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We consider the queueing system design problem of finding the best order of two or

more single-server stations in tandem. Customers arrive to this system according to a

renewal process, and each station has a different general service time distribution. The

objective is to minimize expected equilibrium customer delay. An existing heavy traffic

approximation is used to reduce the design problem to a directed travelling salesman

problem. Using an interpolation scheme, we combine the heavy traffic results with existing

light traffic results to analyze the design problem for a two-station tandem system with

Poisson arrivals.

1. Introduction.

Consider a tandem queueing system with A' single-server stations, each of which has an

infinite capacity waiting room. Customers arrive according to a renewal process and each

customer is served once at each station, with the order of the stations being the same for

each customer. The interarrival times have finite mean A~^ and finite squared coefficient

of variation (variance divided by the square of the mean) Cq. The service times at station

k = 1, ..., K axe independent and identically distributed random variables with finite mean

fif. and finite squared coefficient of variation c|. The sequence of intercirrival times and

the sequence of service times at each station are assumed to be mutually independent.





Customers are served FIFO (first-in first-out) at each station. Also, it is assumed that

the traffic intensity pk = A/^jt < I for k = 1,...,A', so that the system is stable. We

consider the design problem of finding the order of the K stations that minimizes the

expected equilibrium sojourn time per customer (or equivalently, the expected equilibrium

customer delay or the expected equilibrium ntunber of customers in the system).

The primary motivation for this problem stems from the design of a production line.

In many cases, the set of tasks (either fabrication or assembly) that need to be performed

for each job can be done in any order. Probably the most common example, as mentioned

in Greenberg and Wolff (1987), is the insertion of components on a circuit board.

If each station has a deterministic service time distribution or each has an exponen-

tial service time distribution, then it is well known (Friedmaji (1965) and Weber (1979),

respectively) that the sojourn time distribution is unaffected by the order of the stations.

In the general case, however, the departure process from queues are not renewal pro-

cesses, and the problem becomes much more difficult to analyze. Tembe and Wolff (1974)

and Pinedo (19S2a,b) obtained results for systems with deterministic and non-overlapping

(i.e., ordered with probability one) service time distributions. More recently, Greenberg

and Wolff (1987) consider two-station systems with Poisson arrivals in the light traffic

limit, i.e., as the arrival rate A goes to zero. They examine the interesting case where the

service times of a particular customer at the different stations are not independent.

The only paper in the literature that suggests what to do in the general case is

Whitt (1985). Applying the approximation methods for networks of queues developed in

Whitt (1983), he describes the solution in several specifd cases and obtains four simple

heuristic design principles. Although the design principles perform well in some cases,

Whitt suggests that it is desirable to calculate the approximate value of the expected

sojourn time for each of the K\ permutations, and to choose the order with the lowest

value.

Our results are most closely related to that of Whitt. Using an approximation based on
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results from heavy traffic theory developed by Reiman (1984) and Harrison and Williams

(1987), we reduce the problem of ordering queues in series to a directed traveling salesman

problem (TSP). The distance from city i to city j in the TSP corresponds to the customer

delay incurred at station j by placing station i directly in front of station j . This value

is c'j/{fj.j — A), which has a clear intuitive meaning: in designing a tandem queueing sys-

tem, one should attempt to precede the bottleneck stations with stations that have a low

squared coefficient of vziriation of its service time distribution. This malces sense in heavy

traffic, since the squared coefficient of variation of the interarrival times to a station will

be very close in value to the squared coefficient of variation of the service times at the

preceding station, and the lower that this value is, the less congestion will occur at the

station. Since many efficient algorithms exist for solving TSP's (see, for example, Held and

Keirp (1970,1971)) our procedure offers a computationally less expensive alternative to cal-

culating all K\ permutations using simulation or the Queueing Network Analyzer (QNA)

package (Whitt (1983)). Furthermore, our results are consistent with all four heuristic

design principles proposed in Whitt (1985), and, for the two-station case, our results and

Whitt's are similar, but not identical.

