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ABSTRACT

In this paper, we use stochastic dynamic programming to study the intertemporal consumption and

portfolio choice of an infinitely lived agent who faces a constant opportunity set and a borrowing

constraint. We show that, under general assumptions on the agent's utility function, optimal policies

exist and can be expressed as feedback functions of current wealth. We describe these policies in

details, when the agent's utility function exhibits constant relative risk aversion.

* We wish to thank Minh Chau, Neil Pearson, the associate editor and an anonymous referee for

their comments. Jean-Luc Vila wishes to acknowledge financial support from the International

Financial Services Research Center at the Sloan School of Management. Thaleia Zariphopoulou
acknowledges financial support from the National Science Foundation Grant DMS 9204866. Errors
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I. INTRODUCTION

In this paper, we consider the Portfolio-Qansumption problem of an infinitely lived agent in the

presence of a constant opportunity set and borrowing constraints. Using the method of Dynamic

Programming, we show that, under general assumptions on the agent's utility function, optimal

policies do exist and can be expressed as feedback functions of the investor's current wealth. Given

this existence result, we are able to describe how borrowing constraints affect the consumption and

investment decisions when the agent's relative risk aversion is constant.

Stochastic dynamic control has first been used by Merton (1969, 1971) to obtain an explicit solution

to the Portfolio-Consumption problem when the investment opportunity set is constant, the agent's

utility function belongs to the HARA class and when trading is unrestricted. More recently, Karatzas

et al. (1986) generalized Merton's results and obtained closed form solutions for general utility

functions.

Instead of using stochastic control methods, the so-called martingale approach has been alternatively

used by Pliska (1986), Cox and Huang (1989 & 1991), Karatzas et al. (1987) to study intertemporal

consumption and portfolio policies when markets are complete, which was also the case in the earlier

dynamic programming literature. The martingale technology consists in describing the feasible

consumption set by a single intertemporal budget equation and then solving the static consumption

problem in an infinite dimension Arrow-Debreu economy. The martingale approach is appealing to

economists for two reasons. First, it can be used to solve for the asset demand under very general

assumptions about the stochastic investment opportunity set. Second, and consequently, it can be

applied in a general equilibrium setting to solve for the equilibrium investment opportunity set (see

Duffie and Huang (1985), Huang (1987)).
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Unfortunately, in the presence of market imperfections such as market incompleteness, short sale

constraints or transaction costs, the martingale approach looses much of its tractability'.

Consequently, many authors used dynamic programming to analyze the impact of these imperfections

on asset demand (see for example Constantinides (1986), Duffie and Zariphopoulou (1993),

Grossman and Laroque (1988), Grossman and Vila (1992), Fleming et al. (1989), Fleming and

Zariphopoulou (1991), Zariphopoulou (1993)).

The present paper extends this line of research to the dynamic problem of an infinitely lived agent

who faces two constraints. The first constraint is a limitation on his ability to borrow for the purpose

of investing in a risky asset, i.e, the market value of his investments in the risky asset, X,, must be less

than a exogenous function X(W,) of his wealth W^. In this paper we concentrate on the case

X(W,)=k(W,+L) where k and L are non-negative constants. The second constraint is the requirement

that the investor's wealth stays non-negative at all times, i.e., W,^0. Using the dynamic programming

methodology, we associate to the stochastic control problem a nonlinear partial differential equation,

namely the Bellman equation. We show that if the utility function satisfies some general regularity

conditions, the Bellman equation has a unique solution which is twice continuously differentiable.

Using a verification theorem, this solution turns out to be the indirect utility function (the so called

value function) which is therefore a smooth function of the current wealth, W,. Moreover, the optimal

consumption, Q and the optimal investment X, are obtained in feedback form through the first order

conditions from the Bellman equation. Because of the smoothness of the value function, the optimal

policies are respectively continuously differentiable (Q) and continuous (X,) functions of the wealth.

In the second part of the paper we study the particular case of a Constant Relative Risk Aversion

He and Pearson (1991) use a duality approach to apply the martingale technology to incomplete markets with short sale constraints.

Although their methodology carries a lot of insight, they do not solve explicitly for the optimal policies.
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agent. In particular, we describe in detail the optimal policies and we compare them to the ones of

the unconstrained problem. In the absence of the borrowing constraint, the optimal investment is

X,=(^/Ao') W, where \i is the excess rate of return on the risky asset over the risk-free rate, o is the

volatility of the rate of return on the risky asset and A is the coefficient of relative risk aversion. We

show that the borrowing constraint causes the agent to be more conservative (i.e. to invest less in the

risky asset) even at points where the constraint is not binding. This result has to be contrasted with

a similar result in Grossman and Vila (1992) who show that, if the agent consumes only his final

wealth the borrowing constraint will make him more (less) conservative if the relative risk aversion,

A, is smaller (greater) than 1.

In the third part, we present an application of our analysis to an optimal growth problem in a

Robinson Crusoe economy with two linear technologies, one riskless and one risky. We assume that

the investment in the riskless technology must be non-negative. We show that this constraint causes

the average rate of return on capital in the economy to fall even during periods when the constraint

is not binding.

The purpose of the paper is twofold. First, we want to examine how borrowing constraints affect

consumption and portfolio decisions. Second, we want to illustrate how dynamic programming can

be used rigorously to obtain qualitative properties of optimal policies even when explicit solutions fail

to exist.

The powerful theory of viscosity solutions is used in this paper. The value function is first

characterized as the unique (constrained) viscosity solution of the Bellman equation. The

characterization of the value function as a viscosity solution is imperative because the associated

Bellman equation, which turns out to be fully nonlinear, might be degenerate (due to the constraints)

and such equations do not have in general smooth solutions. The unique characterization together
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with the stability properties of viscosity solutions enable us to approximate the value function by a

sequence of smooth solutions of the regularized Bellman equation and identify the smooth limit-

function with the value function. Finally, the characterization of the value function as a constrained

viscosity solution is natural due to the presence of the (state) constraint of non-negative wealth (W,iO

a.e. Vt^O).

