and only if it is a solution to (9).

Given this corollary we can then concentrate on (9). Note that since (8) and (9) are equivalent,

we will also use T;a/(Wo) to denote the value of (9).

We first provide conditions under which val [Wq) is finite.

Proposition 4 Suppose that

1. for almost all t, u{c,t) is unbounded from above in c and there exists Pi > 0, /32 > and

b e (0,1) such that for some a > 0,

u{c,t)<\u{a,t)\{Pi + :^^{c'-'>-l)), a.e.t; (11)

and

(e/5)-^Ka,oiei''/*(^a). (12)

2. and that, if u{c, t) is unbounded from below at the origin on a set A of t with strictly positive

Lehesgue measure,

Then val (Wo) is finite.

Proof. We first show that va/(Wo) < oo. When the utility function is |u(a,t)|(/3i + i^(c^"''-l))

with b 6 (0, 1), there exists a solution c to (9) only if there exists 7 > so that

Relation (12) ensures that c G ^^.(^'a)- For c to actually be a solution, it must also satisfy the

budget constraint and yield a finite expected utility. For the former it is necessary and sufficient

that

c(t)m

Jo B{t)
dt < 00,
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for then 7 can be chosen to exhaust the initial wealth. Putting p = p/(l -b) > p and l/p+ 1/g = 1,

Holder's inequality implies

cimt)

[i: Bit)
dt

J_
02,)"'-r(t)"*w°'')i-^'--<"

^ar^r(fS)
. E

f^^^>^ "
\u{a,t)\^^ d\a{t) / |u(o,!t)\dt < 00,

where the last inequality follows (12) and Assumption 2. Finally, we have to verify that the expected

utility is finite. For this we note that

/ c{t)'-'\uia,t)\dt = fE
.Jo J P2 Uo Bit)

.

7< i-Wo < 00.

Thus va/ (Wo) < 00 by (11).

Next we take two cases. Suppose first that u(c,<) is bounded from below for a.e. t. Then

val{Wo) > -00 and thus val (Wq) is finite. Otherwise, suppose that u is unbounded from below

at the origin on a set A of t. Let m
By (13), k is finite. Thus

k = E

Wo.

LA Bit)
dt

c(u;,0= -^lnxA(w,0>0 ^u,t

is a feasible consumption plan. Thus

valiWo) >
I

uiWo/k,t)dt > -00,

where the inequality follows from Assumption 2. I

Note that, in (11), if 6 > 1, then u(c,() < Wia,t)\Pi. Thus the expected utility is always strictly

less than +00.

Now our remaining task is to give conditions under which val (Wq) is attained. We will utilize

Cox and Huang (1990) by rewriting (9) as follows:

suPceLP(./a) E

s.t. E r B^r©yi dUt)] < Wo.
(14)
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In (14), both the objective functional of the maximization program and the space of feasible

objects are defined on a measurable space (fi x ^^,VM) with a finite measure i/a- This fits into

the framework of Cox and Huang (1990).

Here is our first existence theorem:

Theorem 1 Under the conditions of Proposition 4, there exists a solution to (14J-

Proof. The assertion follows from Cox and Huang (1990, theorem 4.1) by noting that Q and P

are locally equivalent. I

The next theorem is for the case where the utility function is bounded from above by a multiple

of |u(a,<)|.

Theorem 2 Suppose that

1. u{c,t) < K\u{a,t)\ for a.e. t;

2.

iaB)-'\u{aJ)\eLP{i^.); (15)

3. and (13) holds when u{c,t) is unbounded from below at the origin on a set A of t with strictly

positive Lebesgue measure.

Then there exists a solution to (14)-

Proof. By the first hypothesis, we know that

uicA) ^, ,,

,
;

'

;,
< K "ic, a.e. t.

\u(a,t)\

Given (13) and (15), the assertion follows from a (trivial) generalization of Cox and Huang (1990,

theorem 4.2) by noting that P and Q are locally equivalent. I

Before leaving this section, we give in the following two corollaries sets of explicit conditions on

the parameters of prices for (12), (13), and (15) to be valid.

