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Abstract

DifTerent topologies on the space of certain consumption patterns in a continuous

time setting are discussed. A family of topologies which give an economically reason-

able sense of closeness and have an appropriate intertemporal flavor is suggested. The
topological duals of our suggested topologies are essentially spaces of Lipschitz contin-

uous functions. Any utility functional whose felicity function at any time t depends

explicitly on the consumption at that time and is not linear in it is not continuous

in any one of our topologies. A clciss of utility functionals that are continuous in the

suggested topologies and that capture the intuitively appealing notion that consump-

tions at nearby dates are almost perfect substitutes is provided. We then give necessary

and sufficient conditions for a consumption plan to be optimal for this class of utility

functionals. We demonstrate our general theory by solving in closed form the optimal

consumption problem for a particular utility function. The optimal solution consists

of a (possible) initial "gulp" of consumption, or an initial period of no consumption,

followed by consumption at the rate that maintains a constant ratio of wealth to an

index of past consumption experience.
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1 Introduction and Summary

Consider an economic agent who lives from time to time 1. Suppose there is a single

consumption commodity consumable at any time between zero and one. We ask the fol-

lowing questions: First, how might we represent the agent's consumption pattern over his

lifetime? Second, if we let A'+ denote the space of possible consumption patterns, what is

an appropriate topology on X+; that is, one which gives an economically reasonable sense of

"closeness" with the appropriate intertemporal flavor and which is relatively well-behaved

mathematically? Third, what form will equilibrium prices take if they are given by a con-

tinuous linear functional? Fourth, what is the optimal consumption-savings behavior of an

agent whose preferences are continuous in such a topology?

There are '"standard" answers to these questions. Consumption patterns are represented

by a function c:[0, 1]
— 3f+, where c{i) represents the rate of consumption at time t. Two

such consumption patterns c{t) and c(t) are '"close" if they are close as functions; say, in

the sup-norm topology or in some L^ topology. In addition, prices come from Z', for the

appropriate value of q. Preferences are represented by U(c) =
f^ u(c{t),y{t)J)dt, where

u is the felicity function of the individual and y{t) is some functional of the consumption

rates. ^ A typical example is y(t) = y{t) + Jq 0(t,s)c{s)ds for some functions y(t) and 6{t,-).

This is a generalized version of the Ryder and Heal [1973] preferences analyzed by Magill

[1981].

We are dissatisfied with these standard answers. Basically we feel that consumption

at one time should be something of a substitute for consumption at other, near-by times.

Consequently, prices for consumption at close-by times should be approximately the same.

These, however, are not the properties of the above standard answers. We thus set out to

find answers to the questions of the previous paragraph that will conform to these intuitions,

and retain, at the same time, mathematical properties important for economic analysis.

Readers familiar with the literature on commodity differentiation, for example, Mas

Colell [1975] and Jones [1981, 1984] will at this point rightly think that the answers to our

questions are readily available in this literature. Take the commodity space to be the space

of signed measures on [0, 1] equipped with the topology of weak convergence, or simply

the weak topology. A consumption pattern is represented by a measure on [0, 1] or by a

right-continuous increasing function where the value of this function at time t denotes the

cumulative consumption from time to time t. In this representation, continuous injestion

as well as gulps are allowed. Then as long as the agents' preferences are continuous in

the weak topology and satisfy a strong monotonicity property equilibria exist with prices

that are continuous functions of time. Preferences continuous in the weak topology treat

nearby consumptions as close substitutes and equilibrium prices are continuous functions

of time, all the questions we raised above seem to have been answered!. There is, however,

one caveat. A merely continuous function is not, in general, a reasonable representation of

When the felicity function is a function only of c and (, we have the standard time-additive utility

functional.
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consumption and asset prices over time.

A continuous function can be nowhere differentiable - take, for example, a Brownian

motion sample path. In fact, most continuous functions are nowhere differentiable. This

is perhaps not so counter-intuitive when time is not the characteristic of the commodity in

question. When the commodities are indexed by time, our intuition certainly suggests that

prices for consumption should be continuous functions of time. We also think that more

should be true. Prices should not fluctuate over time in a nowhere differentiable fashion.^ In

particular, we think that interest rates should exist in a reasonable economic intertemporal

model. This condition is equivalent to the requirement that prices for consumptions be

absolutely continuous functions of time. This additional requirement is what makes the

results of the commodity differentiation literature unsatisfactory for our purposes.

We begin in Section 2 with a formulation of the consumption set and consumption space.

For the set of feasible consumption patterns, we use the space of positive, increasing, right

continuous functions on [0,1], denoted A'+.^ For given x G A'+ and t £ [0,1], x{t) denotes

the cumulative consumption from time zero to time t under consumption pattern x. In

order to speak of net trades, the space of consumption bundles, or the commodity space, is

the linear span of A'+. Denoted A', this is the space of functions of bounded variation on

[0, 1] that are right-continuous.

The space A' comes equipped with a number of topologies, any of which could conceiv-

ably serve our purposes. In order to investigate their suitability, we construct in Section 3

a "wish list" of properties for a suitable topology. Our wish list comes in two parts. First,

we give useful mathematical properties, keeping in mind that, in the end, we will want to

do optimization, and conduct equilibrium analysis. Second, and more important, we list

desirable economic properties. The discussion here is the heart of this paper in terms of

economics; essentially, we are giving our intuition concerning when different consumption

patterns should be "close".

Once we have our wish list, we can see how well the standard topologies fare. This is

done in Section 4. We quickly look at the topologies induced by the total variation norm

and the Skorohod topology and show that these two fail rather substantially. The weak

topology has many of the properties we desire, and, indeed as we mentioned above, there

is a substantial literature on economies where the commodity space is the space of signed

measures, endowed with this topology; see Mas-Colell [1975] and Jones [1981, 1984]. But,

as we mentioned above, the weak topology has too large a topological dual, and, as we will

see, lacks a certain uniform property that we find appealing.

We turn instead, in Section 5, to a family of norm topologies. For this introduction, we

will use one representative member of this family, given by the norm ||ar|| = /q |a-(i)|d<-|-|a:(l)|

for I G X; the topology induced by this norm is denoted hereafter by T. We will show

^Prices for consumption will in general fluctuate in a nowhere differentiable fashion in a model with

uncertainty due to temporal resolution of uncerttiinty. See, for example, Huang [1985].

We will use weak relations throughout. For example, negative means nonpositive, increasing means

nondecreasing, and so forth. If the relation is strict, we will use strictly negative, strictly increasing, and so

forth.
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that, on A'+, these norm topologies are all topologically equivalent to the weak topology.

However, preferences continuous and uniformly proper, a concept due to MasColell [1986]

discussed in section 2, in any of the proposed topologies exibit a trade-off property which

we find appealing. This property is essantially that agents tolerate delaying or advancing

increasingly larger quantities of consumption for decreasingly shorter periods of time. In

contrast, preferences continuous and uniformly proper in the weak topology fail to exhibit

tolerance for this kind of intertemporal substitution. The norm topologies we introduce

have all the properties we find desirable from the point of view of economic intuition and, in

addition, they are mathematically very well behaved. For example, preferences continuous

in these topologies admit continuous numerical representations.

In Section 7, we turn to the characterization of the topological dual spaces for our

topologies. In particular, the dual to (A', T), denoted, hereafter, as A'*, is the space of

Lipschitz continuous functions. In this section, we also confirm some desirable mathematical

properties of the dual spaces, notably that the duals are vector lattices in the order duals

and the order intervals are weakly compact.

Section 8 gives necessary and sufficient conditions for a consumption pattern to be

optimal for a class of utility functions continuous in our topologies in a consumption-savings

model. An optimal consumption plan in genercd will be periodic even if the felicity function

has an infinite slope at zero. Whether one should consume at a given time depends on the

relation between ones wealth and a weighted average of past consumption. A closed form

solution for a particular utility function is provided in Section 8.3. Finally, all proofs are in

the appendix.

There are three companion papers to this. Mas-Colell and Richard [1991] does the

hard work of establishing existence of equilibrium for economics based on our, and other,

topologies. Hindy and Huang [1990a, 1990b] generalize and extend our analysis to models

where there is uncertainty and temporal resolution of that uncertainty, and they consider

the impact of our topology on some of the standard models in the theory of finance.

2 The Consumption Set and Consumption Space

Consider an economic agent who lives from time zero to time one. This agent can consume

a consumption commodity at any time during his life span. It is natural to require that

the agent consume only positive amounts of the consumption good, and that the cumula-

tive consumption is finite. Thus a life-time consumption pattern can be represented by a

positive increasing real-valued function x : [0,1] —> 5f, with x{t) denoting the cumulative

consumption from time zero to time t. Note that this representation permits consumption

at "rates" if x(<) is absolutely continuous and in discrete lumps if a:{<) is discontinuous. As

X is increasing, it has the following two properties. First, for each t 6 [0, 1], both unilateral

limits x{t~) = \ims-\tx(s) and xif^) = lim,|tx(5) exist and are finite. Second, the only

possible kind of discontinuity is a jump.

To avoid complications, we shall further assume that x is right-continuous: lim^if x{s) —
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x{t), for all t 6 [0,1). That is, if the agent consumes a nontrivial stocl< amount of the

consumption commodity during the time interval (t~ ,1"^), he in fact consumes x{t'^) — x{t~)

at time t.* To sum up, we will represent the agent's life-time consumption pattern by a

positive increasing right-continuous real-valued function x on [0, 1]. The set of such functions

is denoted by X+.

Throughout the paper, Xr for r G [0,1] will denote the indicator function of [r, 1]. That

is, Xr represents a unit gulp of consumption at time r. Also, scalars will be denoted by

a,b,...