Using the interpolation scheme proposed by Reiman and Simon (1987), we combine

the heavy traffic results with Greenberg and Wolff's light traffic results to obtain the

expected customer sojourn time for a two-station tandem system with Poisson arrivals.

This interpolation approximation is appropriate for all values of the traffic intensity of

the system. From this approximation, the optimal order of servers is foimd when one

server has an exponential service time distribution and the other has a general service

time distribution.

In manufacturing settings, jobs are often sent back to a station to be reworked if

the operation performed on the job at the station was not successful. To accommodate

this situation, the heavy traffic approximation is generalized to the case where immediate

feedback of customers is allowed at each station; that is, a customer completing service at
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station k will go to the next station with probability pk, and will return to the end of the

queue at station k with probability l—pk- The problem of ordering queues where feedback

is allowed also reduces to a TSP.

The remainder of this paper is organized as follows. In Section 2, the Brownian model

proposed by Harrison and Williams (1987) is used to calculate the approximate expected

number of customers present in equilibrium for K stations in series. These results are

used to reduce the design problem to a directed TSP. In Section 3, we compare our results

with those obtained by Whitt (1985). In Section 4, the interpolation approximation is

presented for a two-station system with Poisson arrivals. In Section 5, the heavy traffic

approximation is generalized to include probabilistic feedback of customers.

2. The Brownian Approximation

In this section the Brownian model proposed by Harrison and Williams (1987) will be

used to calculate the approximate expected number of customers present in equilibrium

for K stations in series. This model is a refinement of the heavy traffic approximation of

a generahzed Jackson network (a Jackson network with general, rather than exponential,

interarrival and service time distributions) derived by Reiman (1984). The Brownian

approximation requires that the total load imposed on each station is approximately equal

to its capacity. More precisely, we assume that there exists a large integer n such that

max \/n\l — pu\ < 1. (1)
i<k<K

As a canonical example, one may think of pk being between 0.9 and 1.0 for each station

k, in which case n = 100 satisfies the balanced heavy loading condition (1).

In the Brownian approximation of the iv—station tandem queueing system described

in Section 1, the primary process of interest is the scaled vector queue length process
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g* = (Ql) defined by

Qk(nt)
Qlit) = ^^, < > 0, for A: = 1,...,A', (2)

where Qki'f) is the number of customers queued and in service at station k at time t,

and n is the large integer specified in (1). Under the balanced heavy loading condition

(1), Harrison and Williams (1987) show that the scaled queue length process Q* is well

approximated by a process Z that has a unique stationary distribution. From equation (6)

of that paper, it can be shown that this stationary distribution has a product-form density

function if and only if

<^o = ^1 = ••• = ^K-i- (3)

It has been suggested in Harrison and Williams (1987) that the stationary distribution of

Z may be approximated by this product form distribution even when (3) does not hold

exactly, and this suggestion is incorporated into our approximation scheme. Under this

assumption, Harrison and Williams show that the expected number of customers at station

k in equilibrium is

^k
2

iovk = l,..,K, (4)
2ifik - A)

where it follows from equation (27) of Reiman (1984) and equation (2.23) of Harrison and

Williams (1987) that, for queues in series,

al = Xcl_.^+Xcl, for k = l,...,K. (5)

It can be seen from equations (4)-(5) that our problem is to find the permutation 7r(l, ..., A')

that minimizes
K 2 ,2

k= l ^^

Since X^jt=i c\l{iik ~ A) is unaffected by the ordering of the queues, this problem is equiv-

alent to a travelling salesman problem with A' -|- 1 cities indexed hy k = 0, ..., A', where





city zero represents the outside of the queueing system and city A; represents station k for

k = 1, ..., A'. The asymmetric distance matrix d = {d,j) for the TSP is defined by

(^ c^/{fj.j — A) otherwise.

As mentioned in Section 1, the distance from city i to city j corresponds to the expected

customer delay incurred at station j by having station i directly precede station _;'.