Corollary 2 Suppose that there exists < f < oo so that < r{t) < f, P-a.s. for a.e. t and there

exists oo>T>0, €>0 such that

_lnMM)l .^.,^ p _^^ V^>r. (16)
t lb b + p

Then (12) is valid. When (16) holds with 6=1, (15) is valid.
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Proof. Note that

E

= E

Given that

M)-'KM,|t"

a P martingale

exp i-^
j^

K{s)^dw{s) -^J^ \K{s)\'ds\

X exp 1^ (^^
+ l) Kh +

^J^
r{s)ds + (l +

f
) In \u{a,t)\

t 26 + p

Fubini theorem then implies that (12) is valid.

Identical arguments proves the second assertion when 6 = 1.

Corollary 3 Suppose that the set A of (13) is of finite Lebesgue measure. Then if r{t) > 0, (13)

is always valid. Otherwise, if there exists < r so that r < r{t) P-a.s. for a.e. t, then (13) is valid.

Proof. Suppose first that A is of finite Lebesgue measure. We note that ^ is a martingale under

P with unity expectation. Since B{t) > 1,

[\B{t)J\
< 1.

Fubini theorem implies that (13) is valid.

Next suppose that A is of infinite measure. The hypothesis of this corollary yields

^(0

B{t)
< exp {—rt}

IFubini theorem again implies that (13) is valid.

When the utility function is not unbounded from below, for existence, it suffices that the

interest rate does not go unbounded and the utility function significantly discounts the future

asymptotically. Otherwise, the agent may find it advantageous to keep accumulating his wealth

and postpone consumption until t = oo. When the utility function is unbounded from below at the

origin, we will further require that the interest rate does not become too low so that it may become

infeeisible to maintain a certain level of minimum consumption over time and thus the expected

utility may become — oo.
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4 Computation of Optimal Policies

This section is devoted to the computation of optimal policies. The idea follows that of Cox and

Huang (1989) and thus we will be brief. The main result reported here is a verification theorem

of optimal policies. We will show that if there exists a solution to a second order linear parabolic

partial differential equation and if the solution satisfies certain conditions, then the optimal trading

strategy in the form of feedback controls can be computed by taking derivatives of the solution.

For the purpose of this section, we will aissume that u{c,t) is strictly concave in c. Then define

the inverse of the marginal utility function f{x~^,t) = inf{c G J?+ : Uc+{c,t) < x~^}, where Uc+

denotes the right-hand partial derivative of u with respect to c. By the strict concavity of u{c,t)

in c, it is easily seen that f{x~^,t) is continuous in x.

We assume throughout this section that / satisfies a growth condition:

f{x~^,t) < Kf\u{a,t)\bxb for some strictly positive constants Kf, b,

and (12) holds if 6 G (0, 1) and (15) holds if 6 > 1. Moreover, if u is unbounded from below at the

origin, (13) holds. Under these conditions, it is easily verified that conditions of either Theorem 1

or Theorem 2 hold and there exists a solution to (14).

The object of computation here is the value over time of future optimal consumption. From

(10) we know this value in units of the bond is

cis)
Wit) = E'

if c is the optimal consumption. Thus F{t) = W{t)B{t) is the present value of future optimal

consumption. Under some conditions, F can be computed by solving a partial differential equation

and optimal trading strategies are related to the derivatives of F.

Before proceeding, we record in the following proposition the first order condition for optimaJity,

which is the corner stone for the construction of an optimal policy.

Proposition 5 Under conditions of this section, there exists a solution to (14) if and only if there

exists a X > so that

c(0 = /(^,*)ei>.) (17)

and
c{t)m

fJo dt = Wo.
Bit)

Proof. The oidy if part follows from Saddle-Point theorem and Rockafellar (1975). The if part

follows from the definition of / and the concavity of u in c. I
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For the purpose of computation, we specialize our model of securities prices as follows. Assume

that S satisfies the stochastic integrcJ equation:

S{t) = S{0)+ f {b{S{3),s)-d{Sis),s))ds+ f (T{S{s),s)dwis), f > 0, (18)
^0 Jo

where d{S{t), t) is the iV-vector dividend rate at time t when the risky asset prices are S{t). Assume

further that r{t) can be written as r(5(f),f). Thus K{t) can also be written as K{S{t),t).

Next define a process

Z{t) = Z{0)+ f {r{S{s),s) + \KiSis),s)\^)Z{s)ds - f' K{S{s),sf Z{s)dw{s), (19)
^0 Jo

for some constant Z{0) > 0. Using Ito's lemma, it is easily verified that

As pointed out by Cox and Huang (1989), (logZ(r) - logZ(0))/T is the realized continuously

compounded growth rate from time to time T of the growth-optimal portfolio - the portfolio

that maximizes the expected continuously compounded growth rate.