Let X denote the linear span of X+, which is the space of right continuous real-valued

functions of bounded variation defined on [0,1]. The cone X+ induces orders > and > on

X in the usual way: xi > 12 if x^ - X2 £ X+, and xi > X2 if xi - 0:2 G -Y+ \ {0}. We will

refer to X as the commodity space and to X+ as the agent's consumption set. Note that A'

is a lattice, in the usual fashion. For x G X, we use x+ to denote the positive (increasing)

part of X. We also use the convention that if x(0) > 0, then x+(0) = x(0). Then we can

define sup(x,2/) = (x - j/)"*" + y, with inf(x,j/) defined similarly.

Our agent will be assumed to have preferences over A'+ that are given mathematically by

a complete and transitive binary relation >: on X+. We will assume throughout that these

preferences are increasing: Vxi,X2 G A'+, xi + x^ >: ^i; that they are strictly increasing in

the direction of xq: Vx G A'+ and Va > 0, x + axo >- x. The reader may be put off by the

special role played by xo here. It would suffice to assume that there is some x G X+ \ {0} in

the direction of which preference is always strictly increasing, although condition (c) below

and our uniform properness assumption, to be discussed shortly, would need to be modified

accordingly. For the analysis of Mas-Colell and Richard [1991], one would wish to use the

social endowment in place of xo-

Moreover, we will assume that there is given a linear topology T on A'; with T"^ denoting

the topology T relativized to X+. Preferences are assumed to be continuous in T"*" and

uniformly proper with respect to T. Continuity of preferences in a fixed topology is fairly

standard and needs no justification. Uniform properness, on the other hand, is not so

standard. This condition, introduced by Mas-Colell [1986], is shown there to be intimately

related to the existence of equilibria for economies with an infinite dimensional commodity

space. The reader should consult Mas-Colell [1986] for further commentary. Here, we will

merely recall his definition:

Definition 1 (Mas Colell) Preferences y on A'+ are said to be uniformly proper with

respect to a linear topology T if there exists a vector x' G A'4. and a T-open neighborhood

V of the origin such that, for every x G X+, v £ V , and scalar a > 0, x - ax' + av '^ x.

In fact, we will assume that preferences are uniformly proper with respect to T for the

particular choice of x* = xo-^

*Here we have used the convention that x{t) = i(l) V< > 1 and i{t) = V/ < 0. We will continue to use

this convention throughout, so that the value of any i € A' for arguments greater than one or less than zero

is always well defined.

*As we mentioned earlier, our use of xo in this special role is purely to ease exposition. Any x' g X+
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3 A Wish List for r

What properties do we want for the topology T? The list of desiderata comes in two parts.

First, we want T to be well behaved mathematically. Ideally, T should be a locally convex,

metric topology, and A' should be complete and separable under this metric. Also, since

we wish to invoke uniform properness and undertake optimization for our agents, we will

wish for T to be a linear topology. In order to apply the equilibrium existence results of

Mas-Colell [1986], one would wish that the lattice operations are continuous with respect

to T, or (even) that {A',A'+,T) forms a Banach lattice. But this, as it will turn out, will be

too much to hope for, when we come upon economic considerations. Happily, Mas-Colell

and Richard [1991] allow us to weaken this desideratum substantially: We will want the

order intervals to be weakly compact and the topological dual to be a vector lattice in the

order dual.^

The second and more substantial part of our wish list concerns the economics of the

situation. Our intuition suggests that certain consumption streams ought to be close, and

we will look for a topology on A' that accomodates this intuition. Consider the following

requirements, phrased in terms of properties of y.

(a) Two patterns of consumption that have almost equal cumulative consumption at every

point in time should be close. Formally, if limn^oo sup(g[o,i] \xn{t) - x{t)\ = 0, then

Xn h y for all n implies x y y, and y y Xn for all n implies y y x.'

In (a), differences in cumulative consumption between i„ and x must be small at every

time t. We wish to weaken this so that shifts in consumption of a fixed size across small

amounts of time are also regarded as insignificant. To do so, we begin by introducing a well

known metric on A^, the Prohorov metric. For x and y in A.)., let

p{x, y) = inf{f > : x(< + e) + e > y{t) > x(t -()-(}.

The idea of this metric is depicted in Figure 1; the e neighborhood of a consumption path

X is any other path y that lives entirely within a "sleeve" around x that is determined by

moving e up and to the left and down and to the right (c in each direction) from x at every

point {t,x{t)). Hence if y is within e of x, then at every time t, the total consumption under

X is within e of the total consumption under y at some time no more than f away from t.

With this we can pose our second requirement:

(b) If p(xn,x) ^ as n —< GO, then Xn y y for all n implies x y y, and y y Xn for all n

implies y y x.^

1*^0 could be used instead.

^For the definition of a vector lattice and the order dual, see Schaefer (1974).

^The astute reader will notice that this rules out the standard model where utility is the integral of

felicity of consumption rates, unless felicity is linear. We will demonstrate this explicitly in section 6. The

reader will also note that (a) could be said more compactly as: T relativized to .\'+, denoted T'^ should be

no stronger than the sup norm topology relativized to A'+.

*Or: T'*' should be no stronger than the weak topology on A'+ generated by the space of continuous

functions on [0, 1].



3 A Wish List for T 6

Our final economic consideration sharpens (b) somewhat. The idea in (b) is that the

shift of a given amount of consumption across a small amount of time should not be of

great consequence in terms of preference. Suppose that we imagine instead the shift of an

increasingly larger amount of consumption over a decreasingly smaller period of time. It

may help to give a concrete example: Consider comparing the consumption patterns anXi/2

and anX(n+i)/2ni where a„ is a strictly positive scalar. As n goes to infinity, the shift in

time grows small (and so, in particular, p(anXi/2i«nX(n+i)/2n) ~^ 0)i but if a„ grows with

n, the amount shifted grows large. We wish to assert that, a priori, it should be possible

for a„ to go to infinity slowly enough so that the difference in terms of preference becomes

negligible uniformly. To be more precise, we know, by the presumed strict monotonicity of

>- in the direction Xo that Xo + anXi/2 ^ a„Xi/2- ^^ wish to assert that the "added utility"

from \o eventually compensates for the shift of On from 1/2 to {n + l)/2n, if a„ goes to

infinity sufficiently slowly. For example, we might insist that, if a„ is o{n) (i.e., an/n -* 0),

then the growth in a„ is slow enough. Or we might require that a„ is o{n^'^), or o(lnn), in

order to come to the desired conclusion that the shift in consumption through time is small

relative to the amount of consumption shifted. But there is some "sufficiently slow" rate of

growth in the amount shifted such that, if the shift in time is small, the change in utility is

small.

To measure what is meant by a "sufficiently slow" rate of growth, we suppose that we

are given a concave, continuous, strictly increasing function /i : [0,oo) ^ [0,oo), such that

/i(0) = and fJ,{n) — oo as n — oo. For examples, think of n(z) = z^^^ for p > 1, or

p{z) = \n{z + 1). By "slow growth" of a sequence of numbers a„ relative to p is meant

a-nlp{n) —* 0, or On = o{p{n)). Note that linear growth is the fastest "slow growth" that

we are willing to contemplate, since p must be concave. In general, we pose the following

condition.

(c) For fixed p as above, if {xn) and {y„} are two sequences of claims with (i) {x„(l)}

and {j/„(l)} are both o{p{n)), and (ii) p{yn^Xn) < l/n, then for all sufficiently large

n, Xn + Xoy Vn-

Note that the condition depends on the fixed p. It becomes stronger the faster p grows,

so it is strongest when p{z) = z. We are imagining that p is given uniformly for all agents

in the economy; it enters as part of the data of the economy under consideration. But we

do not wish to prespecify what rate p is "slow enough." We only suppose that some "slow

enough" rate can be specified in a particular economic application.^

'it has been said to us that this condition is not very natural - how would one discover what is the

appropriate function p for a given population of consumers? We suggest the following. First, for a given

consumption path i, let N,{x) denote the set of x' G A'+ that are within f of i in the Prohorov metric.

We suggest that a natural property for consumer preferences is: For each i € X+, the >;-worst element of

Nt(x) is I "delayed and lowered by f". That is, in terms of figure 1, the worst consumption pattern in the

sleeve drawn around x would be the lower-right boundary of the sleeve. If one admits to this structural

property (which, we observe, will hold for the sort of representation we suggest at the end of section 6, if

some impatience is added to that representation), then we can ask of a given consumer: Take any path
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4 Three Candidate Topologies

Several topologies on the space of functions of bounded variation have been extensively

analyzed by mathematicians. In this section, we ask how each of these do in terms of our

wish list.

For the space of functions of bounded variation, a mathematically natural norm is total

variation: For x £ A', the total variation of x, denoted by TV(a;), is TV(x) = |3-(0)| +

/J |di(<)l- (The L^ norm on consumption rates in the standard models is just the total

variation norm on cumulative consumption.) Note well that if we hope to have A' be a

topological vector lattice with A'+ the positive cone,^° then we will need to have a topology

at least as strong as the total variation norm topology. But while this topology performs

well mathematically, aside from lack of separability, it performs miserably in terms of our

economic wish list. In the first place, (a) is violated: Consider the consumption patterns

Xn given by a;„(<) = k/n for / e {(k - l)/n,k/n] and x given by x(t) = t. According to

(a), we should have x„ converging to x, but (of course) we do not, in the total variation

norm. In the same way (b) is violated. Total variation, when the underlying time space is a

continuum, measures time much too finely to have the sort of economic qualities we desire.