The methodology employed herein can be applied to several extensions and variations of the infinite

horizon problem. In particular the case of finite-horizon can be analyzed very similarly as it is

discussed in Section V. Also, if we allow investing to more than one stock, the Bellman equation,

although more complicated, can still be treated with the above method.

In a general setting the above methodology can be used to analyze a very wide range of

consumption/investment problems in the presence of market imperfections. More precisely, results

from the theory of viscosity solutions can be used to provide (i) analytic results for the value function

of problems in imperfect markets, for example, (see Fleming and Zariphopoulou (1991),

Zariphopoulou (1993)) Duffie and Zariphopoulou (1993), Duffie, Fleming and Zariphopoulou ( 1993),

as well as (ii) convergence of a large class of numerical schemes for the value function and the optimal

policies when closed form solutions cannot be obtained (see, for example, Fitzpatrick and Fleming

(1990), Tourin and Zariphopoulou (1993)).

The paper is organized as follows. The general model is presented in Section II. Section III deals with

the existence result. In Section IV, we analyze the case of a CRRA investor. Section V presents the

application to an optimal growth problem. Section VI contains concluding remarks.



II. THE MODEL

2.1. A Consumption-Portfolio Choice Problem

We consider the investment-consumption problem of an infinitely lived agent who maximizes the

expectation of a time-additive utility function. The agent can distribute his funds between two assets.

One asset is riskless with rate of return r (r2:0). The other asset is a stock with value P;. We assume

that the stock price obeys the equation

-^' = ir*\i)dt + adb (2.1)

P.

where the excess rate of return \i and the volatility a are positive constants. The process bt is a

standard Brownian Motion on the underlying probability space (Q,,^,CP). We assume that there are no

transaction costs involved in buying or selling these financial assets.

The assumption that the opportunity set is constant, is necessary for the tractability of the model. It

is, however, possible to allow the market coefficients r, \i and o to be stochastic processes themselves.

Unfortunately, this would increase dramatically the dimensionality of the problem. For example, if

r„ \ii, and o, are diffusion processes, the value function will depend on four state variables W, r, \i and

o.

The controls of the investor are the dollar amount X, invested in the risky asset and the consumption

rate C,. His total current wealth evolves according to the state equation

dW, = (rW,-C,)dt -(- iiX,dt -(- oX,db„ for t^O and Wo = W. (2.2)

The agent faces two constraints. First, his wealth must stay non-negative at any trading time.^ Second,

^ee Dytjvig and Huang (1988) on the importance of this non-negativity constraint.
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the optimal amount X, must never exceed the (exogenously given) amount X(W,).

In this paper, we will consider the case X(W) = k(W+L) where k and L are non-negative constants.

This formulation is general enough to encompass several interesting examples. For instance, if the

investor has access to a fixed credit line L, then X(W,)=W,+L. If the investor needs only to put

down a certain fraction f of his stock purchases and can borrow for the remaining fraction (1-f) at

the risk free rate r, then X(W,) = (l/f)W,. This case is treated only for the sake of exposition since the

methodology employed here can be used for the general case of trading constraints X, ^ X(W,) with

X being a concave function of wealth (see Zariphopoulou (1993).)

The control (X,, C,) is admissible if

i) (X„ Q) is a ^-progressively measurable process where ^,=o(b,; O^s^t) is the o-algebra

generated by the Brownian Motion b,.

ii) Q^Oa.e. (Vt^O)

ill) (Xt,Cj) satisfy the integrability conditions

JXMs<+oo and
J
C ds < +<»

, a.e. (Vt^O)

iv) W^^O a.e. (Vt^O) (2.3)

where W, is the wealth trajectory given by (2.2) when (X,, Q) is used and

v) X,^k(W,-l-L) a.e. (Vt^O). (2.4)

We denote with A the set of admissible policies.

The objective of the investor is to maximize the expectation of a time-additive utility function, which

entails solving the optimization problem

sup E[ re-'"u(C)dt] (^-^^
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where u is the agent's utility function and p>0 is a discount factor. We assume that the utility

function u is a strictly increasing CXO, + <») function' with

lim u'(C) = +00 and lim u'(C) =0.
C-O C--

2.2. The Value Function

The value function J is defined as the supremura of the expected utility over the set of admissible

controls. We denote by J" and J" the value functions associated, respectively, with credit lines L=0

and L=a>. The following lemma compares J*, J and J".

Lemma 2.1: (i) J"(W) ^J(W) ^J-(W), (W^O).

(ii)J(W) ^/'(W+L), (W^O).

Proof: Part (i) follows from the fact that the set A of admissible controls is increasing in L. Part (ii)

follows from the fact that an investor with wealth W+L and constraint X(W) = k;W will have a larger

feasible set A than an investor with wealth W and constraint X(W)=k;(W+ L).

Remark 2.1: The above properties ensure us that J(W) is finite for all W>0 provided that J"(W) is

finite. Indeed, J(W) is bounded from below by ju(rW) since the control (X,=0;C,=rWj) is admissible

and bounded from above by J'(W). The explicit derivation of J"(W) can be found in Karatzas et al.

(1986). For the purpose of this paper, we shall assume that J"(W) < +oo\ VW^iO.

The necessary conditions on the discount factor, the utility function and the market coefficients, can

be found in Karatzas et al. (1986). They are also discussed in Part IV of this paper.

A function is called C^(Q) if its first k-derivatives exist and are continuous functions in Q.

^Technically speaking, from Lemma 2.1., assuming that J*(W) is finite for every W is enough to guarantee the fmiteness of J(W).
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The following lemma describes elementary properties of J(-).

Lemma 2.2: (i) J(-) is strictly concave.

(ii) J( •) is strictly increasing.

(Hi) J(-) is continuous on [0, ») with J(0) = -ju(0).

(iv) \imJ'{W) = +0O.

Proof: See Proposition 2.1 of Zariphopoulou (1993).