Now write (18) and (19) compactly together under Q:

( Z(0 )
=

( Z(0) ] + J^^iS{s),Zis),s)ds + J^&iS{s),Z{s),s)dw%s), (21)

where we note that

Assume throughout this section that (^ and a satisfy a local Lipschitz and a uniform linear growth

condition on any finite time interval [0,r].^° Thus there exists a unique solution to (21) and {S,Z)

has the strong Markov property under Q and thus is a diffusion process under Q.

'°The functions C md it satisfy a local Lipschitz condition on every [0, T\ with T < oo if for every T > and

Af > 0, there is a strictly positive constant K^ such that for all j/, z € 9?^ x (0, oo) with \y\ < M and |z| < M and

all < € [0, T]

|C(V, t) - C{z, t)\ < K^\y - zl |,t(v, t) - a{z, t)\ < K^\y - z\.

These functions satisfy a uniform growth condition on every [0, T] with T < oo if for every T > 0, there exists a

strictly positive constant Kt such that, for edl i G S?'" x (0,oo) and t g [0,T],

\C{x, 01 < Kt{1 + |i|), |*(z, t)\ < Kt(1 + |x|).
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The following notation wiU be utilized:

D!" = -^— = -;: 7: ; m= mi + ... + m^

for positive integers mi, m2, . .
.

, tun. If g : JJ^ x [0,T] >-> J? has partial derivatives with respect to

its first N arguments, the vector {dg/dyi,. .

.

, dg/dy^)^ is denoted by Dyg or ^y.

Here is the main theorem of this section:

Theorem 3 Suppose that

1. there exists a function F : (0,oo) x S^ X [0,oo) - 3?+ such that DF^{y,t) and Ft{y,t) are

continuous for m < 2, F is a solution to the partial differential equation

CF{Z, S, t) - r{S, t)F{Z, S, t) + Ft{Z, S,t) + f{Z-\t) =

with the boundary condition

^F(7(T\.S(T^.T)^
= 0,lim E'

(—»oo

F{Z{T),S{T),T)

B{T)

where C is the differential generator of {Z,S) under Q;^^ and, for all T > 0, F satisfies a

uniform growth condition on every [0,T] with T < 00, that is, there exists a strictly positive

constants Kj and 7^ 50 that, for all t £[0,T], a

\F{y,t)\ < Af (1 + |yr^) Vy G (0,oo) x 3ff^;

2. and there exists Zq such that F(Zo, 5(0),0) = Wq.

Then the optimal consumption and portfolio policies are

c{t) = f{Z{t)-'^,t) Va-a.e.

e{t) =[Fs{Z{t),S{t),t) + [a{S{t),t)a{Sit),t)^]-^

x[b{Sit),t) - riS{t),t)Sit)]Zit)Fz{Z{t),Sit),t)] u, - a.e.
^^^^

a{t) =[F{Z{t),S{t),t)-6{tYS{t)\lB{t) u^ - a.e.,

where we have put Z(0) = Zq.

Proof. Using the growth condition on / and F and the fact that F satisfies the partial differential

equation, Cox and Huang (1989, Theorem 2.3) implies that, for every t,

F{Z{t),S{t),t)

Bit)
- ^ I

T
f{Z{s)-\s) FjZinSinT) '

"5(ir~ ^
—

W)— '

'

'CF = itr(Fss<T<T'') + ifzzZ'l/cp + Fsz<tk + Fs(rS - /) + FzrZ.
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Let T -+ oo and use the boundary condition we get

F{Z{t),S(t),t)

Bit)
= E'

i:

f{zi3r\s)

Bis)
ds\J^t

where we have used monotone convergence theorem. Thus F gives the value of /(Z~\t) over time.

By the hypothesis, Z(0) = Zq, thus

fizit)-\t)F(Z(0),5(0),0)
^° =
—m— = ^

^0 Bit)
dt

This shows that c(<) = /(Z(i)"\i) exhausts the initial wealth. If we can show that c G L^iva)^

then by Proposition 5, c is a solution to (14). By the growth condition on /, (12), and (15), one

quickly verifies that c G L^i^^a) and thus is a solution (14). The fact that the trading strategy

that finances c is as described in (22) follows from identical arguments on Cox and Huang (1989,

theorem 2.2). I

5 A Special Case

We now specialize the market model developed in the earlier sections and consider the model with

constant coefficients examined by Merton (1971) and revisited recently by Karatzas, Lehoczky, and

Shreve (1987). In this case explicit formulas for the optimal consumption and portfolio policies

can be computed just as in Cox and Huang (1990). The method does not use stochastic control

and takes care in a natural way of the non negative constraint on consumption. We illustrate our

results with two examples taken from the family of constant absolute risk aversion and HARA

utility functions.