Consider next the Skorohod metric originally introduced on the space of functions which

are right-continuous and have finite left limits (RCLL). This metric is defined as follows:'^

Let A denote the class of strictly increasing, continuous mappings of [0, 1] onto itself. If

A e A, then A(0) = and A(a) = 1. For x,y e X, define S{x,y) to be the infimum of those

strictly positive scalars ( for which there exists in A a A such that supj^rg
ij

|A(<) — t\ < e

and sup^gfQ ji \x{X{t)) - y(t)\ < (. It can be shown that S : X X X —^ R+ is a metric, and

that (A', 5") is a separable metric space.

Moreover, this metric does possess some of the economic qualities that we desire. Since

two consumption patterns that are close in the sup norm are close under the Skorohod

metric, (a) is satisfied. Unhappily, (b) is not satisfied. We note, in this regard, that if

we define a:„ by !„(<) = for / < 1/2, i„(0 = 2n{t - 1/2) for t G [1/2, (n + l)/2n], and

i„(0 = 1 for < > (n + l)/2n, then p(x„,Xi/2) -^ (so (b) should apply), but Xn does

not approach Xi/2 in the Skorohod topology. The Skorohod topology is also not very well

behaved when it comes to exploiting the linear structure of the space of consumption claims.

In particular, it is not a linear topology. Whereas Xt„ — Xt in this topology if <„ — /, their

difference x«„ — Xt does not approach zero. We still continue our search.

One other topology frequently used on A' is the topology of weak convergence denoted by

%,, with =J> denoting convergence in this topology. Let C[0, 1] be the space of continuous

X € A'+ with z{a) = k. Suppose you possess this path. What is the most you are willing to have this path

"delayed and lowered" by, if in compensation we give you an additional xo up front? Now what path x

minimizes this amount, over all paths with z(a) = it? (For preferences with representations as at the end of

section 6, this optimization problem is tractible.) Finally, how does this amount change as k increases? The

answer to this question, of course, gives us /i.

'"which we would want if we were to rely on the existence result of Mas Colell [1986]

"a good reference is Billingsley (1968, p???).
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functions on [0,1]. Then x^ => x if and only if Jq_ f(t)dxa(t) -*
Jq_ f(t)dx(t) for all

/eC[0,l] 12.13

Recall that the weak topology is a linear, Hausdorff, locally convex topology. It is

separable (cf. Holmes [1975, exercise 22c]). It is metrizable on A'+ by precisely the Prohorov

metric (hence has a countable neighborhood base and is sequential), but it is not metrizable

on X.

From the point of view of economic desiderata, the weak topology is well behaved:

Preferences continuous in the weak topology on X+ will obey (a) and (b). Altogether, it is

quite an attractive candidate, except for being non-metrizable on all of A'. It has the further

virtue of having been thoroughly analyzed in the economics literature, e.g., in Mas-Colell

[1975] and Jones [1981, 1984].

Preferences that are continuous and uniformly proper in the weak topology need not be

well behaved in terms of (c), for any fixed function ^, however. This is so even for linear

preferences: Fix some /z, and consider the continuous function f{t) = 2y/l/n{l/t) + 1.

(RecjJl that /i(oo) = oo is assumed.) Define linear preferences by x y y i( j fdx > f fdy.

That is, preferences are given by evaluating consumption plans at the "prices" given by /.

A fortiori, y is continuous and uniformly proper in the weak topology, and it is strictly

increasing because / is strictly positive.

Consider a:„ = \/Ji{n)Xo and ?/„ = \/^4")Xi/n- Note that x^ and yn qualify in terms of

(c). In particular, Xn(a)/fi{n) = l/x//x(n) — 0. But, for every n,

j fd{Xn + Xo) = l + ^J^)< j fdyn = ^fiy)il + 2y/lU^)).

Roughly put, "shadow prices" for consumption at times just after time zero rise very quickly.

As a result, shifting an increasing amount of consumption from time zero to time \/n has

quite an impact, if that amount increases quickly enough. Condition (c) holds that there is

a slow enough increase in the amount shifted so that the shift should become negligible, but

the point of (c) is that the slow-enough-increase must be prespecified, and we have picked

shadow prices (given by /) to rise around zero quickly enough so that the prespecified

slow-enough-increase is still too much.^''

5 A Family of Norm Topologies

We have discussed three possible topological structures on A'. The topology generated by

total variation is too strong along the time dimension. The Skorohod topology does better,

'^Integrals here are defined from 0- to 1, so that /(O)i(O) enters as a first term in the integral.

'"'if we norm C[0, 1] bv the sup norm, then the weak topology is just the weak* topology of A' generated

byC[0,l].

'*For any continuous function /, and for preferences defined from / as in the example, we can find a rate

function ^l that grows slowly enough so that (c) would be satisfied for these preferences and for /i. Thus the

order of quantifiers in (c) is all important - /i must be picked first, and then, what we have shown, there

are "nice" (i.e., linear) preferences continuous and uniformly proper in the weak topology that violate (c)

for this ft.
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but it violates (b) and is not linear. The topology of weak convergence is quite suitable,

except that preferences continuous and uniformly proper in the weak topology may violate

(c). In this section, we will introduce a family of norm topologies which will be free of all

these defects.

To do this, the reader must be introduced to the notion of an Orlicz space, for which

Musielak [1983] is an accessible reference. To make this paper close to self-contained, we give

a very quick introduction here, adequate for, and told in terms of our particular application.

To begin, consider the case where the function n{z) = z^'^, for some p > 1. Imagine

that we defined the following norm on X:

i/p

Mv = I \x{t)\Ut + \x{\)\^
Jo

Since our functions x are all of bounded variation, it is clear that all these integrals exist.

From standard Banach space theory, it is clear that (A',
|| ||p) is a separable normed topo-

logical linear space. It is worth noting, perhaps, that X will not be complete in this norm:

Consider, for example, the sequence of right-continuous, bounded variation functions i„

that are indicator functions of [l/2n, l/(2n - 1)) U [l/(2n - 2), l/{2n - 3)) U ... U [1/2, 1].

These are Cauchy and converge to the obvious measurable function, but what they converge

to has unbounded variation and is not right-continuous. A'+, however, is complete.

This norm has the right "flavor" for (c) as well, for the case /i(z) = z^/p. Roughly put,

II

•

lip
trades off differences in consumption paths in time and in amounts, where differences

in amounts are scaled by being raised to the power p. Hence if the difference in two

consumption paths is 0(1 /n) in the time dimension and o{'n}l^) in the space dimension,

then the difference is small.*^

What, then, do we do if /i(z) is not of the form 2^/p? For /x define rj = /x"^ and the unit

circle in X, denoted C,,, as

C„ = {xe X : C v{Ht)\)dt + 7?(|x(l)|) = 1}.
Jo

The convexity of r/ ensures that this unit circle is appropriately shaped to be a "gauge" for

measuring all other vectors x: Define, for x other than i = 0, ||x||^ to be the unique strictly

positive scalar a that satisfies xja G C,,. It takes a proof, but because of the continuity of r/,

||a:||,, is well defined. Moreover, for /x(z) = z^l^, this definition is equivalent to the standard

definition of the norm. With this definition:

Proposition 1 {X,\\ [[,,) is a separable normed topological linear space. With the order

operations defined in Section 2, order intervals are weakly compact in each of these topolo-

gies.

We omit the proof for the first assertion of this proposition as it is a simple application

of the theory of Orlicz spaces; see Musielak [1983, theorem 1.5]. In the appendix, we provide

a proof of the second assertion.

''See Proposition 4 for an exact statement.
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Note that a countable dense set of (A',
||

•

||^)
is the set of piecewise linear functions that

change their values at rational time points and have rational right-hand derivatives. These

functions are absolutely continuous. Thus the space of absolutely continuous functions is

dense in (AM| ||r,)
- any consumption pattern can be approximated arbitrarily closely in

the norm ||
•

||,,
by consumption at rates.

Fixing n and the corresponding 77, the topology induced by
|| ||^ is denoted by 7^, and

the Tjj topology relativized to A'+ is denoted by T^+. For the special case where n{z) = z^l^,

we use notation such as Tp.

The following basic results are established in the appendix.

Proposition 2 For any /i and corresponding rj, T\ is no stronger than Tj,, which in turn

is weaker than both the Skorohod and total variation topologies.

The first part of this proposition is fairly intuitive. Since 7; is convex, it tends to accentuate,

more than linearly, large differences in the dimension of space. Note that, in our norm

topologies, the lattice operations are most definitely not continuous and (A', 7^) is not a

topological vector lattice. For example, Xi/2-X(n+i)/2n ~ 0- but the corresponding positive

parts (or negative parts, or absolute values) do not converge.

We will be looking for preferences on A'+ that are given by a binary relation y that is

complete, transitive, continuous in the T^ topology, and uniformly proper with respect to

7^, for some prespecified tf. We will continue to assume that y is increasing as before. The

following results establish that we are looking for the "right" thing given our desiderata.

Proposition 3 Preferences >: that are continuous with respect to T^ satisfy (a) and (h).

Moreover, Xj^ is separable under T^ , and hence every continuous (complete and transitive)

preference relation y on A'+ admits a continuous numerical representation.

Satisfaction of (b) follows as a simple corollary to Proposition 5, which in turn immedi-

ately implies the satisfaction of (a). The separability of A'+ follows standard lines and the

proof is omitted. The existence of a numerical representation is standard given continuity

and separability - see, for example, Fishburn [1970].

Proposition 4 Fix fi and the corresponding rj. Suppose that y is T^ continuous, increas-

ing as above, and 7^ uniformly proper for the specific choice x' = \o. Then y satisfies

(c).