2J. The Bellman Equation

In this section, we completely characterize the value function and we derive the optimal policies. This

is done using dynamic programming which leads to a fully nonlinear, second order differential

equation (2.6) below, known as the Hamilton-Jacobi-Bellman (HJB) equation. In Theorem 2.1, we

show that the value function is the unique C^(0, + oo) solution of the (HJB) equation. This will enable

us to find the optimal policies from the first order conditions in the (HJB) equation. They turn out

to be feedback functions of wealth and their optimality is established via a verification theorem (see

Fleming and Rishel (1975)).

Theorem 2.1: The value function J is the unique C{0, + oc)nC[0, ») solution of the Bellman equation:

^/(»0 = max [-a'X'J"{W)*^J'iW)] ^ max [uiC)-CJ'iW)] ^rWJ'iW), (W>0)

with /(0)=!ii2).

Theorem 2.1 is the central result of our paper. The proof of this result is presented in some details in section

III.

Next, using the first order conditions in (2.6) and the regularity of the value function, we can derive the

optimal policies in a feedback form.
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Theorem 2.2: The optimal policy (C',^]) is given in the feedback form C',=C'(W',) and X'=X'(W]) where

C'( '), X'(') are given by

C'(W) = (u'yUJ'(W)) and X'(W) = mm { H ^ ^^ \k{W^L)} (2-7)

cr -J" (W)

where W, is the (optimal) wealth trajectory given by (2.2) with C* and X", being used.

We conclude this section by stating a result which will play a crucial role in the sequel. For the definition of

viscosity solutions and their stability properties see Appendix A.

Theorem 2.3: The value function J is the unique (constrained) viscosity solution in the class of concave functions,

of the (HJB) equation (2.6).

The proof is rather lengthy and technical and it follows along the lines of Theorem 3.1 in Zariphopoulou

(1993) and, for the sake of presentation, it is omitted. General uniqueness results can be found in Ishii-Lions

(1991) although they cannot be directly applied here because the control set is not compact. For a general

overview of existence and uniqueness results we refer the reader to 'User's Guide" by Crandall, Ishii and Lions

(1992) and to the book 'Controlled Markov Processes and Viscosity Solutions' by Fleming and Soner (1993).

III. SMOOTH (C*) SOLUTIONS OF THE (HJB) EQUATION

In this section we present the proof of Theorem 2.1. Before we start the details of the proof, we discuss the

main ideas. The (HJB) equation (2.6) is second order fully nonlinear and (possibly) degenerate. The

degeneracy comes from the fact that the second order term '/2a'X^J"(W) may become zero. Therefore (2.6) is

not uniformly elliptic^ and we know that degenerate equations do not have, in general, smooth solutions (see,

for example, Krylov (1987)). Our goal is first to exclude this possibility by showing that the optimal X is

A one-dimensional differential equation is said to be uniformly elliptic (non degenerate) if the coefficient of the second-order

derivative ^ o^X^ for the Bellman equation (2.6) satisfies 0<Ci([a,b])< ^ o^X^SCjCl^.'']) for any interval [a,b] where C, and C, are

constants depending only on [a,b].
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bounded away from zero in (0,+oo). We can then use the results of Krylov (1987) for the regularity of solutions

of uniformly elliptic equations.

We next consider an arbitrary interval [a,b] with a>0. Since the value function is concave, its first and second

derivative exist almost everywhere. Without loss of generality, we may assume that J (a) and J'(b) exist.

We want to show that the optimal X is bounded away from zero in [a,b]. Formally, the optimal X is either

k(W+L) or (/i/a^)(-J'(W)/J"(W)). In the second case we want to get a positive lower bound of

(/i/CT^)(-J'(W)/J"(W)). Since J'(W) is non-increasing and strictly positive, it is bounded from below by J'(b)>0.

Therefore, it suffices to find a lower bound for J"(W) in the interval [a,b]. Since we do not know how regular

J(«) is, we first approximate !(•) by a sequence of smooth functions J' which are solutions of a suitably

regularized equation.

To this end, we consider the following regularized problem: Let b| be a Brownian Motion independent of b,.

The policy (Xt.Q) is admissible if:

i) (Xt,Q) is a ^^-progressively measurable process where .^ = a(bj; 0<s<t);

ii) q>0 a.e. (Vt>0);

iu) (Xt,q) satisfy

t

r(X,')Ms < +CO and rCtds<+co (Vt<0) ;

iv) the amount of wealth W' > given by

dW: = (rWf +/iX;-Cf)dt + a€X:db, + aeWfdb,' (^'^^

with initial condition W'o=W satisfies W^ a.e. (Vt>0) and

(i) O < X; < k(Wt+L) a.e. (Vt>0).

We denote by A' the set of admissible policies and define the value function J*(«) to be

J'(W) = sup E [ re-'"u(Ct)dt] .

(^^^

The following two lemmas provide regularity properties for the value function J'.
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Lemma 3.1: The value function J' is strictly concave and strictly increasing on [0, +«).

Proof: See Theorem 5.1 of Zariphopoulou (1993).

Lemma 3.2: The value function J'(W} is the unique smooth solution of the regularized Bellman equation

^'(W) = max [-(/{X^^e'\^)y' iW)+^iXJ*\]V)] * max[u{C)-Cr\lV)] *rWy{W) , IV>0

(3.3)

OiXik(W.L) 2

with /-(O) = li^ .

Proof. Note that equation (3.3) is uniformly elliptic and see Krylov (1987).

The next lemma says that the above sequence J' converges to J, as « goes to zero.

Lemma 3.3: J' converges to J locally uniformly as e goes to 0.

Proof: See appendix B.

We next prove that the first and second derivatives of J* are bounded away from zero uniformly in e. This

implies in particular that the optimal X in equation (3.3) is bounded away from zero.

Lemma 3.4: In any interval [a,b], there exists two positive constants R,=R,([a,b]) and R2=R2([a,bJ) independent

of (., such that, for lVe[a,b],

(i) J"(W)>R, (3.4)

(ii) \J'"{W}
\
<R2 . (3.5)

Proof: See appendix B.