We shall use the following specialization. The risky securities follow a geometric Brownian

motion

Sit) = SiO) + j\ls{,)h-diSis),s))ds + J
Is(,)<Tdwis), t>0

where b is an n-vector of constants, a an n x n non-singular matrix of constants and Is{t) an n x n

diagonal matrix having 5'(<) in the (t,t)th position. We furthermore assume that r is constant and

write r for an n-vector of r's and k for the constant vector -<T~*(b - r).

Given some initial data z, define 4> as

<i>iz) = E' fJo e-^*fiZit)-\t)dt Z-'iO) = z.

Assuming uic,t) = t;(c)e ^' (cf. remark 2), we can write alternatively

4>iz) = E'y^°° e-''gie^'Zit)-')dt ; Z-'iO) = z,
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where g is the inverse of the time-independent marginal utility function Vc+{c).

Since it is easily verified that

e^'Z(t)-^ = zex^{K^w'{t) + (/? - r + |k|V2)0,

one sees that the function F of section 4 can be identified as F{z,t) = 4>{e^^z~^). Under Q,

e^*Z(f)~^ is lognonnally distributed with mean \ogz + {(i -r + g'^/2)t and variance g'^t, where g is

the square root of |k|^. It follows that

'x-logz-{(3-r + g'^/2y/•OO f+CO 1

Jo J-oo gyt Q^i
dt dx,

where n stands for the standard normal density function. This yields

^(z) = / ^^^^ / -^e 2^' dtdx
J-oo Q Jo v2xt

( x-\ot z \ l_ a£i

OO ov27r ^0-OO gy/2ir

where we have put ^ = /3 - r -1- g'^/2 and a^ = 2r -1- ^^/p^,

I ^\/27r

X - log 2
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Example 1 Utility functions of constant absolute risk aversion.

Let the time-independent utility function be

vix) = --e-"',

where ^ > is the coefficient of absolute risk aversion. In this case, we find

9{x) = logx

and so

otherwise,

and similarly for g{ze^). Straightforward computations show that if z > 1

^(^g-uN j -{l/0){\ogz-u) if u> log 2,

<i>{z) =
T{2,n\ogz) r-M

gaO^"^ gaOfj,
'

and that if r < 1

4>{z) =
logz logz

gaO^"^ gaOpL gaOfj,

where 7 and F are the incomplete gamma functions

7
('-')-

7(2,/x'logz-i)

ga6^'i2

7(a,x) = Te-^^-i
Jo

roo

dt

dt.

It is easily checked that F is twice continuously difFerentiable and that F —
> as 2 — 00 and

F —» 00 a^ 2 — 0. The vector of optimal dollar amounts invested in the stocks is given by

At = isam = ^^(^)''('''''')(^ - ^'>

if Z{t) < el^* and by

if Z{t) > el^K

At =
1 1

,/3*i'«

'

+ 71^(1 -^'"'^(O-'')
gaOii gaOfj,

(aa^)(b-r)

Example 2 HARA utility functions.
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Let V be in turn

with p>0, r?>0, 7<1 and 7 7^ 0. In the first condition of proposition 4 it suffices to take

6=1-7 when 7 > 0. In this case one finds

»(x)-'-^
p

Computations whose length is the sole difficulty give

-1/1—

r

P'

ganin- 1/1 - 7) p \pj

-'"--^ 1-7
.

1 I fzV i+,-(i_^)

when z > pTj ^^ '•'^ = Vc+{0) and

,, , 1-7 /z\-i/i-*' 1-7 1 1 fzy

when 2 < t;c+(0), where

The inequalities ^ > 0, ^ > 1/(1 - 7) and /x' > -1/(1 - 7) all result from /3 > 7r + (7/I - f)g'^/2

which itself follows from condition 16 of corollary 2.