In the appendix, we prove one technical fact: If x„ and ?/„ are as in (c), then y^- x^ ^
in Tr,. Thus for any neighborhood V of the origin, j/„ - Xn is eventually inside V. Apply

the definition of uniform properness to xo + a:„, to conclude that, eventually, Xo + a;„ - Xo +

j/„ — x„ = y„ must not stand in the relation y to \o -|- Xn- That does it.

This leaves open one issue: How do the topologies T^ compare with the weak topology

on X+? It is clear from the example of Section 4 and Proposition 4 that uniform properness

with respect to 7^ is stronger than uniform properness with respect to the weak topology.

But:
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1

Proposition 5 For any ft and rj, T^ is topologically equivalent to the weak topology on

X+.

Hence we reaffirm (the obvious): Uniform properness is not just a topological property

on X^.

C On the Standard Models and the 7^ Topologies

The standard models of preferences for consumption through time assume that preferences

are defined over consumption in rates and are given by a numerical representation of either

the time-additive form

U{x)= [ u{x'{t),t)dt,
Jo

or the non-time-additive form

U(x)= f\ix'{t),y{t)j)dt, (1)

where x' denotes the first derivative of cumulative consumption x, and y is some functional

of x'. The time-additive form needs no further explanation. The non-time-additive form

includes, for example, a generalization of Ryder and Heal [1973] by Magill [1981], who used

yit) = yit)+ I 9{t,s)x'{s)ds,
Jo

for some real-valued functions y and 6, and a special case of Magill [1981], the so-called

habit-formation model, recently analyzed by Constantinides [1990] and Sundaresan [1989]

when 0{t,s) = e~^*'~'' for all 5 < < and zero elsewhere.

Preferences so given are not defined for consumption other than at rates (where x is

not absolutely continuous), but we might consider the following procedure for extending

preferences to general x: Find a sequence of absolutely continuous Xn that approximate x,

and then define U{x) = lim„_oo U{Xn), hoping that the limit is well defined and independent

of the approximating sequence a:„. We will want preferences to be T^ continuous, so the

sense of approximation had better be no weaker than T^ convergence - and we have already

remarked that it is possible to approximate arbitrarily closely, in terms of T^ , any x G A'+

by absolutely continuous x„. Hence this program does have some hope of working. It will

only work, though, in very special cases:

Proposition 6 Suppose that preferences on A'+ are represented by the utility function

f/(i)= f\{x'{t),yit),t)dt (2)
Jo

for some (jointly) continuous function u, for all absolutely continuous consumption paths

X, where

y{t) = yit)+ /
0ii,s)dx{t-s) (3)

Jt-ki{t)
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for some continuous function y, and nontrivial continuous functions ki, k2, and 0. If these

preferences are continuous in T^ , relativized to absolutely continuous consumption paths

(for any t]), then u must have the form u{z,y,t) = a(y,t)z + (i(y,t), where a and /? are

jointly continuous functions of y and t.

The point of this is that when the marginal felicity at every point in time depends

explicitly on the consumption rate at that time (a case of great interest in the literature),

the utility function is not continuous. In the proof of the above proposition, we constructed

a sequence of consumption patterns a;„ that converge in 7^ to a: while t/(i„) /* U{x) if

u{x',y,t) is not linear in x'. Indeed, ar„ converges to x in the sup norm topology, so any

treatment of preferences for consumption through time that asked for property (a) would not

admit the standard models in the literature. The reason should be clear: Unless marginal

felicity at any time is independent of the consumption rate at that time, consuming steadily

is not well approximated in the standard models by consumption at quickly varying rates.

Yet the cumulative consumption paths of such patterns, and thus the corresponding y, can

be made close in the sup norm.

What sort of model might then be used to replace the standard model? Following Jones

[1984, p. 525], we make the following proposal: The problem with the standard models is

that the marginal felicity is too sensitive to current consumption. A more apt model would

be one where the felicity at time t is derived only from a functional of the recent past

consumption and possibly the nearby future consumption; and the current consumption

contributes to the current felicity only through this functional.

Proposition 7 Let u{z,t) be jointly continuous and continuosly differentiable in its first

argument. Then

W(x)= / u{y{t),t)dt
Jo

for all X e X+, is continuous in T^ , where y(t) is defined in (3) for some functions ki

and k^ such that either k\ is a constant or ki is differentiable with derivative bounded away

from zero, and some differentiable function 9, with bounded derivative.

The form given in the above proposition does indicate the sort of "intertemporal substi-

tution of consumption at near-by times" that motivated this study. One sufficient condition

for this form to represent uniform proper preferences is for y{t) to be bounded away from

zero. Other conditions, which we leave for interested readers, can also be generated,.

7 Duality

For the duration of this section, we assume that some pair /x and 77 as in Section 5 has been

fixed.

Mas-Colell and Richard [1991] tells us that it will be possible to establish existence

of equilibrium in economies where preferences are increasing and uniformly proper in our
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topology if we can establish that the topological dual forms a vector lattice in the order

dual. Moreover, equilibrium prices for these equilibria will be drawn from the order dual.

Hence our aim in this section is to characterize the topological dual space of (A", 7^), which

we denote by A'^, and to verify that A'^ does form a vector lattice in the order dual.

More important, we will show that A'* is composed of absolutely continuous functions of

time. This marks the topological distinction between 7^, and the weak topology. Although

topologically identical on X+, on the whole of A', %, is weaker than the weak topology.

As a consequence, X^ is a proper subset of the space of continuous functions and does not

contain any function that is not absolutely continuous.

Our analysis here will be simple applications of the duality results developed in Musielak

[1983, section 13] for Orlicz spaces. However, the reader should note that A' is a proper

subspace of an Orlicz space, and thus A'^ is a much smaller space than the topological dual

of an Orlicz space.

Before proceeding, a definition is in order.

Definition 2 t] is an N -function if

lim = and lim = oo.
ziO Z ztoo Z

Putting T)*(s) = supfrs — r](r) : r > 0], tj* is the conjugate function oft].

Theorem 1 Let t] be an N function and <^ : A" —» 3? a linear functional. Then <j> E. X^ if

and only if there exists an absolutely continuous function f on [0, 1] so that

(l)(x) = [ f{t)dx{t) Vi 6 A',

JO-

with f £ L^ ,
where

Z"* = {y: f' V'illvimdt + v'il\y{t)\) -- as j ^ 0+},
Jo

and T]' is the conjugate ofr]. In addition, in the above representation, 4> is a positive linear

functional if and only f is positive.

Thus, if T/ is an TV function. A"* can be identified with absolutely continuous functions

whose derivatives y satisfy \\y\\r,' < oo. Since Lipschitz continuous functions have bounded

derivatives. A'* contains all the Lipschitz continuous functions. Note that examples of N
functions include ri(z) = z^ with p > 1. In these cases. A'* is composed of absolutely

continuous functions whose derivatives lie in L' with - + - = 1.

Now what if r] is asymptotically linear and thus is not an TV function? This includes of

course the linear case r]{z) = \z\. Arguments identical to those used to prove Theorem 1

show immediately that in the linear case AT* is the space of absolutely continuous function

with bounded derivatives - exactly the space of Lipschitz continuous functions. For t? that
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is asymptotically linear, one quickly shows that 7^ is equivalent to T\. Thus A'^ is also

the space of Lipschitz continuous function. The following theorem, whose proof is omitted,

records this fact.

Theorem 2 Let 7/ be asymptotically linear in that

lim ^ = a > 0,
z—>oo z

for some scalar a. Then 4> G A'^ if and only if

(f>{x) = f f{t)dx{t) X £X
Jo-

for some Lipschitz continuous function f . In addition, (j) is positive if and only if f is

positive.

Given that any 77 is convex with 77(0) = and limj^oo vi^) = 00, if 7? is not an N function,

it must be asymptotically linear. Thus Theorems 1 and 2 have completely characterized X^

for all 77. Note that if equilibrium prices for consumption are representated by an absolutely

continuous function of time, f{t), the interest rate exists for almost all t and is equal to

-f'{t)/f(t) at time t.

The following proposition shows that X* is a lattice in the order dual.

Proposition 8 For any rj, the space X^ is a lattice in the order dual.

8 Optimization

In this section we formulate the optimal consumption problem for an agent whose prefer-

ences are continuous in our topologies. This agent also has a preference for final wealth.

Formally, the agent's preferences on A'+ x S?+ are represented by the functional

f\iy{t),t)dt + V{w{l+)),
Jo

where

y{t) = 2/(0-)e-^' + /' 6-^('-')dx(0 (4)
Jo-

with y{0~) > and > 0,and where w{l'^) denotes the agent's wealth after consumption

at time 1. The function u satisfies the conditions of Proposition 7 and is strictly concave

in its first argument, and V continuous, strictly concave, and increasing. Note that y is

an exponentially weighted average of past consumption and is a special case of the family

of general y's defined in (3). Higher values of /? imply higher emphasis on the recent past

consumption and less emphasis on the distant past consumption.

The single consumption good is the numeraire and the agent starts at time with wealth

w{0). At any time t, he allocates his wealth, w(t), between consumption and investment in



8 Optimization 15

a rislcless asset with instantaneous rate of return r{t), a continuous function of time. For

any consumption pattern x, Ti,T2,. . . denote the times of jumps of i.

We investigate the optimal consumption decision of the agent:

xex
sup / u{y(t),t)dt + V(w(l'^))
6A'+ ^0

dw{t) - w{t)r{t)dt - dx(t) fort G (t,, r,+i) for all t

,

s.t. w{t^) = i£;(r,) - Ai(r,) forallr,-, (5)

w{t) > 0, for t G [0,1],

dy{t) = f3[dx(t) - y{t)dt] hrt G (7-,,r,+i) for alH

,

y(n) = y(T^ ) + /3Ax(r,) forallr,.

