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Abstract

A measurement signal-to-noise ratio is defined as the reciprocal of a normalized

rms measurement error. This ratio is evaluated for the general continuous correlator

and for the general sampling correlator. The limiting behavior of the signal-to-noise

ratio is studied for several specific cases. The continuous correlator cases considered

are those where the averaging filter is: (a) a perfect integrator, and (b) an RC low-pass

filter. The sampling correlator special case considered is that where the sampling is

done periodically.
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CORRELATOR ERRORS DUE TO FINITE OBSERVATION INTERVALS

I. Introduction

In studies dealing with stochastic functions of time, one continually meets statistical

functions of the type

R 1 2 (T) < fl(t)fz(t- T) >av

+T

T lim T fl(t)f ( t- T)dt (1)= T--2T j1 2 '
-T

Such a function provides a measure of the statistical correlation between the time

functions fl and f2. This function is well known as the "autocorrelation function" if

fl and f2 are the same, and as the "crosscorrelation function" if fl and f2 are different

(ref. 1, 2).

It is frequently of interest to be able to determine experimentally such a function as

(1). From the definition of the correlation function, we see that the operations of time

delay, multiplication and averaging over all time are involved. The operations of

delay and multiplication are physically feasible, but the requirement of experimentally

averaging over an infinite time interval obviously cannot be met. It is the purpose of

this paper to investigate the errors incurred by confining one's measurements to a

finite observation interval in time.*

Practical correlators are of two types: the "continuous correlators," where all

operations are performed continuously in time throughout the observation interval

(ref. 3, 4), and the "sampling correlators, " where the operations are performed upon

samples representing the values of the input functions at specific instants of time

(ref. 5, 6). We shall discuss the two types of correlators separately.

II. The Continuous Correlator

a. General Relations

The continuous type of correlator is shown schematically by Fig. 1. One of the

correlator input functions, f2 , is delayed in time by an amount T0 , and then multiplied

by the other input function, fl, to form a product function, x

x(t) = fl(t)f 2 (t- ) . (2)

The infinite-time average of the product function is thus the desired correlation function

evaluated for the specific delay To0

< x(t) >av = R 1 2 (T) (3)

*After the writing of this report it was learned that Johnson and Middleton (9) were
making a somewhat similar but more general study,
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The operation of averaging is performed by passing the product function, x, through an

averaging filter. The output, y, of the averaging filter may be related to its input by

means of a convolution integral involving the filter unit impulse response, or weighting

function, h(t)

+00

y(t) = h(T) x(t- r) dT (4)

co

Throughout this paper we will assume that the averaging filter is either passive or

absolutely stable, thus requiring that the filter impulse response be zero for negative

values of its argument.

We may now place into evidence the effect of an observation interval of finite length,

T o , by defining a new impulse response function, h(t, To), which is equal to the filter

unit impulse response throughout the observation interval and equal to zero thereafter

y(t)
Fig. 1 The continuous correlator.

fl(t)

f2 (t)

h T) ) for t < To (5)

to for T < t

Thus, our filter input-output relation may be written as

+00

y(t) = j h(T, T) x(t-T) dT . (6)
-00

The continuous correlator output may then be expressed in terms of the correlator

inputs

+oo00

y(t)= ( h(T, To)fl(t- )f 2 (t- To - )dT (7)

Let us now assume that the correlator inputs are statistically stationary functions of

time. The correlator output will then also be a statistically stationary function of time

whose average value is directly related to the desired correlation function. The varia-

tions of the correlator output about this average value will be considered as measurement

errors.

The average value of the correlator output is by definition

+T

<y(t)lTim Z y(t) dt . (8)

-T

From the filter input-output relation, (6), we then have
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+T +
lim 1

< y(t) >a Tl dt h(T, T) x(t- T) dT

-T-00

+oo +T

h(T, T) dT lim 1 x(t-T) dt (9)

I-o -T

We are dealing with statistically stationary time functions, hence a translation in time

does not change the value of an average. Thus, we may rewrite (9) as

+00

< y(t) >av h(T, T) dr < x(t) >a (0)

Consequently, using (3), we see that the average value of the correlator output is equal

to the desired correlation function multiplied by a constant

+00

y(t) >av = R 1 2 (T) h(T, TO) d . (11)

At this point in our discussion, it is convenient to define a system function, H(o, To),

as the Fourier transform of the impulse response, h(t, To)
+0

H(w, To) I h(t, T) e i t dt2)
-00

This function is thus the system function of the averaging filter when we take into account

the effect of a finite observation interval. Setting X = 0 in (12) gives

+00

H(0, To) = h(t, To) dt . (13)
-00

Then, using (13) in (11), we see that we may also express the average value of the corre-

lator output as

< y(t) >av = R 12 (To) H(0, T) (14)

The mean-square measurement error is defined as

cr = < yt) y(< y(t) >av >avy Y~~Y~1 avi av

= < y2 (t) > -< y(t) > (15)
av av

The mean square of the correlator output may be obtained from the autocorrelation

function, Ry(T), of the correlator output, or from its Fourier transform, Gy(6), the

spectral density of the correlator output

<y2 ct)o~ = R(O) = ±00I +0 (16)
< y (t) > = Ry(0) = 2- I Gy()16)
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The spectral density of the correlator output may be expressed in terms of the spectral

density, Gx(w), of the product function, x

2

Gy(a) = Gx(w) IH(w, To)| (17)