The case 77 = is the one that is usually taken in the approach of dynamic programming, for

this is the one for which the Bellman equation can be solved quite explicitly. This yields the simpler

expression

from which one derives Ct = SWtC^^ . It is clear that except in the degenerate case 7/ = the optimal

consumption and portfolio policies are not linear functions of wealth, because of the non negativity

constraint on consumption. When z > Uc+(0), we have z4>'{z) = -fi(f>{z). Hence when nominal

wealth e^^Wt falls below the non-stochastic boundary W_, consumption is zero and the optimal

dollar investment in the stocks is proportional to wealth with

At = ne^*Wti(T<T^)-\h - r).

When z < Vc+{0), i.e., when nominal wealth is above W_, the optimal policy is no longer linear. As

z approaches zero, however, which corresponds to large values of wealth, the optimal consumption

and investment policies are "almost" the linear functions of wealth given in Merton (1971).
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6 Convergence of Finite Horizon to Infinite Horizon Solutions

We study two convergence problems in this section. First we show that the optimal consumption

policy in an infinite horizon economy, if one indeed exists, is a pointwise limit of those in corre-

sponding finite horizon economies. Second, under some regularity conditions, the optimal portfolio

policy in an infinite horizon economy is the limit, with respect to a norm, of the optimal policies of

the corresponding finite horizon economies. Thus, there exists a subsequence of the latter that con-

verges pointwise to the former. It follows that if the latter converges pointwise at all, the pointwise

limit must be equal to the former almost everywhere.

The convergence results reported here are useful in two aspects. First, for the class of models

where closed-form solutions exist for finite horizon economies, we know conditions under which the

optimal policy in infinite horizon can be gotten by letting T — oo in the finite horizon policies.

Second, in the numerical computation of the optimal policy for the infinite horizon problem, the

horizon will have to be truncated. It is therefore imperative to know conditions under which the

solutions to finite horizon problems are approximations to that to an infinite horizon problem.

Assume until further notice that conditions of Theorem 1 or Theorem 2 hold and thus there

exists a solution to (14), denoted by c*. Also assume that the utility function is strictly concave in

consumption and thus the optimal consumption plan is unique. Consider a class of finite horizon

problems:

JO B(t)\u(a,t)\ °'^<^(^)\ ^ "^0,

SUP<:6LP(;,„;T) E

S.t. E

where we have used L'^{i^a\ T) to denote the positive orthant of the space of processes c such that

fT

Jo
< oo.

It is clear that under conditions of Theorem 1 or Theorem 2, there exists a unique optimal

consumption policy of (23), denoted by c^. The following theorem shows that c^ —> c*, i/a - a.e.,

as T — oo. Thus, if we know the functional expression of c-^, which naturally depends on T, we

will get the optimal consumption policy for the infinite horizon case by simply letting T — oo.

We first record a lemma.

Lemma 5 Let Xj be such that c^(t) = fi^^^^t) u^-a.e. Then Xr > Xj ifT' > T.

Proof. Suppose otherwise that Aj» < Aj. By the strict concavity of u in c, we know that / is
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strictly decreasing when it is nonzero. This implies that

Wo = E

< E

Jo B{t)

r at)fi^,t)
Jo

dt < E
Jo Bit)

dt

B{t)
dt

We claim that one of the first inequality in the above relation must be a strict inequality and hence

c^' violates the budget constraint for the finite horizon problem with horizon [0,T'] and constitutes

a violation. Now suppose that

E I
^m/i^^t)

Bit)
dt = E

I

^T>m

Bit)
dt

This necessitates that on [0,T], c-^ = i/a-a.e. This clearly contradicts the fact that c^ is an optimal

solution to (23). I

Now let A* be such that c'H) = fi^^^,t), :^a-a.e.

Theorem 4 limr-^oo ^T = ^* and c^ -* c*, Va-a.e.

Proof. Once we can show that Ay —» A* as T —» oo, the second assertion follows from the fact

that / is continuous in its first argument by the strict concavity of u in c.

By Lemma 5, there exists a limit

A = lim Aj.
T—oo

We claim that A = A*.

We take two cases. Suppose first that A > A*. Then there exists T < oo such that \j > A*.

Arguments identical to those used in the proof of Lemma 5 prove that

Wo<E fJo
^(0/(^,0

Bit)
dt

which is a contradiction.

Next suppose that A < A*. Pick A G (A, A*). Arguments identical to those used in the proof of

Lemma 5 show that

Wo = E
L
-rmiC-^.t)

Bit)
dt > E I

U{t)fi'^,t)

Bit)
dt , VT > 0.
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Letting T — oo on the right-hand side of the second inequality gives

Wo>E I

Mm

B(t)
dt > E fJo

at)f( Villi
B{t) J)

B{t)
dt Wa.