We now conclude as follows: We first consider the boundary value problem

fiV{lV) = max {-cr(X^*e^li^)V" {lV)->-tJLXV (W)} + max {u{c)-cV (^W)} -^rWyi^W) WG[a,b
iifli - 2 ciO

aR2

V{a)=J'(a), V{b)=J*{b) .

(3.6)
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Applying classical results from the theory of elliptic differential equations (see, for example, Krylov (1987)),

we get that (3.6) has a smooth solution V which by uniqueness and lemma 3.4 actually coincides with J'. Since

by lemma 3.3 J'(=V*) converges locally uniformly to J, J will be a viscosity solution of the limiting equation

of (3.6) as e goes to zero, namely

fiV(]V) = max {la^X^V {W)>^iXV{W)} * max{u{c)-cV{W)} * rWV{W) We[a,b],
itRi - 2 cio

V(a)=J(a), V(b)=J(b).
^^'^^

To pass to the limit, we used the fact that J'(W)->J(W) and the stability properties of viscosity solutions (see

Appendix A, Theorem A.1). We next observe that (3.7) is uniformly elliptic and therefore has a unique

smooth solution V*. This solution V* is of course a solution in the viscosity sense. Finally, using that J is the

unique (constrained) viscosity solution of the Bellman equation (2.6), we get that V* = J and therefore J is

smooth.

Remark 3.1: Having analyzed the (HJB) equation (2.6) for the case of one stock, we can see that the analysis

does not change much if we allow investing in more than one stock. In particular, if we have N stocks with

excess returns /i=(/ii,..,/iN) and volatility matrix E , the associated Bellman equation becomes

/9J(W) = max [ 1 tr(X'EE'X') J" (W) + (^,X)J'(W) ]
+ max [u(C) -CJ'(W)] + rWJ'(W)

N 2 s C

Y, K 'k(W.L)
" •'

(3.8)

The proof now follows along the same lines as before once the local ellipticity constants R, and R, can be

recovered. But, these constants can be obtained as in Theorem 5.1 of Zariphopoulou (1993) by solving

separately all possible cases of maximization with respect to the X^'s in (3.8).
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rv. THE CONSTANT RELATIVE RISK AVERSION (CRRA) CASE

In this section, we consider the case of an agent endowed with a CRRA utility

u(C) = ^_ C'--^, A>0. A^l, ("^-l)

1-A

where A is the coefficient of relative risk aversion.

The case where the borrowing constraint X<k(W+L) is not present or not binding, has been studied by

Merton (1971). Merton proved that the optimal investment strategy consists of investing a fixed proportion

of wealth in the risky asset. This proportion ^/{Aa^) increases when the excess return on stocks over the risk

free rate, ^, increases, and when the volatility a or the relative risk aversion A decreases. The following

proposition summarizes the results of Merton.

Proposition 4.1: (Merton 1971)

(i) If there is no borrowing constraint (formally L=<x:), an optimal control exists provided that the following

inequality holds:

\' > o

with A" being defined as follows:

(4.2a)

A- = ^ [^-(l-/l)(r + 2)]; {4.2b)

A A

7 = Jil .
(4.2c)

la"

(ii) The value function J'(* ) and the optimal controls (X( '),€(*)) are given respectively by

r(^W) = (X-yuiW), ('^^^

X'iW) = JLW, (4.4)

Aa^

C'i^W) = X'W. (4.5)

When [^/(Aa')]<k, the borrowing constraint X<k(W+L) is not binding and the solution to (2.5) is the

solution to the unconstrained problem (i.e. (4.2)-(4.5)). We assume in the sequel that:
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M>k(Aa^), (4.6)

that is the borrowing constraint will be binding*. The inequality (4.6) will hold if the expected return on the

stock in excess of the risk free rate fi is large, if the volatility a is low or if the risk aversion of the investor

is small.

In the presence of borrowing constraints, one natural candidate for an optimal investment strategy is the

myopic strategy where the investor invests the minimum of two quantities: (a) what he would have invested

without the borrowing constraint and (b) the maximum level of investment k(W+L). In other words, the

myopic investment strategy is

XMw'(W) = min[_^ W, k(W+L)]. (4-7)

Act

When the investor follows the myopic strategy, he is not aware of the borrowing constraint until he meets it.

We will show that the myopic strategy is not optimal in general: The optimal investment, while the borrowing

constraint is not binding, is affected by the fact that the borrowing constraint may be binding in the future.

However, as shown below, when L=0, the myopic strategy is indeed optimal.

Proposition 4.2: IfL=0, the value function /'(•) and the optimal control (X('),C(')) are given by

f(W) = {X'>)^u{W), ('^^^

X^{W) = kW, (4.9)

C^(W) = x'w, ("^-^^^

where

XO-'lP-H-Anr.^k-^)]. (4-11)

A 2

Proof: J* solves the Bellman equation and the optimal policies can be computed explicitly from (2.7).

If L > 0, then, to our knowledge, a closed form solution to problem (2.5) fails to exist. It is possible however

to obtain qualitative properties of the optimal controls. More precisely, in Propositions 4.3, 4.4 and 4.5 below.

T^rom (4.4), we expect the borrowing constraint to be binding for high levels of wealth. However, the proof of this statement Is by no
means trivial (see proposition 4.4).
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we are able to compare the optimal controls (C*,X') with the optimal controls (C',X") and (C^.X") which

provide interesting benchmarks.

The next proposition shows that in the presence of the borrowing constraint (2.4) the consumer-investor will

always invest less in the risky asset than according to the myopic investment strategy (4.7).

Proposition 4.3: The optimal investment strategy, X'(W), is at most equal to the myopic investment strategy,

X'^^(IV). Furthermore, for small values of W, X'(W) is strictly less than X^*>^(W).

Proof. See appendix C.

Given the borrowing constraint (2.4), the Bellman equation (2.6) can be rewritten as:

^i = _2_ (J')^^ + rWJ' + 7^—4 when W belongs to U, (4.12a)

pi = _2_(J')''^ + rWJ' + /ik(W+L)J' + i.crk^(W+L)-J" when W belongs to B, (4.12b)

1 -A 2

where we use the following notation and vocabulary:

U = { W>0 such that — < k(W+L) } = unconstrained domain,
(T -i"

B = { W > such that >k(W+L)} = constrained domain

.