Note that w(i) is a left continuous function and (5) is just the intertemporal budget con-

straint. A consumption pattern x G A'+ that satisfies the budget constraint (5) with the

initial wealth w{0) will simply called budget feasibie.

It is clear that at any time t, given u;(i) and y(t~), the subsequent optimal consumption

policy is independent of past decisions. Thus, {w{t),y{t~)) are, using the terminology of

dynamic programming, the "state variables" for the above dynamic choice problem. We
thus define the "indirect utility function" or the "value function" J{w(t),y(t~ ),t) as the

supremand of the agent's optimization program starting from t given {w{t),y{t~)) and the

dynamics of w and y described in (5) and (6).

8.1 Heuristic Derivation of Necessary Conditions

We now use heuristic arguments to derive a set of necessary conditions for a consumption

pattern x to be optimal.^^ These conditions will imply that an optimal consumption pattern

can have gulps only at < = 0. After t = 0, consumption occurs only when pjy — Jw
The reader will see that the following derivations deviate somewhat from the standard

approach in dynamic programming. This occurs because consumption other than at rates

is feasible, and, more important, the standard Bellman's equation will be linear in the

"control" and hence the standard arguments are unapplicable.

Suppose x' is an optimal consumption pattern, and let the corresponding state variables

be (w'{t), y'{t~ )) for t G [0, 1]. Assume that the value function J is finite and differentiable

in w and y. Let Juj{w,y,t) and Jy{w,y,t) denote the partial derivatives of J with respect to

w and y, respectively. Along the optimal solution, J should satisfy the following conditions:

(a) Bellman Optimality Principle : The Bellman optimality principle'^ implies that for

all times < < < r < 1

J{w'{t),y'{t-),t) = j\iy'{s),s)ds + Jiw-iT),y'{T-),T). (7)

'*These heuristic arguments can be made formal. The reader is refered to Blaquiere [1985] for details.

'^See, for example, Fleming and Rishel [1975, p.??].
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Form this, it is immediate that J{w'{t),y'(t~ ),t) is a continuous function of time even at

times of the jumps of x'. This is so as the jumps of x* contribute to the agent's satisfaction

only through their contribution to y' and at the moment of a jump the contribution of the

jump to the integral of felicities is zero.

For brevity of notation, we will use J(t) to denote J(w'{t),y'(t~),t) and similarly use

Jw{t) and Jy{t) to denote the partial derivatives oi J{t) with respect to w and y, respectively.

(b) Continuous Marginal Value of w and y : Along the optimal policy, given the interest

rates, the marginal value of € units of wealth at time < 6 [0, 1) must be equal to the marginal
r' + Ai . ,

value of eeJ>
'^'^' " units of wealth at time t + At for small A< > or else some changes

in x' will be called for to change w' and y'. That is, we must have

JAt)^ = 7^(< + AOfer^'^(^)'^\ (8)

Letting At [ 0, we get Ju,(t) = Ju,(<"'"). Thus Jw{t) must be right-continuous on [0,1).

Along the same line of arguments, we show that Jwit) must be left-continuous on (0, 1] and

thus Jw{t) is continuous on [0, 1].

Similarly, by the Bellman optimality principle, a marginal value of ( increase in y(t~)

at t must be equal to its marginal contribution to the felicity function on {t,t -f At] and to

the value function at time / -|- At. That is,^*

Jy(t)e=r ' Uy{y'is),s)ee-f^^'-'1ds + Jy{t + At)€e-^^'. (9)

Letting At — 0, we conclude that Jy{t) must be right-continuous on [0,1). The left-

continuity o{ Jy{t) is established by noting that

Jy{t-At)e= f Uy{y'{s),s)ee-^^'-'+^'Us + Jy{t)€e-^^^ (10)

and letting At —
» 0.

(c) Dynamics of Marginal Values : By the hypothesis that r(t) is continuous in t, (8)

implies, as At —<• 0, that _
dJJt) -

Next note that if y'(t) is continuous on some time interval {t — At, t -\- A/), then, as At —
• 0,

and

^^ ' uyiy (t),t).

Hence, in a time interval over which x' has no "gulps", (9) implies, as At — 0, that

^dAll = -Uy(y'{t),t) + 0y{t).

'We use Uy(y,t) to denote the partial derivative of « with respect to y.
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Also note that at < = 1, Jw(a) = V'{w(a)) and Jy(a) = 0.

(d) Appropriate Times for "Gulps" : Applying Bellman's optimality principle in (7) on

an interval (r,, t-,+i ) when our solution prescribes consumption at rates, we get the following

Bellman's equation:

m^ix{u{y'{t),t) + lw[r{t)w'{t)-x'{t)] + lyf3[x'{t)-y'{t)] + Jt} = for alK G (r.,r,+i)

.

(11)

Note that the Bellman equation is linear in the consumption rate x'{t). Hence, the con-

sumption rate that satisfies (11) is given by:

x'{t) = when l^{t) - f3ly{t) > ,

i'(0 6[0,oo] when J^,(t) - 0Jy{t) = ,

x'it) = oo when 7^{t) - 0Jy[i) < .

The Bellman equation, therefore, suggests that a "gulp" of consumption might be prescribed

at any moment r when JwiT) - PJyi''') < 0. Suppose that we prescribe a "gulp" at r when

Jw(t) - f3Jy(T) < 0. By continuity, Jw{t) - PJyii) will be negative on {t - (,t + e)

for some e > 0. Hence our candidate policy should prescribe a jump for all points t G

(r — e,r + e). Since this cannot happen as there can only be a countable number of jumps,

our policy might prescribe a "gulp" only at a moment r, on this particular interval, such

that 7u;(r) - l3Jy(T) = 0.

(e) No "Gulps" after t = : Now suppose that our policy calls for a "gulp" of size A
at time r > 0. Note that by right continuity of x', we cannot have two successive jumps

at any one moment. This, together with the continuity of the marginal values of w and y,

implies that there are two strictly positive numbers fi,f2 such that:

JUi)-0Jy{t)>O on (r-ei,r),

7w{t)-0yit) = O when t = T,

Jw{t)-fiJyit)>0 on (r,r + €2).

Assuming that J\v and Jy are differentiable functions of time, this implies that Jw{t) —

PJy{t) is decreasing just to the left of r and increasing just to the right of r. This condition,

however, cannot hold for any size of jump A. i,From the dynamics of Jw and Jy, we get

that:

|[7.(r+) - /?7,(r+ )]
- j^yUr) - PJyir)] = (3[uy{y'{T) + /3A,r) - «,(j/-(r),r)] . (12)

But by strict concavity of the felicity function in y, this last quantity is negative. Hence, if

di[Jw — /3</y] were negative just before the jump, it would be strictly negative just after the

jump, thus violating the condition that Jw - 0Jy be increasing just after a "gulp". Note

that our analysis is not valid for < = and / = 1, thus x' does not have any gulps, except

possibly at < = and i = I. A gulp at t = 1, however, is clearly sub-optimal since the agent

cannot derive any consumption satisfaction from it and the final wealth is aJso reduced.
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All the above leads us to conclude that x' should take the form of a possible "gulp" at

t = 0, followed by periods of consumption mixed with periods of no consumption. If we

should prescribe a jump Ai*{0) at < = 0, then the size of the jump should maximize the

value function immediately after the jump. That is, the jump size Aa;'(0) should solve the

following problem

max J(u;(0) - f, j/(0~) + /3e,0+).

iFrom the first order condition, we then know that J^i^"^) = fiJyi^'^)- Moreover, after the

initial possible jump at < = 0, the following condition should be satisfied for all t G (0, 1];

at times of no consumption:

u{y'{t),t) + lwr{t)w\t) -ly^y'{t) + lt = Q, (13)

together with

A(0-7^(0<0, (14)

and at the times when consumption occurs at rates, we must have

[7^(0 - /37,(0]x*'(0 = 0. (15)

More generally, consumption only occurs when Jw{t) - PJy(t). During these times the

strategy of no consumption is sub-optimal and hence

uiy'(t),t) + Jwr{t)w'(t) - lydy'it) + 7, < 0. (16)

The necessary conditions on J can be expressed more compactly by stating that the

value function should at all times satisfy the following differential inequality:

max|u(j/,0 + Jyjwr{t) - Jy(3y + Jt, (iJy - J^,] = 0. (17)

Besides this differential inequality, it is clear that J must also satisfy two boundary condi-

tions:

J{w,y,l) =V(w) and , ,

J(0,j/,0 =f,'u{y€-0i'-'),s)ds-\-V{O). ^ '

The first of these boundary conditions follows because at i = 1 no consumption is optimal.

The second is a consequence of the positive wealth constraint - when the agent's wealth

reaches zero, he must henceforth refrain from consumption.

We will show in the following section that the differential inequality plus the two bound-

ary conditions are almost sufficient for optimality. This deserves some commentary for

readers familiar with dynamic programming. We observe that if only consumption rates

are allowed, standard results in dynamic programming show that the Bellman equation,

together with the appropriate boundary conditions, are not only necessary but also suffi-

cient. This occurs because the optimal consumption rates would be functions of J. Readers

unfamiliar with dynamic programming are referred to Fleming and Rishel (1975, pp.??),

for example, for a readable account. In our case, however, consumption does not have to be
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at rates. Hence optimal consumption may not be readily determined once we know J . It

turns out that the sufficient conditions for optimality include additional conditions on the

optimal policy beyond those imposed on J . These additional conditions are obtained from

the preceeding heuristic analysis.

