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Abstract

A nonempty closed convex polyhedron X can be represented either as

X = {x:Ax<b}, where (A,b) are given, in which case X is called an H-cell, or in

the form X = {x:x=UA+Vp ,EX .=l,X>0,yr-0} , where (U,V) are given, in which case X

is called a W-cell. This note discusses the computational complexity of certain

set containment problems. The problems of determining if Xcy, where (i) X is

an H-cell and Y is a closed solid ball, (ii) X is an H-cell and Y is a W-cell,

or (iii) X is a closed solid ball and Y is a W-cell, are all shown to be

NP-complete, essentially verifying a conjecture of Eaves and Freund.

Furthermore, the problem of determining whether an integer point lies in a

W-cell is shown to be NP-complete, demonstrating that regardless of the repre-

sentation of X as an H-cell or W-cell, this integer containment problem is

NP-complete.
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1. Introduction and Preliminaries

A nonempty closed convex polyhedron X can be represented either in

the form X = {x:Ax<b}, where (A,b) are given, in which case X is called

an H-cell (H for halfspaces) , or in the form X ={x :x=UX+VtJ ,EA .=1,X >0,y >0} where

(U,V) are given, in which case X is called a W-cell (W for weighting of points)

.

The computational complexity of many problems related to polyhedra depend on

the polyhedral representation as an H-cell or a W-cell. For example, consider

a linear program, which can be stated as maximize c x subject xeX, where X

is a polyhedron. If X is an H-cell, this is the usual linear program, whose

solution time, while polynomial, is by no means negligible. However, if X is

represented as a W-cell, the linear programming problem becomes trivial. As

another example, consider the problem of testing if xeX for a given x, where

X is a polyhedron. If X is an H-cell, the problem is trivial, whereas if X

is a W-cell, the problem reduces to solving a linear program.

This note discusses the complexity of two types of problems. The first

problem is the set containment problem (SCP) , that of determining if XcY, where

X (resp. Y) is a cell , defined to be either a polyhedron (an H-cell or a W-cell)

,
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or a closed solid ball of the form {x: (x-c) (x-c)<r }, in which case X (resp. Y)

is called a B-cell . There are nine forms of SCP corresponding to X and Y

each being given as an H-cell, W-cell, or B-cell. For notational convenience,

a particular form of SCP will be denoted , e .g. , by (W,B) , where X is a W-cell

and Y is a B-cell. In Eaves and Frexind [ 1 ] , SCP is shown to be solvable as a

linear program for the six forms (HH) , (WH) , (BH) , (WW) , (WB) , and (BB) , thus

showing that these problems are solvable in polynomial time. Eaves and Freund

also conjectured that the forms (HW) , (BW) , and (HB) are "intractable." In
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Section 2 of this article, we show that these three forms of SCP are NP-complete,

thus essentially confirming the conjecture.

Section 3 addresses the computational complexity of the integer containment

problem (ICP) , that of finding an integer point in a given polyhedron X in the

case that X is a W-cell. Karp [ 3 ] showed that when X is an H-cell, the

corresponding ICP is NP-complete. Herein, it is shown that ICP is NP-complete

when X is a W-cell.

The notation used is standard. Let R be n-dimensional Euclidean space.

The Euclidean norm of xeR is represented by
||

x
j|

. Let e = (l,l,l,...l) where

the dimension is clear from the context. Let Q , Q be the set of rational

mxn matrices and n-vectors, respectively. Define {a,b} ={xeR : x =a or b,j=l,...n}
J

2. Three NP-complete Cases of the Set Containment Problem .

Consider the following version of the integer containment problem:

(ICPl) Given : A e
q"^"

Question: Is there a tt€{-1,1} that satisfies Air^e?

This classical integer linear inequalities problem is NP-complete, even if m is

restricted to be 2, as there is an elementary transformation from the number parti-

tion problem. The three set containment problems of interest, foinns (HB) , (HW)

,

and (BW) , can be stated formally as:

(HB) Given : (A,b,c ,r^)e (q'"'"^ ,q"',q" ,Q^)

Question : Is Xj^Y, where X={xeR'^ : Ax<b} and Y ={xeR : (x-c) ^(x-c) <r ]?