3. Comparison to Whitt's Results

In this section, we compare our results to some of those obtained by Whitt (1985). For

the special ca^e of two stations in series, Whitt shows that the stations should be ordered

so that 6i < (^2, where the quantity S^ is defined by

6k = (l - Pk)(cl - cl). (8)

Going through the analogous calculations using equations (4)-(5), it follows that the sta-

tions should be ordered so that /xi<5i < /i2<52- Thus if the two queues have equal means,

the two approximations schemes suggest the same ordering. When the two stations have

nearly equal means, which is quite common in practice, the two schemes will often suggest

the same ordering of the queues; this occurs in Example 1 of Whitt (1985).

To examine how much improvement in performeuice is possible, let us define T(i, j) as

the expected customer delay for the two-station tandem system, where station i precedes

station j. From equations (4)-(5), it follows that

r(2, 1) - r(l,2) _ (4 - ci){^i, - A) + {cl - cg)(/i2 - A)

r(2,l) (c2 + cl)(/ii-A) + (c2 + c2)(;.2-A)-

We now consider three cases where it is desirable to have station 1 before station 2, in which

case the quantity in (9) represents the relative improvement in performance by switching

to the better ordering. If jjli = ^2 ^^d c\ < c\, then the relative improvement is

2 _ ^2

(10)
C2 Cj

cl+c\+ 24





This quantity decreases as Cq increases, and approaches an upper bound of 0.5 as cj —>

and Cg -* 0; this upper bound is consistent with equation (11) in Whitt (1985). If Cq <

c\ = c\ = (? and /zi < [I2, then the relative improvement is

c2(;il-A) + c2(;.l+2^2-3A)-

This quajitity also decreases as Cq increases and approaches an upper bound of 0.5 when

Cq = and A —> /Z]. Thus, in both these cases, a 50% improvement in performance is

maximal. When cl> c\ = c\ = c^ and ^1 > /i2, then the relative improvement is

(eg -c2)(a^i - ^l2) ^^.
c2(;zi-A) + c2(^i+2a.2-3A)'

This quantity decreases as c^ —> Cq. As c^ —> 0, this quantity approaches (/ii — /X2)//ii(l —

Pi), which increases as p\ increases and as the service rates of the stations become more

imbalanced.

Whitt suggests the following heuristic design principles for K stations in series:

(PI) If ^1 = ^^2 = ••• = A^K'? then c\ < c\ < ... < c\ is desirable.

(P2) If cl < c] = cl = ... = c]^, then fii < /i2< ••• < A'A' is desirable.

(P3) If Cq > Cj = C2 = ... = c\-, then fi\ > IJ.2 > •• > Mk' is desirable.

(P4) If cl < c] < cl < ... < c]^, and //i < /X2 < ••• < f^K, then the order is desirable.

W^hitt proves that (P1)-(P3) holds under his approximation scheme, but principle

(P4), which includes (PI) and (P2) as special cases, remains a conjecture. We now prove

that (P1)-(P3) are consistent with our approximation procedure, and that principle (P4)

is true under our procedure.

Proposition 1. Principles (P1)-(P3) axe consistent with our approximation scheme.

Proof. If /ii = ... = /iA', then the expected customer delay in equilibrium is propor-

tional to, by equations (4)-(5),

cl + 2j^cl + cl. (13)

k= l
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This is clearly minimized by choosing

ci- = max Cl, (14)

which is consistent with (PI).

If Cj = ... = c^' = c-^, then the average customer delay in equilibrium is proportional

to

^2^ + 2c^5:-^. (15)

If Cq < c^ , one would choose

\<k<h

to minimize customer delay, and if Cq > c , one would choose

/zi = max /ifc. (17)
1<«:<K

Equations (16) and (17) are consistent with principles (P2) and (P3), respectively. |

Proposition 2. Principle (P4) holds under our approximation scheme.