Given the optimal unconstrained strategy, it seems intuitive to expect the unconstrained domain to be an

interval, meaning that the agent meets the borrowing constraint for every W greater than a critical level W*.

The next proposition provides a sufficient condition for U to be actually an interval.

Proposition 4.4: If p+ -y > r + k^/2 (recall that 7=/i*7(2cr)) then:

i) There exists a positive number W* such that U=(0,W) and B=(W',oo);

ii) The optimal investment strategy, X'(W), is greater than kW.

Proof. See appendix C.
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The next proposition compares the optimal consumption policy C*(W), to C"(W) and to C^CW) where C"(W)

and C"(W) are defined in proposition (4.1) and (4.2).

Proposition 4.5: i) IfA<l, C'(IV) satisfies

\ -A ~"
1

Max { C-(W), C\W) f-iL]^ } < C-{W) < C'>i\V)[^:llkf .

(4-13a)

ii) IfA>l, C'(W) satisfies

C\\V) <C\W)< Min { C\W*L); C-{W)[^*^\^ } ;

^'^^^^^

Hi) C'(W) satisfies

Lim £S^ = A« ;

(4-l^<=^

iv) For Win [0,W], C'(IV) satisfies

C-(W) > C"(W) .

(4.13d)

Proof: See appendix C.

Proposition 4.5 provides bounds for the optimal consumption policy. These bounds are best illustrated in

figures 1 and 2. It is interesting to note that C*(W) may lie outside the interval [C"(W),C"(W)]. In fact, when

the relative risk aversion coefficient A is equal to 1 (i.e. u(c)=log (c)), C*(W) and C"(w) are equal. It is easy

to show that in this case C'(W) is not equal to C*'(W)=C"(W). Hence the optimal consumption policy is not

monotonic with respect to the credit line L, even in the constant relative risk aversion case. This point

illustrates the fact that the presence of market imperfections significantly modifies optimal policies and that

a priori bounds are very difficult to obtain.

From proposition 4.5 (iv) and proposition 4.3 it follows that in the interval [O.W], the investor consumes

more and invests less due to the borrowing constraint. It follows that, the wealth of an optimizing consumer

will grow (in average) more slowly than the wealth of a myopic investor. As a result, an optimizing consumer

will meet the borrowing constraint later.
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V. THE FINITE HORIZON PROBLEM

In this section we discuss the finite-horizon model and we state results about the value function and the

optimal policies.

The investor starts at time te[0,T), with T>0, having an endowment W, consumes for se(t,T], at rate C, and

invests X, amount of money in stocks. The prices of the riskless asset and the stock satisfy the same equations

as in the infinite-horizon case. The investor faces the same constraints as before. In other words, the wealth

and the consumption rate must stay non-negative and must meet borrowing constraints X,<k(W,+L) a.e. for

t<s<T.

The objective is to maximize the total expected utility coming from consumption and terminal wealth which

entails to solve the optimization problem with value function V

T

V(W,t) = supE[ fu.CC ,s)ds + Uj(W.^,T)]
A J,

where Ui is the utility of consumption and u, is the bequest function. Both u, and u, are assumed to be concave,

increasing and smooth. The set A is the set of admissible policies which is defined in a similar way as in

section II.

We now state the main theorems. Since the proofs are modifications of the ones given in previous sections

they are omitted.

Theorem 5.1: The value function V is the unique C"{[0,<x>)\[0,T]) and C^'((0,<x>)x(t,T)) solution of the Bellman

equation

V + max [l-a'X'V^) * nXV^] + max [u,(C,f) -CV^\ * rWV^ =

V(W,T) =u^{W,T).

Theorem 5.2: The optimal policy (C',,X',) (t<s<T), is given in the feedback form C* = C'(W],s) and

X',=X '(W
, , s) where the Junctions C'( •

) and X'( •
) are given by
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C-(W,t) = (u;)-'(V^(W,t)) and X-(W.t) ^ min [
ii J k(W^L)]

where W] is the optimal wealth trajectory.

VI. APPLICATION TO A GROWTH PROBLEM: SUBSISTENCE LEVEL AND RISK TAKING

In this section, we consider a single good Robinson Crusoe economy. The representative agent is endowed with

initial resources Wo and has access to two linear technologies (see for instance Cox, Ingersoll and Ross(1985)).

The first technology is risk free with rate of return r while the second technology is risky with instantaneous

rate of return ^i+y (/i>0) and instantaneous volatility a (a>0). By contrast with Cox, Ingersoll and Ross, we

do not assume that the amount invested in these technologies can be negative. The objective of the

representative agent is to maximize

sup E [ re-'"u(C,)dt] (^-^^

subject to the dynamics of wealth (i.e. the stock of capital)

dW^ =(rW^-q)dt *MX,dt *aX,db^,
^6 2)

'w„ = w
where the amount X, invested in the risky technology is constrained by

< X, < W^

.

(6-3)

We assume that the agent requires a minimum amount C of consumption so that his utility function is:

u(C) = ^_ (C-C)'-'^, A>0, A^l, (6-4)
^ 1-A

For the agent to survive, a minimum initial wealth is required, namely, W^W with W=^C. Henceforth we

assume that this initial wealth condition is satisfied. We define net wealth Y, and net consumption Z^ by

Y, = W,-W and Z, = Q-C. (6.5)

With these definitions, the optimal growth problem (6.1)-(6.3) reduces to the portfolio-consumption problem

that we studied in section IV. From our analysis of the portfolio-consumption problem, the following results

are straightforward

L The amount invested in the risky technology is smaller than the myopic amount
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min { W^; JL(W,-W)}.
Act

2. Hence constraint (6.3) (non-negativity of the riskless investment) causes the average rate of return

on capital (t+^i ^ ) to be lower even during periods when this constraint is not binding. Therefore,

neglecting such a constraint yields a systematic overprediction of the average rate of return on capital.