(HW) Given: (A,b,U,V)e(Q"^^",Q"',Q^^ .Q-^^P)

Question : Is X^Y, where X={xeR" :Ax<b} and Y={xeR":x=UX+Vy , e*^X=l ,X ,y>0}?

(BW) Given : (c ,
r^ ,U, V) e (Q^" ,Q^ ,0""* ,0"""^)

Question : Is X^Y, whf^rc X={x'^r'^: ( x-c) (x-c)<r } and

Y={ xgR" : x=UA +Vy , o^'X = l , A , y>0} ?





Note that problems (HB) , (HW) , and (BW) are all elements of NP. To see

this for the problem (HB) , note that if X^Y, then there exists either an

extreme ray v of X, or else there exists an extreme point x of X that is not

an element of B. If the fr>rmer is true, then there i;; a submatrix of M of A

consisting of rows of A, and an index j such that v is the unique solution to

Mv=0, v.7^0. The size required to record v then is polynomially bounded in

the size of A. If the latter is true, x=M d for some sxibmatrix M of A and

siibvector d of e, and the size of x is polynomially bounded in the size of A.

- t - 2
The test that (x-c) (x-c) >r is obviously polynomially bounded in the size

of A as well.

To see that problem (HW) is an element of NP, first note that if X^Y

there exists x or v as above. The test that v^{y :y=UX ,X>0} or the test that

x^ is equivalent to solving a linear program, which is polynomially bounded

in the data (v,U) or (x,U,v)

.

Finally, if for a giv^jn instance of (BW) , suppose that X^Y. Then, either

Y has no interior in IR , or there is an (n-1) -facet of x such that the shortest

Euclidean distance from th*; hyperplane containing this facet to c is larger

2
than r . If the former is true, then the system irU=ae , irV=0 has a solution

tTt^O. This test is polynomial in the data (U,V) , and the size of ir will be

polynomial in this data. rf the latter is true, there exists a submatrix

U' consisting of columns of U, and a submatrix V consisting of columns of V,

such that the hyperplane containing the facet in question is determined by

a solution (u,a) to irU'=ae, TrV'=0, ttt^O, where the hyperplane in question is

Z={x| IT .x=a} . The size of the unique solution (tt,cx) to the above system is

polynomially bounded in the data (U,V) , and the shortest Euclidean distance

/ la—IT- c
I , a—iT-c 2 . ,

from c to Z is given by*/-^^

—

zr- The test that -'—z
—

_ > r is also
» rr • IT IT • IT

- - 2
polynomially bounded in th<' data (a,iT,c,r ) and so problem (BW) is in the

class NP.





Also note that if X^Y , then it follows from the convexity of Y and a

separating hyperplane theorem that there exists x^X, and it, a such that

(i) IT y<a for all yeY, and (ii) tt 'x >o.

Our main result in this section is the following:

THEOREM 1. The set containment ]iroblems (HB) , (HW) , and (BW) are NP-complete.

Before proceeding to the proofs, we define a few more terms and we state an

elementary property concerning linear programs defined over the rationals.

For each matrix A, let P(A) ={x:Ax<e, -e<x<e} . Thus the integer contairiment

problem ICPl can be stated as follows: Does P(A)n{-l,l} =(t)?

For a given rational matrix A, we will let r.ax(A) denote the maximum

absolute value of a niimerator or denominator of a component of A; e.g.

,

max(2/ll,-14/2) )=14. (The numerator and divisor can have a common divisor..)

For two sets S,T, let d(S,T) be the infinium of the distance between

the two sets, where the supremum norm is used. In the proofs, we will use the

following elementary lemma.

- - - ( ^ ) -1
LEMMA 1. If P(A)n{-l,l}" = <^, then d(P (A) , {-1 , l}'^) > (2max(A) ^^ "^^

nl ) .