8.2 Sufficiency

We provide two results. First, we show that the solution to (17), with the boundary

conditions (18), is an upper bound on the value function J . Second, we give a verification

theorem in which we show that if a consumption pattern x* satisfies certain conditions,

then the life-time utility derived from x' is given by the solution of (17) and (18). Hence J

coincides with the upper bound on utility and x' is optimal.

Proposition 9 Assume that there exists a differentiable function J'{w,y,t):^^ X J?+ X

[0, 1]
—' Si U {-oo}, concave in w and y, whose partial derivatives are continuous functions

of time, that solves (17) with the boundary conditions (18). Then J(ti;(0), j/(0~),0) <

J-(ti;(0),j/(0-),0).

As we mentioned before, the differential inequality and the boundary conditions are

almost sufficient in that they produce a function that bounds the value function J from

above. The problem is, of course, that a budget feasible consumption pattern that attains

J' may not exist. Note that this is not a problem in the standard models as consumption

is at rates and the consumption pattern that produces J* can be calculated as a function of

J', and thus J' = J . The following verification theorem gives a set of conditions sufficient

for a consumption pattern x' to attain J'. In particular, they stipulate that gulps can

occur only at < = and afterwards, consumption occurs only at times where J^ = ^Jy-

Theorem 3 Let J' satisfy the conditions of Proposition 9. Suppose further that there exists

a budget feasible consumption pattern x' , which is continuous on (0, 1], with a possible jump

Ai'(O), and whose associated state variables are w'(t),y'{t~), such that for all t £ (0,1]:

u{y\t) + j:w'r{t)-j;Py' + j; = and (19)

f^\jl{w\y\t) - (ij;{w\y\t)]dx'{t) = for all e>0, (20)

and

J-{wiO),y(0-),0) = J'{w(0) - Ax'{0),yiO-) + /?Ax'(0),0). (21)

Then J{w{0),y{0~),0) = J'{w{0),y{0~),Q) and x' is the optimal consumption pattern.

8.3 Example

To demonstrate how to use the verification theorem in constructing an optimal consumption

policy, we provide a closed form solution for the optimal consumption problem in an infinite
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horizon economy with a constant interest rate r. The agent seeks to maximize

I
°° 1

-e-''y{trdt
a

given u;(0) and j/(0~) and where y{t) is given by equation (4). We take a < 1 and S > 0.

This departure from our finite horizon setup in earlier sections is for tractability of

calculations. Our topologies generalize in a standard way to this infinite horizon economy

by replacing the Lebesgue measure on [0,oo) with a finite measure, m, that is absolutely

continuous with respect to the Lebesgue measure. For example, we can take Tn{A) =

r. e~^^dt for all Lebesgue measureable sets A. We leave the details to the reader but one

can easily show that the agent's preferences for consumption on [0, oo) specified above satisfy

the notion of continuity that we advocate.

The verification theorem for this case, which is simpler than in the case of finite horizon

programs, needs a minor modification. Simplicity follows from the observation that the

value function is separable in time and in {w,y). With a slight abuse of notation, the

value function should have the form e~^^J{w,y) at time t for some function J. Then the

differential inequality becomes

maxi:\^ + J^wT-JyPy-6J,l3Jy-jA = 0, (22)
I. Q J

which is independent off. The second boundary condition in (18) simplifies to

J(0,t/) = r e-'^l-iye-l'^'-'^r ds = f (23)
Jo a a{aii -\- c)

The first boundary condition in (18) needs modification as there is no final date and, hence,

the agent does not have a preference for final wealth. We again leave the details to the

reader, and simply assert that this boundary condition is replaced by

lime-*'j(«;(O,J/(r)) = 0, (24)
t\oo

for all budget-feasible policies. Readers famiUar with infinite horizon programs would rec-

ognize this as a "transversality condition".

We wiU show that the key feature of the solution is a critical ratio /:* > of wealth w

to average past consumption y. If the agent starts at time zero with Jj'^J. strictly less than

A:', then the optimal behavior is to invest all the wealth in the riskless asset and wait while

w increases and y declines till the ratio - reaches k' . From then on, the agent consumes

at the rate which keeps the ratio — equal to k' forever. If, on the other hand, the agent

starts with -'t^ strictly greater than fc', then the optimal behavior is to take a "gulp" of

consumption, reducing id and increasing j/, to bring ^ immediately to k' . Following this

gulp, the optimal consumption occurs at the rate that keeps the ratio ^ equal to k' forever.

To ensure existence of a solution, we make the following assumption. This assumption

guarantees, among other things, that the value function will be concave.
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Assumption 1 The parameters of the problem satisfy

6 + 00 > 0, 6 > ar and (1 - a)P > 6 - r .

Now we preceed as follows. First we investigate all the A:-ratio consumption policies:

the policy of consumption that keeps ^ equal to A; > forever, after an initial "gulp" if

"Y^ > it, or after a period of no consumption if rjo^ < k. The agent's life-time utility from

such a policy, denoted J''{w,y), satisfies many of the sufficient conditions for optimahty:

Proposition 10 J''{w,y) is given by:

j''{w,y)= ^
ky

'^^ A if ^ < Jt

if ^ > k
y
—

where A = {S - a/3(^))~' - (<^ + a/3)~^ and B = {S - a0{^))~^- Furthermore, j'' is

continuous, concave, has continuous first derivatives and satisfies

yl + rwJt-PyJ^-SJ'' = o if ^<k,

Jt-PJ' = if ^>k,
(25)

together with the boundary condition (23) and the transversality condition (24)-

However, there is exactly one k so that j'' satisfies the diflferential inequality of (22).

This fc-ratio policy is then the optimal policy:

^ + (!-«)
Proposition 11 Let

— ar

and note that k' > by Assumption 1.
j'''

satisfies the differential inequality (22). It then

follows that the k' -ratio policy is the optimal solution for the agent's problem.

The reader can easily verify that k* is the unique ratio with the property that the

associated J^' is twice continuously differentiable over the whole domain {w,y).

We summarize the solution in the following proposition.

Proposition 12 The optimal solution is to consume at rate c(t) - -fi^wit), after an

initial gulp of size A = ^^^^^^ [{S - ar)«;(0) + (^ + (1 - a))j/(0-)] , if ^^ > k'
,
or

1

after a period of no consumption of length t' = log 3q<,
' "^^^

, if "^o^ < '^'*-

It is interesting to compare this consumption policy to that adopted by a consumer who

starts with the same initial wealth w{0) and the same past consumption experience j/(0~)

who seeks to maximize:

Jo a
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where c{t) is the consumption rate at t and we assume that 6 > ar and 1 - a > 0. It

can be easily verified that his optimal consumption rate is a linear function of his wealth:

c{t)='-f^w{t).

The propensity to consume is the same for agents with time-additive and non-time-

additive preferences. However, the quantity of consumption and the trajectory of wealth

are different. Consider the case when 6 = r. An agent with time-additive preferences will

consume c{t) = rw{t), and hence his wealth at any time will be a constant equal to his initial

wealth; see figure 3. A consumer with non-time additive preferences, however, will either

start by consuming a "gulp" of size
*"*"'

;^0
—K if his wealth is too high relative to J/(0~),

and then keep the level of his wealth constant forever, or he will wait for t' = ^^r^ log yZl
,

if his wealth is too low relative to j/(0~), and then start consuming the interest on his wealth

forever.

The parameter (3, which controls the rate of "decay" of previous consumption, deter-

mines the size of the initial "gulp" or the length of the initial waiting period, and hence the

level of the subsequent constant wealth. The higher the value of /3, the smaller the size of

the initial gulp, if the solution calls for a "gulp", and the shorter the initial waiting period,

in case the solution entails a waiting period. This is an intuitive result since a higher /?

implies that past consumption experience has "smaller" effect on current, and hence total,

satisfaction. Therefore, when the optimal solution entails an initial waiting period to ac-

cumulate wealth, the effect of j/(0~) decays faster with higher (3 leading to shorter waiting

period before the ratio ^ reaches its critical value. Similarly, when the optimal solution

calls for an initial "gulp", higher /? means that the effect of the "gulp" will decay faster

and hence the "gulp" contributes less to future satisfaction. Therefore, agents with higher

P choose smaller initial "gulps".
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Appendix

A Proofs

Fix a continuous, strictly increasing and convex function rj from [0,oo) to [0,oo) with

77(0) = and 77(00) = 00. Define /,,(x,a), for x £ X and a £ (0,oo), by

Jvix,a)= f\i\x{t)\/a)dt + r,{\xil)\/a).
Jo

Since functions x are of bounded variation, the integral is certainly well defined for every x
and a.

We record a lemma first.

Lemma A A sequence {x„} in X converges to zero in
\\

•
\\r, if and only if, for every scalar

a > 0, lim„ Ir,{xn,a) = 0.

Proof. See Musielak [1983, theorem 1.6]. I

Proof of Proposition 1. We want to show that order intervals are weakly compact. In

fact, we can show sequential compactness in the norm topology itself. The proof follows

standard lines, and so we will provide only a sketch.

For X* > X, let / be the order interval [a;.,i']. We will assume that i. = 0, this is

without loss of generality because all of our topologies are linear. Let Q be any countable
dense set of points in [0, 1) that excludes all points of discontinuity of x*.