VII. CONCLUDING REMARKS

In this paper, we have used stochastic control methods to study an optimal consumption-investment problem

with borrowing constraints. We have shown that optimal feedback controls exist under general assumptions

about the agent's utility function. This has enabled us to obtain qualitative properties of these controls even

when an explicit solution fails to exist.

A further quantitative analysis can be done by developing numerical methods. Fortunately, the Bellman

equation, although fully nonlinear, is 'well behaved' (Theorem 2.1), and a wide class of algorithms can be used

(see for example Fitzpatrick and Fleming (1990)). In their paper, Fitzpatrick and Fleming examine a Markov

chain parametrization of a similar investment-consumption problem. They show that the value function and

the optimal policies for the approximate discrete problem converge, respectively, to the value function and the

optimal policies of the continuous problem as the discretization mesh size goes to zero. While the

discretization relies on Kushner's Markov chain ideas, the proofs are not of probabilistic nature; rather, they

rely on viscosity solution techniques introduced by Souganidis (1985) and Barles and Souganidis (1988).

The methodology presented herein can be extended to a wide variety of consumption-investment problems with

alternative investment opportunity sets and various constraints'. An interesting extension would be to consider

the case where the market parameters r, /i and a evolve in a non-deterministic way, i.e., where the investment

See Zariphopoulou (1993), Fleming and Zariphopoulou (1991).
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opportunity is stochastic. In this case, we would need to increase the dimensionality of the problem by

introducing new state variables to represent the stochastic market parameters. In general, multidimensional

problems are hard to solve mainly because the associated HBJ equation is often degenerate and smooth

solutions might not exist. As a result feedback formulae for the optimal control may fail to exist. Nevertheless,

the methodology used in the present paper could still be applied for the unique characterization of the

maximized utility as (weak) solution of the HJB equation. This characterization will guarantee the convergence

of numerical schemes for the optimal policies despite the lack of smoothness of the value function.

Therefore, it is our belief that viscosity techniques are the most appropriate tool to analyze continuous-time

consumption/investment problems in the presence of market frictions. This is true in particular when an

explicit solution fails to exists and when, as a result, numerical approximations must be used. It should be

noted however that each new case will require a specific analysis since to date no general framework exists.

Indeed, as opposed to the perfect capital markets literature which has developed a general model (the diffusion

model) and a general tool (the martingale technology), the literature on market frictions lacks such unity.

Hence, for each different type of constraints (transaction costs, holding costs*, borrowing constraints ...) a

specific treatment is required.

*See Tuckman and Vila (1992).
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APPENDIX A

VISCOSITY SOLUTIONS

The notion of viscosity solutions was first introduced by M.G. Crandall and P.L. Lions (see Crandall and Lions

(1983)).

Definition A.l: Let F: R*xIbcRxR->R be continuous and non-increasing in its last argument. A continuous

function J: R* - R is a viscosity solution of the equation:

F(WJJ',J") = (A.1)

if and only if for every smooth (C^) function 0: R* - R the following propositions hold

(i) if Wo>0 is a local maximum of J-4> then F(WJ(W^),(f,'{'W^),4>"(W^)) < 0.

(ii) if Wo>0 is a local minimum of J-0 then F(W^J(Wo),0'(Wo),0"(Wo)) > 0.

From the above definition, it follows that a smooth viscosity solution of (A.1) is also a solution of (A.1) in

the classical sense and therefore the concept of viscosity solution extends the concept of classical ones.

Moreover, viscosity solutions exhibit very good stability properties as the Theorem below demonstrates.

Theorem A.1 states that under some mild conditions the limit of viscosity solutions is also a viscosity solution

of the limit equation (see Lions (1983) for a proof).

Theorem A.l: Let e>0, F' a continuous function from R* x Rx Rx R to R and let J' be viscosity solutions of

F'(WJ'J''J'")=Oin [0,a). We assume that F' converges locally uniformly on R* x Rx Rx R to some function F and

that J' converges locally uniformly on [0,<b) to some function J. Then J is a viscosity solution ofF(W,J,J',J")=0

on [0,co).

In the case of equation (2.6), the function F takes the following form:

F(W,J,J',J") = ^J - max { IcrX^J" +mXJ'} - rWJ' - max { u(C) -CJ' } .
(A.2)

OiXsk(W-L) 2 CiO
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APPENDIX B

This appendix presents the proofs of lemmas 3.3 and 3.4.

Lemma 3.3: J' converges to J locally uniformly as e goes to 0.

Proof: We first observe that J' is locally uniformly bounded. Indeed J'<J<J" where J" is defined as in Lemma

2.1. This follows from the concavity of the utility funtion u(«). Moreover, because J' is concave, it is locally

Lipschitz and hence J*' is locally bounded. Therefore, there exists a subsequence J*" and a function v such that

P" converges towards v locally uniformly in (0,a>). Moreover,

lim/-(RO =^-
uniformly in e and therefore

lim v(W) =^ .

w-o ^

Using Theorem Al, we get that v is the unique viscosity solution of (2.6). On the other hand, the value

function J is also a viscosity solution of (2.6). Therefore, we conclude that all the converging subsequences

have the same limit which coincides with J.

Lemma 3.4: In almost any interval [a,b], there exist two positive constants R,=Ri([a,b]) and R2=R2([a,b])

independent of e, such that, for We.[a,b],

(i) J"(W)>R, (3.4)

(ii) \J'"(^)
I

<i?2 (3-5)

Proof (i) We first show that

lim(J')'(W„) =J'(WJ
c-O

at any point Wp such that J' exists. Let Wq be such a point. Since J' is concave, we have

J'(W) < J'(Wo) + (W-Wo)J' '(Wo). (B.l)

Since the (J*')'s are bounded locally uniformly, there exists a subsequence (J'")'(Wo) and a number p such that
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Urn r"(W„) = p .

Using that J'n converges towards J, inequality (B.l) yields

J(W) < J(Wo) + p(W-Wo). (B.2)

But J is concave and differentiable at W^, therefore p=J'(Wo) and

Hm(-r'')'(WJ =J'(WJ.