PROOF. Let z*= d(P(A) ,{-1,1}'^) , and

z*(y)= d(P(A) ,{y}) ; then

z*=min (z* (y) :ye { -1, 1} ), and

z*(y)= minimum z ,

subject to z + (x.-y.) >^0 j = l,,..,n

t^j-yj) ->-0 j = i ,n

xeP(A)





We now claim that z* (y)> (2inax(A) (nl)) for any Ye{-l,l} . To see this, let

X* be a point in P(A) of minimum distance to y , and without loss of generality

we may assume that x* is an extreme point of the feasible region of the above

linear program. Therefore x* = B f where B is a row basis of the linear

program and f is a vector of O's and I's of the right-hand side components

corresponding to B . B can be written as B = d C where d is a common

-1 -1 -, /adj (C)
denominator of B and C is an integral matrix. Because B = dC = °

I j^^ (r^\

-1 - n^
a denominator for B is det(C). Because d^max(A) and

2
,

, , , ,— , n +1, ,

max(C) ^ (max (A) ) , we obtain

dct(C)<max(C)"n: < {max(A)'^ "^"^)'^n: = max(A) n'. < 2max(A) nl .

Thus this bound on det (C) , which is a denominator for any component of x* ,

provides a bound on d(P(A) ,{-l,l} ) . H

(n"^+
Henceforth, for each AeQ , let M(A) = (2max(A) n.') . Note that

3
the size of M(A) is 0(n log(l+max(A)) , which is polynomial in the size of A.

PROOF THAT (HB) IS NP-COMPLETE . Let A be an instance of ICPl, and

let e = [M(A)]" . Let X = P (A) and let Y = {yeP^ry^y < n-e} . Consider the

instance of (HB) of determining if XcY.

Suppose first that XcY. Then
||
x

||
< n-e<n for any xeP(A) and thus

P(A) n{-l,l}'^ = (j) .

Conversely, suppose that X^ . Let xeP(A) be selected so that x^

.

Since -e<x<e and x x>n-c , it follows that |x.|>l-e for each j and thus

d(x,{-l,l}'^)<e . It follows that d(P (A) ,{-1 , 1}") <e , and thus by Lemma 1, we

conclude that P (A) n{-l ,1}^^
t^ ()) . S





PROOF THAT (H,W) IS NP-COMPLETE. Let A be an instance of ICPl , and let

-1 - "
I

e= [M(A)] . Let X=P(A), and let Y={y:.>: |y.|<n-e}. Note that Y may be

polynomially represented as the W-cell {y :y=UA ,A>0,e X=l} by letting

U= [ (n-e) I , (n-c) (-1) ] . Now consider the instance (H,W) of determining if XcY.

Suppose first that XcY . Then any xe.P(A) must satisfy

eIx
I

<n-e and thus P(A) n{-l ,1} = (})

.

J ^

Suppose next that XjzTJ . Let xeY be chosen so that E|x,|>n-E . Since
J 3

-e<x<e , it follows that l-e<[x | <1 for each j=l,...,n and thus

j_
d(x,{-l,l} ) Se . Therefore d(P (A) ,{-1,1} ) <e , and thus by Lemma 1 we conclude

that P(A)n {-1,1}" / 4) . S

PROOF THAT (B,W) IS NP-COMPLETE . Let A be an instance of ICPl and let e = M(A)

Let X={xeR'^: ||x
II
^<l/(n-e)} and let Y={yeR" :7r^y<l for all ueP (A)} . Y can be

1 2 —t 3 12 3 tlt2t3
represented as the W-cell Y'={y:y=X -X +A X ,X ,X ,X >_0,e X +e X +e X =1} .

(It is easy to see that Y'cY by premultiplying any yeY' by TTeP(A). To show that

YcY' one can ass\ame that y'fTi' and use linear programming duality to show that

y'<Y •) Consider the instance of (BW) of determining if XjcY.

Suppose first that P (A) n{ -1, l}"?^ (p , and let veP (A) n{-l,l}

Let v=(n-e)~ 11^11" v . Note first that v v=(n-e) and so veX. Also note

that V v=(n-e) ||v||>l , and so v/y • We conclude in this case that

X^ . Thus if XcY , P(A) n{-l,l}"= 4).