If the second inequality above is an equality, then it must be that c* = i/a-a.e., which is clearly

suboptimal. Thus the inequality must be a strict inequality and it leads to a contradiction.

Next we turn our attention to the convergence of trading strategies. For this we restrict our

attention to the case where p > 2 and make the following assumption:

Assumption 3 1. If u satisfies conditions of Theorem 1, then

r«'»(f1^)
"
\u{a,t)\l dX,{t) < GO. (24)

2. If u satisfies conditions of Theorem 2, then

.B(t)

We record below a useful technical lemma.

i'^^^Kw) l"^"'*)!''^^"^^ < 00. (25)

Lemma 6 Let c be the solution to (14) financed by {a, 6) G C{G). Then, under Assumption 3,

E' u:^/') < 00,

and

E' fJo
e{t)^cTit)

Bit)
dt < oo.

Proof. Using the fact that P and Q are locally equivalent, the first assertion follows from similar

arguments of Cox and Huang (1990, theorem 4.1).

Form the proof of Proposition 3, we know that

E' [/:i^-H--[ri^H^/.''^^'^^"^'Uw'is) ^/t>0,Q-a.s.
B{3) '

'J
^ Lyo B{s) J Jo B{s)

The left-hand side is a square-integrable martingale under Q. Thus Jacod (1979, 2.48) shows that

the second assertion of this lemma is valid. I

Now we present our results of convergence of trading strategies. We will show the convergence

of trading strategies in a metric involving taking expectation under Q.
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Theorem 5 Let (a, 9) and (ax.^r) ^ the trading strategies that finance c* and c^ , respectively.

Then

lim E'
r->oo Jo

{0T{t) - 9{t)V(Tit)

B{t)
dt = 0.

Proof. Note first that c^(0 =
/(^ffff ,Ol[o,r!(0 < > and c'{t) = /(^,0 t > 0. Triangle

inequality implies

<

(r [j[°° \c'{t) - c^(OI dt

-«0,„_,M0,,„,

+ -[ri^*^'"-^<^'"'-<'>i^^'])'-

Recall from Lemma 5 that A^- is an increasing function of T and from Theorem 4 that A* =

limx-.oo ^T- Thus both

B{t)
''^'

and

decrease to zero i/g-a-e. Lebesgue convergence theorem yields that

1

2

lim
I E'

T—"x> fJo
cV)-c'{t)

B{t)
dt = 0.

The assertion then follows from the fact that

2

E' fJo
c'{t) - c^it)

B{t)
dt = E' fJo

i0T{t)-0{t)V<T{t)

B{t)
dt

Theorem 5 is not enough for us to conclude that the optimal trading strategy for the infinite

horizon case can be gotten by letting T — oo in the optimal strategies for the finite horizon cases as

we need almost everywhere convergence for this. The following theorem gives a sufficient condition

for this operation to be valid.

Theorem 6 Let {a, 6) and {aT,9r) ^ the trading strategies that finance c* and c^ , respectively.

Suppose that limx—oo ^t(0 exists i/a-a.e., then limx-^oo^Tit) = ^(0 i^a-o-^-
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Proof. First recall that 6t ^ in the sense of Theorem 5. Chung (1974, theorems 4.1.4 and

4.2.3) implies that there exists a subsequence {T„} with T„ j co so that dT„ —* 0, t-a-a.e. as n —> c«.

Given the hypothesis that limr—oo ^t(0 exists i/o-a.e., it follows that limr-.oo ^t(0 — ^(0> I'a-ae.

I

In words, if the optimal portfolio policies for finite horizon economies do converge pointwise,

they must then converge to the optimal policy for the infinite horizon economy.

7 Concluding Remarks

We have assumed throughout this paper that there are as many linearly independent risky securities

as the dimension of the underlying uncertainty, or, markets are dynamically complete. When

markets are dynamically incomplete, it is straightforward to borrow from He and Pearson (1989)

and show that when prices of securities together with some other processes follow a diffusion process,

then the optimal policy can be computed by solving a qua^si-linear partial differential equation, and,

in addition, a general existence theorem is available for the case where the coefficient of the Arrow-

Pratt measure of the relative risk aversion^^ of the individual's utility function is less than one.
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