Since J'' is non-increasing, we conclude that in any interval [a,b] such that J'(b) exists, there exists a constant

C,=Q([a,b]) with

J"(W) > C, on [a,b]. (B.3)

(ii) The bound for J'" is more difficult to obtain. The proof is extremely technical and therefore we omit it.

The interested reader is referred to Zariphopoulou (1993) for details.

APPENDIX C: The case of CRRA utility

This appendix presents the proofs of Propositions 4.3, 4.4 and 4.5. To ease the presentation, we first prove

Proposition 4.5 i) ii) and iii). The proof of Proposition 4.5 iv) appears at the end of this appendix.

Lemma C.l i) J(IV)/W'-* is non-increasing and hence f(W)W< (l-A)J(W).

ii) J(W)/(W+L)'-'' is non-decreasing and hence f(W)(W-i-L) > (l-A)J(W).

Proof: Let J(W,L) denote the value function J(W) when the credit line is L.

Given the form of the utility function, the dynamics (2.2) and the constraints (2.3) and (2.4), a standard

argument can be used to show that J(«,«) is homogenous of degree (1-A) (see for instance Grossman and

Laroque (1989), Heming et al. (1989)). Then

i) J(W,L)AV''^ = J(1,LAV) which is non-increasing in W.

ii) J(W,L)/(W-i-L)'"'^ = J(t,l-t) where t= W/(W-(-L). Now, by an argument similar to the one in Lemma

2.1 (ii), one can show that J(t,l-t) is non decreasing in t.
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Proposition 4.5: i) IfA<l, C'(W) satisfies

\ -A — 1

Max { C-{W), C>{W)[ ^^]~^ } < C-{W) < C>{W)[^^]^ .
i'f-13a)

ii) IfA>l, C'(IV) satisfies

1

C^(W) < C'iW) < Min { C^Cff+L); C'(W) [^^LlL]^ } ;

('^l^b)

Hi) C'(W) satisfies

Lim Z!^ = A« . m^c)
w.. W

iv) For Win [0,W], C'(W) satisfies

C-(W) > C-(W) .
(4.13d)

Proof: i) If A<1, then from Lemmas 2.1 and C.l (i), we have:

J'(W)W < J(W)(1-A) < J"(W)(1-A).

Recalling that J'(W)=(C')-^ it follows from Proposition 4.1 that C'(W) > C"(W). Similarly

J'(W)W < J(W)(1-A) < J*(W+L)(1-A).

Hence

C'(W) > C*(W) [W/(W+L)](1-A)/A.

Also, from Lemmas 2.1 and C.l(i), we have

J'(W)(W+L) > (l-A)J(W) > (1-A)J*'(W)

and therefore

C*(W) < C<'(W)[(W+L)/W]'^^

ii) The proof is similar to that of (i) and therefore is omitted,

iii) It follows immediately from (i) and (ii).

iv) See lemma C.4.

If the utility function exhibits constant relative risk aversion, then the Bellman equation does not admit a

closed form solution on (O,™). However, it is possible, by following Karatzas et al. (1986) to solve the Bellman

equation in the unconstrained domain U. For this purpose, we express W as a function of C by inverting the
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equation:

j'(W(C)) = c^ (c.i)

Differentiating (C.I) with respect to C yields

J"(W(C)) = -AC^'AV'CC). (C.2)

Hence, the Bellman equation can be rewritten as

^J(W(C)) = ^C'--^ + rW(C)C-^ + Ic'-'^W'CC) .

(C-3)

1 ""A A
Differentiating equation (C.3) with respect to C yields the following linear second order differential equation

(see Karatzas et al. (1986) for a general presentation of this approach)

W"(C)C + ^(r+7i-:^-;9)W'(C) + — - i^rW(C)C-' = 0. (C-4)

7 A 7 7

The general solution to (C.4) is

W(C) = i.[C-K^C"*-K^C''"l (C-5)

where the u's are the roots of the second order equation below

J' * -(T--f-p)o) - — =0 with (C-6)

w* > 1> > w" and w* > A (C.7)

The K,'s (i=0,l) are constants when W is in any connected subset (a,b) of the unconstrained domain U. On

such subset the optimal policy X(W(C)) and the value function J(W(C)) are given by the equations

X(W(C)) = ^— = _ii_W'(C)C = i._^JC-K,a;*C"*-K^cx;-C''"] (C-8)

cr -J" Act A" Act

and

J(W(C)) = f-^dW = rc-'^W'(C)dC = 1 [S— - "' K,C"'-^-
'^'

K,C""-^]. (C.9)

J dW J A" 1 -A w'-A w"-A

The next lemma shows that the borrowing constraint, X<k( W+L), is not met when W is small enough.

Lemma C.2: There exist W>0 such that the open interval (0,W) is included in U and such that

X'(W)=k(W+L).

Proof: Per absurdum, suppose that there exists a sequence W„ - such that X'(W„) = k(W„+L). From equation

(4.12b) and the definition of the constrained domain B, it follows that



30

^J(WJ > _^(J'(W„))"^ * k^LJ'(WJ. (C-10)

If A< 1, then from equation (C.IO) it follows that J(W„) is bounded away from by a positive constant, namely

the minimum of the right hand side of (C.IO) for all positive values of J'(W„).

But by Lemma 2.1,

limJ(WJ < limJ-(WJ =0
,

n-" n-«

which yields a contradiction.

If A>1, then from equation (C.IO) it follows that J(W„) is bounded away from (-<=) by a constant, namely the

minimum of the right hand side of (C.IO) for all positive values of J'(W„). But by Lemma 2.1,

limJ(WJ < limJ-(WJ = -«
,

n-» n--

which yields a contradiction.

Furthermore, from equation (4.6), the borrowing constraint must be binding and hence U cannot be equal to

(0,oo). The proof is therefore complete.

The next lemma describes the behavior of X*(W) and C*(W) as W goes to zero.