Next consider the case that X^ . In this case there exists xeX and

t -
. . t- .

7r6P(A) such that it x>l . Moreover the value of xeX which maximizes it x is

- -1/2 1 1 1 1
-1

uniquely given by x=(n-e) 1|tt ||
tt whenever tt^O . Thus we may assume without

loss of generality that x=(n-e) IMI t • It follows that





IttII ^=-n^-n = (n-e) ^ ||tt|| tt^x > (n-e)^
1

1 it
1

1 , and thus |1it|J
^ > n-e. Since

-e^TtSe, 1-6 <|tt.|<1 for j =l,...,n and thus d(Tr,{-l,l} )<r.. We conclude that

d(P(A), {-1, !}")<£ and thus by Lemma 1, P(A)n[ -1, l}"7^0. D

3 . The Complexity of Finding an Integer Element of a Polyhedron .

It is well known (see for example Garey and Johnson [2 ] ) that the

problem of determining whether there is an integer point in an H-cell is

NP-complete. In this section we show an analogous result for integral

containment in a w-cell. Consider

^nxk,
ICP2: Given (U e Q )

Question: Is there an integral n-vector TreX, where

X={xeiR'^ : x=XJX, e^X=l, A>0}?

THEOREM 2. The problem ICP2 is NP-complete.

PROOF. Note first that ICP2eNP since if ireX is integral, then we can

demonstrate that ireX by solving a linear program in polynomial time-

To show that ICP2 is NP-complete, we carry out a transformation from

the following 0-1 knapsack problem.

Input . Integers a, , . .
.

, a , b

n

Question . Is there a vector ye (0,11 such that T, a.y. = b?

i=l ^ ^

The above problem is known to be NP-complete.

Suppose that a, , . . . , a
, b is an instance of the above knapsack

problem. We transform this instance into a problem in modular arithmetic as

follows: Are there vectors \,s satisfying:

n

( Z a.X. - bX ,t) is integral, (la)

J = l

(n+l)X. is integral for j=l, . .
.

, n+1, (lb)

(2n)~ (X.+s.-X ,,) is integral for i=l,...,n, (Ic)
2 3 n+1 '^

ST + ... + S +X, + ...+X _LT
= 1 (Id)

1 n 1 n+1

s,X>0 (le)





First note that (la) - (le) is a special case of ICP2 in which U has

2n+l colunms each of which i'i in |R

We claim that there is a feasible solution to system (1) if and only

if there is a solution to thf' knapsack problem.

Suppose first that ye'O, l} is feasible for the knapsack problem.

Let A.=y./(n+l) for j=l,...,n and let s .=l/(n+l) -X . . Finally, let

X = l/(n+l) . It is easy to verify that X,s satisfy (1)

.

n+1

Suppose next that X,s satisfy (1). If we subtract each of the n

constraints of (Ic) from (2n of constraint (Id) , we obtain the constraint

(n+l/2n)X ,, -l/2n is integral (If).
n+1

Since 0<X ,^1, we conclude from (If) that
n+1

X ^, = l/(n+l) (Ig)

.

n+i

We conclude from (Ig) , (Ic) .md (Id) that

X.4S. = l/(n+l) for j=l,..., n (Ih)

and by (Ih) and (lb) we conclude that

X . = or l/(n+l) for j = l,..., n (li).

From (Ig) , (li) and (la) we conclude that y=(y ,..., y ) is feasible for

the knapsack problem, where y.=(n+l)X., j=l,..., n, completing the proof. D

Summary. In certain cases, the representation of a polyhedron as an H-cell

or a W-cell drastically affects the computational complexity of the underlying

problem. For the set containment problem, involving polyhedra and/or closed

solid balls, the problem is solvable as a linear program and hence is

polynomial, for the cases (H,H), (B,H), (W,H) , (W,W) , (W,B) , and (B,B) , see [1]

,

This note shows that the remaining three cases (H,B), (H,W) , and (B,W) are

NP-complete.

As regarding the determination of an integer point in a given polyhedron,

this note has shown that the problem is NP-complete, irrespective of the

representation of the polyhedron as an H-cell or a W-cell.
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