Now X E I if and only if a: is nondecreasing and x' — x \s nondecreasing. Let {in} be any
sequence out of/. By the usual diagonalization procedure, we can produce a function y such

that, along a subsequence (which we will hereafter not bother to mention), lim„ Xn{t) = y{t)

at all arguments t £ Q. Since each x„ is nondecreasing, so is y. Define a function x by
x{t) = limsjtj/(<) for t £ [0,1), where the limit is taken over sequences converging to t

from (strictly) above along the set Q and x{l) = limni„(l). Since y is nondecreasing,

so is X. Moreover, y is right continuous (and has left limits) by construction. Clearly

lim„a:n(0 = a;(<) at all points t that are not points of discontinuity of i - that is, for

almost every t. And lim„i„(l) = i(l) by construction. Since all the x„ and x are bounded
above by x'(l), we can apply dominated convergence and Lemma A to conclude that i„
approaches x in 7^.

We are done once we show that x* > x > 0. We have already remarked that x is

nondecreasing (i.e., x > 0). So let us carefully sketch the other half: If i'(0 - x{t) <
x'{t') — x{t') for t > t' , then right continuity of both functions implies that we can find

values q > q' from Q such that x'{q) — x{q) < x'{q') - x{q'). (The case of < = 1 is left

to the reader.) By increasing q' slightly to be some q" < q \i need be (if q' is a point of

discontinuity of x, this gives x*{q) — y{q) < x'{q") - y{q") for q > 9". Hence for sufficiently

large n, x'{q) - Xn{q) < x'{<f') - Xniq"). Which is a contradiction. I

Proof of Proposition 2. We note first that for any rj, %, is topologically equivalent to

Ta,, for any scalar a. Hence, without loss of generality, we can assume that 7^(1) = 1. Note

that this implies, by the convexity of 7/, that Ti(r) > r for all r > 1. Now it is evident that

II \\v ^ II 111' fo'' l^'i Hence, if for fixed 77 (with q{l) = 1) we let 77i(r) = max{|r|,7/(r)}

(which is convex as it is the maximum of two convex functions), we have that T is no
stronger than 7^, , for any 77. The proof of the first part of Proposition 2 is thus shown if we
show that, for any 7/, 7^ is equivalent to T^,. Of course, Ti, can be no stronger, so we only
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need to show that if x„ — T^, then !„ — 7^, . For this use Lemma A: If ar„ —> 7^,

then for every a > 0, /,,(a;„,a) — 0. Suppose that for some fixed a, /,„(in,a) does not go

to zero - look along some subsequence where the limit exceeds 4/M for some integer M.
Now ljj[Xn,(i) can be written as the sum of three terms:

J
7?(l„(0/a)l{|x„(t)|/a>l}<^< +

J
ViXn{t)/a)l{\^^(t)\/a<\}dt + 77(i„(l)/a).

Since each term is positive, each must go to zero in n. Pick n large enough so that the

first term is less than 1/M. If the second is to go to zero, since tj is strictly positive except

at the argument zero, we can find n large enough so that the Lesbesgue measure of the

set {t G [0,1] : 1 > Xn{t)/a > 1/A/} < 1/M. And for the third term to go to zero, it is

necessary that, for n large enough, x„(l)/a < 1/M. Picking n large enough so that all this

happen at once, when we expand /^, (x„,a) in analogous fashion, we will find that (i) the

first term in the sum is less than 1/A/, since it is identical with the first term above, (ii)

the third term is less than 1/M, directly from our selection of n, and (iii) the second term

is less than 2/A/, when we overestimate T]i(Xnit)/a) in the second term with the function

that is 1/A/ if the argument is less than 1/A/ and 1 is the argument is between 1/A/ and 1.

Since this is so for all n above some level, we contradict the supposition.

Next we must show that, for any ry, T,, is no stronger than the total variatio n and

Skorohod topologies. Since total variation is a (linear) norm topology, it suffices to show
that if i„ —» in total variation, then i„ — %,. Apply Lemma A - if Xn — in total

variation, then the same is true for Xn/a for any scalar a > 0. The total variation norm
is larger than the sup norm, so the same must be true in the sup norm. And dominated

convergence gives the result. As for the Skorohod topology, Billingsley [1968, page 123,

problem 2] states the result for the L^ norm topology, which immediately gives the result

for T. For general 77, note that if Xn -^ x in the Skorohod topology, then for n sufficiently

large, sup, |x„(/)| < sup( \x{t)\ + 1/n. Fixing any a, then, and evaluating Ir,{xn - x,a), we

know that the arguments of t) will be bounded above by K/a = 2sup( |x(/)|/a + 2/(an).

Convergence of /,,(in - x,a) to zero, then, follows immediately if Ii{Xn — x,a) converges

to zero, where /] means the integral using the function r]*{t) = t in place of rj, since we
can overestimate r)(r) with rT)(K/a). Convergence of /i(x„ - x,a) to zero follows from the

problem in Billingsley, and we are done. I

Proof of Proposition 4. We need to show that if x„ and ?/„ are as in the (2.3), then

Xn - Vn —> T^. Fixing a scalar a > 0, the techniques employed just above show

that an upper bound on /,,(a:„ - j/„,a) is ^7?((3a;„(l) + 2)/a) + 7?((x„(l) - j/„(l))/a). The

second term vanishes for any a since a;„(l) - j/n(l) < pi^n^Vn) < 1/"- And the first term

vanishes for any a: By assumption, Xn(l)//i(n) -^ 0, and thus (3x„(l) + 2)/(an(n)) -^ 0.

Hence for any e there is A^, such that for all n > N,, (3x„(l) + 2)/a < €^l(n). Apply

T] to both sides (t; is monotone), and use the shape of 77, for f < 1 to conclude that

r;((3x„(l) + 2)/a) < r]{(fi{n)) < (r](n{n)) - en, for all n > N,. I

Proof of Proposition 5. In A'^., the weak topology is described by the Prohorov metric.

Accordingly, the topology is sequential, and it suffices to show that a sequence is convergent

in one of the two topologies if and only if it is convergent in the other. Suppose first that

x„ — X in Tr,. Fix f > 0, and, applying Lemma A, pick N sufficiently large so that

Ir,{xn - x,() < € ioT n > N. We claim that this implies that p(x„,i) < e. For if not, then

there exists some t such that x„(/ -\- () + ( < x(/) or such that x„(< - f ) - f > x{t). Suppose

that the former is true, and suppose further that t e[0,l- t]. See figure Al. In calculating

/^(xn - x,f), when we integrate 7/((x„(<) - x{t))() over [t,t + e], the integrand exceeds

7/(1) = 1. (Recall that 77(1) = 1 is wlog.) Hence the integral is at least f, a contradiction. If
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t > I - €, then x(l) - Iti(1) > f, and the last (summed) term in /,,(i„ - x,c) will exceed 1,

again a contradiction. The case where, for some t, Xn(t — () — (> x{t) is handled similarly.

Conversely, suppose that i„ — x in the weak topology. Fix a constant a > 0. We will

show that /,,(x„ - x,a) -* 0, so that !„ — i T^ follows by Lemma A. If p(a:„,x) —* 0,

then it is immediate that |a;„(l)- 1(1)1 —^ 0, so that the final term in Ir,{xn,a) converges to

zero in n. We need, therefore, only be concerned with the first (integral) term. For a given

integer m, let N{m) be sufficiently large so that for n > N{m), p(xn,x) < 1/m. Recalfing

that both i„ and x are nondecreasing, we can bound /q t/ f
^"' '~^^ ''

j dt above by

1 ^ fmax{x{k/Tn),Xn{k/Tn)} — m\n{x{{k—l)/Tn),Xn{{k—\)/m)}

"^ibTi ^ °

Now since p(x„,ar) < 1/m, max{a;(<),i„(<)) < x(t + 1/m) + 1/m and min{x(<), !„(<)} >
x{t — 1/m) - 1/m, so the summation given is bounded above by

1 Jli, fx{{k+l)/m)-x{{k-2)/m) + 2/m\

-SH -a
)

i,From the shape of?; (convex, equal to zero at zero, and increasing), this in turn is bounded
above by

J_ /y. x((fc+ l)/m)-x((A:-2)/m) + 2/m \ ^ 1 / 3x(l) + 2 \

For fixed a, the argument of rj is fixed, so this upper bound vanishes with m, proving our
assertion. I

Proof OF Proposition 6. Suppose not. By joint continuity, there exists two scalars r and
f, y G 5f+ and i 6 [0, 1] such that w((r + r)/2, j/, t) ^ u{r, y, t)/'2 + u(f, y, t)/2. Without loss

of generality, assume that u({r + f)/2,y,t) > u(r, y, /)/2 + u{r,y,t)/2. By joint continuity

again, there exists e > and some interval / containing /, and some interval A containing

y such that u((r + f)/2,w,s) - e > u{r,w,s)/2 + u(f,w,s)/2 for all s G / and w £ A.

Consider a sequence of absolutely continuous consumption patterns constructed as follows:

Off of /, consume the pattern m{s), to be described shortly, in each a;„. On /, subdivide

/ into 2n equal sized intervals, and consume at rate r on the even subintervals and f on
the odd. This sequence of consumption patterns converges in the Prohorov metric to the

consumption pattern x that has x'{s) = m(s) off/ and x'{s) = {r + f)/2 on /. Choose Tn{s)

such that y{s) 6 A for all 5 G [0,1]. Note that this is always feasible. By Proposition 5,

Xn -* X in T^. Proposition 7 shows that lim„_oc /o^
u{x',yn,t)dt = /q u(x',y,t)dt. But for

any j/„, we have:

/ u{x',yn,t)dt> I
u{x'^,yr„t)dt + eX{I).