Lemma C.3: i) LimX'{W) = ;

w.o

u) Lim C'{W) = 0.

Proof: i) The argument is similar to the one in Lemma C2.

ii) It follows from equation (4.12a) that

1 -A

^J(W) > ^^(J'(W))"^. ^^-^^^

1 -A

Hence, since

lim J(W) = ( respectively -<»
)

w-o

when A<1 (respectively A>1), it follows that
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Urn J'(W) = +C0
.

w-o

Since

1

C-(W) = [J'(W)]"'^ ,

the proof is complete.

Using tlie two preceding lemmas, we conclude that in the interval (0,W*), the constant Ki must be zero. The

next lemma describes the behavior of C*(W) and X*(W) in the interval (0,W*).

Lemma C.4: In the interval (0,W), the following inequalities hold:

i) K,>Q,

ii) kW < X-{IV) < JLW,
Act

Hi) C-(W) > C-(W) ; lim*^'^^^ = 1 ,

w-oC-{W)

s d "A" „
iv) < ,

dlV'-

v) > and
dW

., dX- ^ /i

dW Ao"

Proof: i) In the interval (0,W*), we have

J(W(C))<r(W) =(l)^u(W) = lu(C-K,C--)< l[u(C)-u'(C)K„C''*]
A- A- A-

where the last inequality holds because u( • ) is concave. Using equation (C.9) to get the expression of J(W(C))

and after rearranging terms, we get that K^, is non-negative. If Ko=0, then J(W)=J"(W) which contradicts the

fact that the constraint is binding.

ii) From equation (C.5) and (C.8) we get that:

X(W(C)) - JLw(C) = JL1c"X(i-'^*) ^
Aa^ Acr^ A"

and

X(W(C)) -kW(C) =^(C) =1 [(Ji,-k)C -K,(_^,a;--k)C"*] .
(Cll)

A" Act Act
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From (C.ll), it follows that ip{') is a concave function of C. Furthermore from Lemma C.2, V(C)<kL if C

is in [0,C'(W)) and ^6(C'(W)) = kL. Hence, V(C) must be positive (because Vi(c(0))=^(0)=0) and non

decreasing which yields that

X>kWanddX/dW>k.

iii) From equation (C.5) and K,=0, it follows that

W(C) = J-fC-K^C"*]

for We[0,W] with Ko>0. Therefore

C"(W) > A'W =C-(W) .

This completes the proof of proposition 4.5.

iv) ']£ ^
X,,W^-X^W^^

^ C(l-a,-) ^ Q
dW^ W^ W^

v) It follows from equation (C.6) and the fact that K,=0 and Ko>0.

vi) ^ =^ -JL
^-^('^')'C"'

< j^
dW W^ Act C-K„u.-C-* Act"

We next show that, actually, the second part of property (ii) above holds for every value of W.

Lemma C.5: For every W>0, X'(W) < JLw

Proof: From Lemma C.4 ii), it follows that

LW >

lJL-1
kAo^

Hence, if W>W*

X-(W) < k(W + L) < JLw
Act

The next lemma shows that when W is large enough, the agent will invest the maximum allowed k(W+L) in

the risky asset.
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Lemma C.6: There exists a number IV such that (W,<o) is a subset of the constrained domain B.

Proof: Per absurdum suppose that there exists a sequence W„ - « such that

< k(W +L) .

From the Bellman equation (4.12a), it follows that

^J(WJ < _^J'(WJC-(WJ . rW„J'(WJ . ^(W„.L)J'(WJ .
(C.12)

We divide each side of (C.12) by W„J'(WJ. Then we let n - «. From Lemma C.l, J(W„)AV„J'(W„) goes to

1/(1-A). From Proposition 4.5, C'(W„)/W„ goes to A". Hence we get

^ < A^ . r . :^ .

(C-13)

1-A 1-A 2

Using equation (4.11) for the expression of A" we get 0< \ k(kAa^-At) which contradicts condition (4.6).

Lemma C.7: If -y + p > r + k ^ , then U= (0, W).

Proof Per absurdum, suppose that besides the original interval ]0,W*[, the unconstrained domain, U, contains

another interval. That is, suppose that there exists two numbers W, and W, such that:

W < W, < W, ;
]W„W,[ c U and X*(W,)-kW, = X"(W,)-kW, = kl. (C.14)

Within the interval (Wj.W,), there exist two constants K^, K, such that W(C), X(C) and J(C) are given by

equations (C.5),(C.8) and (C.9). Let Ci=C(Wi); i=l,2. Let V(C) given by (C.16) below:

i>{C) = X-(C) - kW(C)
,

^^-^^^

V-(C) =l[M-k][C-lC,^^'-'^C"^-tC^'""-^C"-] (C.16)
^^ ' A- ^M-k ^M-k '

with

M = JL .
(C.17)

We recall that w*> l>0>(j', cj*>A and that M > k. Given the definition of ip{-), it follows that V'(C)<kL,

for every C in the interval (Ci,C2), with equality at C, and Cj.

If Ko<0 and Ki<0, then V'(*) is increasing which is impossible since ^(C,)=V'(C2).

If Ko>0 and K,<0, then )/'(•) is strictly concave which is impossible since V(C)<kL=^^(C,)=^(C2).
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From the two observations above, it follows that K,>0. Funhermore, we know from Lemma C.5 that

X'(W)<MW, hence

K,((j--l)C-' > K,(l-u)-)C-" , for C € (C,,C,). (^•^^)

Let C be the point where V(*) reaches its minimum in ]C„C;[. Since xl>'{C)>0,

Kj(k-Mw-)(-w-)(l -a)-)C"" > K,(M(j*-k)w-(cj--l)C-*, for C=C .
(^-1^)

Multiplying (C.18) and (C.19) and rearranging terms yields

> (w--cj-)[(w-+a;-)M-k] (^-^O)

From equation (C.6), it follows that w*+w = y (7+^-r), and finally that

^>r>5*7. (C.21)
2 - ^ '

If (/ik)/2 + r < /9 + 7, then we have a contradiction and therefore U=(0,W).
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