Proof. Let the K stations be indexed by A: = 1, ..., K, and let a^ = c\ for k = 0, ..., K

and let bk = f^k — ^ ior k = l,...,/\. Let gq < ... < ax and b^ < ... < bx- An ordering

of the stations is denoted by a permutation tt = (7r(l), ...,7r(A')), where station k is placed

in position 7r(/:), for k = I,...,/!. Thus, we need to prove that the identity permutation,

which is defined by 7r(A;) = fc for A; = 1, ..., A', offers the least expected delay.

The proof is by induction on A', the number of stations. By (6), this permutation is

desirable for A" = 2 if

^ + fi<^ + ^. (18)
h\ 62 ^2 ^1

This holds, since

ii(ai - ao) + 62(00 - 02) < (ai - ao)(6i - 62) < 0. (19)

Now suppose (P4) holds for A' stations, and let us consider a system with A' + 1

stations. It follows by (6) and our inductive hypothesis that any permutation tti of the
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A'+ l stations that does not have 7ri(2) < ... < 7ri(A'+l) achieves no smaller expected delay

than the permutation tt2 that has 7r2(l) = 7ri(l) and 7r2(2) < ... < tt2{K + 1). Similarly,

the inductive hypothesis imphes that the identity permutation of A' + 1 stations offers no

larger expected delay than any permutation tt such that 7r(A') = A' and 7r( AT + 1) = A' + l.

Therefore, the only two permutations left to consider are n = (K + 1,1,..., A') and

TT = (AT, 1, ..., AT — 1, A' + 1). The identity permutation offers a smaller expected delay than

(A' + 1,1,..., A') if

-^ + -^<-^ + J^. 20
Ol OK+l Ok+1 Oi

This is true, since

bK-\-i{ao - ciK+i) + bi{ak - oq) < (oq - a;^-)(^Ar+i - h) < 0. (21)

The identity permutation offers a smaller expected delay than (A', 1, ..., AT — 1, AT + 1) if

dn Oft" — 1 Qjt Qo dK Qft" —

1

T- + -T^ + r-^ < r^ + T^ + T^-^- (22)
Oi &A' b^+i Ok oi ok'+i

This inequality holds if

bK^K+iiao - ax) + bibK+i{aK-i - Qq) + bibxiax - clk-i) < 0. (23)

Reexpressing {uq — ax) by (oq — a^-i + Qa'-i — Q/c), it follows that (23) holds, since

hK+\{ciQ-aK-i){hK -W) + hK{aK-i-aK){hK+\-hi)<Q. | (24)

4. An Interpolation Approximation

Using the interpolation scheme proposed by Reiman and Simon (1987), we combine

the heavy traffic results of Section 2 with Greenberg and Wolff's hght traffic results to

obtain the expected customer sojourn time for a two-station tandem system with Poisson
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arrivals. This interpolation procedure yields an approximation of the expected customer

sojourn time for aJi values of the traific intensity of the system. From this approximation,

we derive the optimal order of servers when one server has exponentially distributed service

times and the other has a general service time distribution.

Consider a two-station tandem queueing system with Poisson arrivals of rate A. Let

Sk be the service time for a random customer at station k, for ^ = 1,2. We assiune that

Si and 52 are independent, and let Sk have finite mean /ij^^ and finite squared coefficient

of variation cj.. Let G be the distribution of S2 and let the random variable S2e have the

distribution

P{S2e <t} = ^i2 I 1 - G{s)ds. (25)
Jo

The expected customer sojourn time at the first station is easily obtained from the

Pollaczek-Khintchine formula. Let /(A) denote the expected customer sojourn time at the

second station when the arrival rate to the system is A. Greenberg and Wolff (1987) show

that /(O) = /i^ and

/'(O) = fi:'E[{S2 - 5i)+] + ^^2'E[{S2e - 5i)+]. (26)

Consider a normalized version of /(A) defined by F{X) =
{fj.2

— A)/(A). Then F(0) — 1

and

F'(0) = fi2fi:'E[{S2 - 5i)+] + E[{S2e - 5i)+] - fi^'. (27)