Jo Jo

Taking limits of both sides as n —» oo, we get:

J'

u(x',y,t)dt = lim / u(x',yn,t)dt > lim / u{x'yn,t)dt-\-(X{I).
n-'oo Jo "-*°° Jo

Hence U{x) > lim„_oo t^(^n) + f-^(/), where A(/) is the Lebesgue measure of /. Thus
V is not continuous in T^. Finally, note that if u{z,y,t) = a{y,t)r + f3{y,t) for {z,y) 6
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(0,oo) X (0,oo) and if u is jointly continuous, then a and /3 must be continuous functions.

I

Proof of Theorem 1. We prove the necessity part of the assertion first. Suppose that

(j!) is a Ti, continuous linear functional on A'. We extend (f> using the Hahn-Banach theorem

to L'' to be a linear functional continuous in %,. Denote this extension still by 4>. Musielak

[1983, theorem 13.17] shows that 4> can be represented as

<i>(z)= f\it)y{t)dt + zil)yil) (26)
Jo

for some y €. L^ .

Now fix X e X . Since i is a right-continuous bounded variation function, we can

use integration by parts to rewrite 4>(x) as follows. First, define f(t) = y(l) + /( y(s)ds

V? e [0, 1]. Note that / is absolutely continuous with f'{t) - -y{t) and /(I) = j/(l). Then

integration by parts gives

[\(t)y(t)dt + x{l)y{l) = - I x(t)df{i) + x{\)f(\)= [ f(t)dx{t).
Jo Jo Jo-

We have thus proved the only if part as x e A' is an arbitrary element of A'.

Next we turn to the sufficiency part. First reversing the above integration by parts to

show that <t> can be written as (26) with a y 6 L'^' . Musielak [1983, corollary 13.14] then

shows that <f) is continuous in %j.

The last assertion is obvious. I

Proof of Proposition 7. Fix a topology T^. Let x„ be a sequence of consumption plans

that converge to x in T^. Assume, without loss of generality, that sup„ ||A'n||^ < oo. First

observe that if x„ -+ a; in T^, then i„ ^ x in T. Hence,

lim
[

/' |xn(0 - x{t)\ dt + |x„(l) - x{l)\] = 0. (27)
n—oo Jo

Now consider yjl) - y{t) =
fl^ki(!) ^(^'^) ('^^"C " ^) " '^^^^ " ^'^^- Integrating by parts,

we get:

yn{t)-y{t) = -(xn{klit))-x{k^it)))0{tJ-ki{t))-
/

(Xr,{t-S)-X(t-S)]e2{t,s)ds,

(28)

where ^2(^«) denotes the partial derivative of ^(<,s) with respect to its second argument.

But since both Q and its derivative are bounded, the left-hand side in (28) is bounded

by Mi|x„(^-i(<)) - a:(/:i(0)l + ^h[ll \in{i - s) - x(< - s)\dsl where M, and Ah are two

constants. ,

iFrom this, we can easily conclude that lim„_oo [/o IVnit) - y(OI dt is less than or equal

toMi\imn^oo[lo\xAt)-x{t)\dt]+M2\irn^-.oo[!o!o\''n(t-s)-x(t-s)\dsdt\,mthecase

when ki{t) is a constant, ^lim„_oo[/o kn(0 - x(0|<^i] + M2lim„_oo[/o /o l^nit - s)

-

x(t - s)\dsdt , in the case when < ci < \k[{t)\ < Ci- In both cases, lim„_oo[/o IVnCO
-

y{t)\di - 0. This follows from (27) and the uniform convergence theorem applied to the

inside intergral in the second term of the previous expression.
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Now consider the convergence of u(j/„). First, assume that u is Lipschitz continuous in

y. It then follows that |u(j/n) — w(y)| < a|j/„ —
y\, where a is independent of y. It then

follows that lim„_,oo[/o |w(!/n) - u{y)\dt < alim„^oo[/J \yn{t) - y{t]\d.t = 0. It then

follows that U{xn) converge to U{x).

Next consider the case when u is merely continuously differentiable in y. For every

integer m, define Um{y) = u(^)X[o,i] + '^(y)^[^<y<m] + w('")X[m,oo)- For a fixed m, the

function u^ is Lipschitz continuous in y, and hence the arguments in the previous paragraph
show that Um{Xn) converge to Um{x), where ZVm(i) is defined exactly as U{x), except that

u is replaced by Um- Now fix x and the corresponding y. Let A = {t E. [Q,\]:u(y[t)J) >

0} and let A'^ = [0, 1] \ A. Note that either A or A'^ might be of measure zero. It is

clear that u,n(t/(<),0 converge monotonically to u{y{t),t) on both A and A'^ as m — oo.

Applying the monotone convergence theorem, we conclude that Um[^) = J^ "m(2/(0' ^^ +
Jac Ujn{y{t),t)dt converge to ZV(ar) as m — oo. It then follows that:

lim U{xn) = lim Hm{Xn) = lim Hm{x) = H{x).

Proof of Proposition 8. Theorems 1 and 2 establish that the cone defining the order
dual corresponds to nonnegative functions /. Hence in the order dual, the join of / and

g (for f,g £ X* in the obvious embedding) would be given by max{/,5}, and the meet

by min{/,g}, these being taken pointwise. Now the absolute value of the derivative of

max{f,g] for absolutely continuous / and g is (almost everywhere) less than |/'| + \g'\.

Thus if f,g G X*, maoi{f,g} and ni'm{f,g} are also elements of X^. This completes the

proof. I

Proof of Proposition 9. Assume that the agent adopts a budget feasible consumption
pattern x with associated wealth w and y. For convenience of notation, we at times denote

J'(w{t),yit-),t),J:;,iw{t),yit-),t),j;{w{t),y{t-),t),3indJ^{wit),y{t-),t)hyJ'it),j;^{t),

Jy{t), and Jt{t), respectively. We have

J^u{y{s),s)ds + r{w{t),y{r),t) = J^uiy{s),s)ds + riw(0),yiO-),0) + Y:,{j'ir,^) - J'{r,))

+ E. /,V' {J'js)rw{s)ds - J;(5)(ii(5) + j;{s)0idx{s) - y{s)ds) + J:{s)ds),

(29)

where the equality follows from fundamental theorem of calculus and we have set tq = 0.

Note that the boundary conditions for J* ensure that the left-hand expression is the correct

expression of utility even for consumption plans that exhaust all the wealth before time 1.

By the hypothesis that J* is concave in its first two arguments, we know that

r{rn - J'ir,) < J'jTiXwiT^) - wir,)) + j;(r.)(y(r,) - 2/(7")).

Substituting this into (29), while noting that w{r^) - w{t) = x(t~) - x(t), gives

rl

u{y{s),s)ds + J'{w{t),y{t-),t)

< J'{w{0)MO-),0) + f\uiyis),s) + J'Js)wis)Tis) - j;{s)0y{s) + J:{s)]ds
Jo

+ j\l3J;{s)-J'Js)]dx{s)<J'iwiO),y(0-)^0),

j:
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where the second inequality follows from the hypothesis that the integrands are negative

and I is increasing. I

Proof of Th EOREM 3. With the hypotheses added in addition to the ones in Proposition 9,

arguments identical to those used to prove the proposition prove this theorem. I

Proof of Proposition 10. Suppose that - > k. The size of the initial "gulp" required

to bring the ratio immediately to k is A = (w - ky)/{\ + /3k) and we define J^{w,y) =

J^{w - A,y + /3A). Concavity of J^ in both it? and y follows from assumption 1, and the

rest of the proposition can be easily verified by direct computations. For the transversality

condition note that for any point {w{t),y{t~)), j''(w{t),y(t~)) < 7j/(<~)", for some constant

7. Noting that for any feasible policy, y{t~) < /3iy(0)e''', and hence e~^* J^(w(t),y{t~)) <

7/3e*~*'''°"'''u>(0), the transversality condition follows. I

Proof of Proposition 11. In light of Proposition 10, we only need to prove that

^ + j'^rW - Jf /Sy - bJ^' < if - > r and
a ^

y

PJ^' -Jt' <0 if - < k' .

y
y

To prove the first inequality, consider any point x = {w,y) such that w > k*y. Referring

to Figure 2, let a be the point on the intersection of the line w — k*y and the straight

line passing through the point x with slope 7^ = -« In other words, a is the point on

the boundary w = k'y, to which one would jump if one starts at x. By construction,

J'^'ix) = J^'{a). Let f{w,y) = ^ + Jt'rw- J^' (3y, and note that f(a) - 6j'''{a) = 0.

Applying the fundamental theorem of calculus along the straight line connecting a and x,

we obtain f{x) - f{a) = j^(f^dw + fydy). Noting that along the line connecting a and

X, we have dy = —fidw, and that du; > in the direction from a to x_, it then follows that

fw — 0fy < is sufficient to conclude that

yl + j^\^.j^'py^sj'' <o if ->r.
Q " y

Computing f^,
- Pfy in the region w > k*y, the reader can easily verify that /„, - fSfy <

for k' = ^^p^.
To prove the second inequality, consider the function J^* - fiJy' in the region where

w < k'y. We can write

0J!:' = y^-'gi^) where

r + /? ^ r + /3

/3

a/? + ^J

where A is given in proposition 10. Note that 5(1) = 0, and that 1 -^^ > 0, by

assumption 1, hence g{z) ] 00 &s z ] 00.

Computing the derivative of 9, we get

dg A(S + a/?) _«±h5

dz r + P

6 + a(3 \ 0(6 -ar)
/J_ _ d + aP \

U- k'(r+3))k'{r + (3)J ziP + r)
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Substituting k' in the expression for ^, we conclude that ^a = for 2 = 1, and that ^ >

for 2 > 1. It then follows that J^' - I3J^' > 0, for all points {w, y) such that w < k'y. I
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