By the results in Section 2, if condition (1) holds then

lim F(A) = i±^. (2S)

The interpolation method approximates F{X) by a second degree polynomial F{\), and

then approximates /(A) by /(A) = (/Z2 — A)~^F(A). By Reiman and Simon (1987), there

exists a unique second order polynomial F{X) that satisfies F(0) = 1 and equations (27)-

(28) (with F replaced by F). This leads to the approximation of /(A) by

/(A) = (/.2 - ^r'iC-^ - f^T'E[{S2 - S0+] - ^i2'E[{S2e - 50+])A^
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+ {^i2^iT'E[{S2 - S,r\ + £[(52e - 5i)+ ]
- /i2-')A + 1

j
. (29)

Equation (29) and the Pollaczek-Khintchine formula can be used to compare the

expected customer sojourn time for the two different orderings of two-station tandem

queueing systems. We now derive the optimal order of servers in the special case where

one server has exponential service times with mean yi~^ and the other server has a general

service time distribution G. Let G*{ii) be the Laplace transform of the general distribution

and let the general service times have mean 7"^ and squared coefficient of variation c^. A

similar theorem in light traffic was proved by Greenberg and Wolff (1987).

Proposition 3. Expected customer sojourn time is minimized by putting a general

server in front of an exponentiai server if and only if

Proof. As in Greenberg and Wolff, let system A be a tandem queueing system with

Poisson arrivals, where the first server has exponential service times and the second server

has general service times. Let system B be a queueing system with the servers in the

opposite order. Let the exponential service times be denoted by X and the general service

times by S. Then the expected sojourn time at the second server in system A is the same

85 the expected sojourn time at the first server in system B, since both servers receive

Poisson arrivals. By equation (29), system A has a smaller expected total sojourn time

than system B if and only if (/i — A)~^ is less than

(A^-A)-^^^-(7-^+/i-^)i:[(-Y-5)+])A2 + ((^
+ l)E[(X-5)+]-M-^)A + iy (31)

Since E[{X - S)'^] = iJ,~'^G*{p), rearranging terms gives our result. |

This result is consistent with three existing results. If both servers are exponential,

then c^ = 1 and G*(fi) = -f/{^ + ^), and the order of service does not matter, as was shown

11





in Weber (1979). If one server has constant service times and the other has exponentially

distributed service times, then c^ = and G'{n) = e~^l''
. Since

it follows from (30) that the deterministic server should be first, which is a special case of a

result by Tembe and Wolff (1974). Finally, if one takes A -+ in equation (30), Proposition

3 reduces to a light traffic theorem of Greenberg and Wolff (1987).

5. Tandem Queues With Probabilistic Feedback

In this section, the model described in Section 1 is generalized to allow for immediate

probabilistic feedback of customers. A customer completing service at station k = \,...,K

will return to the end of the queue at station k with probability 1 — p^ (independent of

previous history), and will move on to the next station (or possibly exit the system) with

probabiUty pk- For ease of notation, we will define po = 1- Now the traffic intensity at

station k \s pk = X/pkfJ'k for k = 1,...,A', and we assume that these values satisfy the

balanced heavy loading condition (1). The expected number of customers at station k in

equilibrium is again given by equation (4), where al is now defined by

(^l
= KPk-i{cl-i-l) + 2-pk) + Xpkcl, {OT k = l,...,K. (33)

When there is no feedback, then pjt = 1 for ^ = 1,...,A', and equation (33) reduces to

equation (5). Since Y!>k=i ^Pkc\/2{p.k — A) is unaffected by the ordering of the stations,

the problem of ordering these stations again reduces to a travelling salesman problem,

where the asymmetric distance matrix d = {dij) is now defined by

_ r if J = 0,

'^" ~
I P^{c] - 1) + 2 - p,)/(//, - A) otherwise.

^^'^^

Thus the expected customer delay incurred by having station i directly precede station j

decreases as pj increases, and increases with p, only if c] > 1.
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