Thus the mean square of the correlator output may be expressed as

< y (t) >av = 2 | GX((G )lH(o, T)| d. (18)
a- x

Let us now define a new variable, (t), as the variation of the product function,

x(t), about its mean

(t) = x(t)-< (t) >a

x(t)- R1 2 (T) (19)

The autocorrelation function, RX(T ) , of the product function may then be expressed in

terms of the autocorrelation function, R (T), of (t) as

Rx(T) = R(T) + R 2 (TO) . (20)

Similarly, the spectral density, Gx(w), of the product function may be expressed in

terms of the spectral density, G (w) of t(t) as

Gx(w) = G(w) + 2rR 2 () 6() (21)

where 6(X) is a Dirac delta function. Then substituting (21) into the expression (18) for

the mean square of the correlator output, we obtain

+o

<y(t) >av = G(>) H(w, To d
-00

2 2
+R 1 22 (TO)I H(O, T)I = 21X G (W) H(@ To)| do

-00

2
+ < y(t) >av (22)

Thus we finally see that the mean-square measurement error may be expressed as
+o0

Cry = 2-+ G(g() IH(w T 12 dw (23)

et us now define R( the Fourier transform of IH( T00

Let us now define Rh (T) as the Fourier transform of I H(w, T) 

-4-
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Rh(T) 2 ( :H(., To) eiWT d .
- 00

(24)

Then, from (17) we see that Rh(T) may be thought of as the autocorrelation function of

the output of the averaging filter when the filter input is "white" noise with a spectral

density of unity. An application of Parseval's Theorem then enables us to express

Rh(T) directly in terms of the impulse response h(t, To )

+ 00

Rh(T) = h(k, To) h( + X, To) dX -

If we apply Parseval's Theorem to the expression for the mean-square correlator

output error, (23), we obtain

+ 

(Y = R (T) Rh (T) dT

- 00

(26)

In the preceding development, we have derived expressions for the average value of

the correlator output and for the mean square of the variations of the correlator output

about its mean. It is now desirable to consider some quantity providing a measure of

the accuracy of the continuous correlator. For this purpose, it is convenient to define

a measurement, rms, signal-to-noise ratio as the ratio of the average value of the

correlator output to the rms value of the measurement error.

() meas.

< y(t) >av

y-
y

(27)

This quantity is thus the reciprocal of the normalized rms measurement error. We

may then express this measurement signal-to-noise ratio either as

R 1 2 (TO) H(O, To)

I Zllr | G+ ( )MH(. 

from (14) and (23), or as

+00

| h(T, T) dT

--~~~ O0(N) meas.
-00 I (T) Rh(T) dT

from (11) and (26). Now, remembering the relation between the impulse response,

h(t, To), and the averaging filter impulse response, h(t), we see that we may change

-5-
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the limits on the numerator integral to (0, To). Further, the definition of Rh(T), (25),

shows that this quantity is zero outside the interval (-T o , + T ) Thus, we may rewrite

(29) as

T

R12(To) 5 h(T) dT

2 2 / Rr(T) Rh( T) dT

L 0

since both R[(T) and Rh(T) are even functions of T.

A study of the expressions for the measurement signal-to-noise ratio shows that

this ratio is a function not only of the properties of the averaging filter but also of the

statistical properties of the correlator input functions. Further, the dependence of this

ratio on the statistics of the correlator inputs is through the autocorrelation function of

their product function, x(t)

RX(T) = <x(t) (t - T) >av

= < fl(t) f2 (t - TO) fl(t - ) f 2 (t - - ) >av (31)

This autocorrelation function is determined by the fourth order joint distribution of the

correlator input functions, fl(t) and f 2 (t). Thus, the measurement signal-to-noise ratio

can be determined from the second order distributions (or from derived functions such

as the spectral densities) of the correlator inputs only in the trivial case where the

correlator input functions are statistically independent.

b. Perfect Integrator Averaging Filter

Let us consider now the special case where the averaging filter of the continuous

correlator is a perfect integrator, but where only a finite duration, To , observation

interval is permitted. In this case

t1 for o t To

h(t, To) = (32)

otherwise,

for the filter input-output relation (6) then becomes

tl

Y(tl) = x(t) dt. (33)

tl-T

Let us now evaluate the expression (30) for the measurement signal-to-noise ratio.

From (32) we see that the numerator integral of (30) becomes just To . To evaluate the

denominator of (30) we must first determine Rh(T) for this case. From (25) and (32),
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we see that

(T - T for 0o To T (34)

Rh(T) =
0OT for T > T

The denominator integral of (30) then becomes

T T

2 ( R(T) Rh(T) dT = 2To 1( -T- R(T) dT . (35)

TOhi O

Thus, finally, the measurement signal-to-noise ratio may be expressed as

( ) meas. (36)

when the averaging filter is a perfect integrator and a finite duration observation interval

is used.

It is of interest to consider the behavior of the ratio (36) for very small and very

large values of To .

For very small values of To , the autocorrelation function R (T) becomes nearly equal

to its value for T equal to zero. Hence

T T

2 1 T R ( T) dT - 2Ra() ¢ (1- ) dT i R(0) T (37)

0 0

and (36) becomes

IR1 (-)

(N)meas. 9 1 as T O (38)
[Ra(O)] a o

which is nothing, more or less, than the signal-to-noise ratio at the output of the multi-

plier. Thus we see that for very small duration observation intervals, the measurement

signal-to-noise ratio becomes independent of the duration of the observation interval.

From (37), we see that the specification of "small To" in (38) corresponds to the require-

ment that the autocorrelation function R t(T) be substantially equal to the value of RE(O)

for values of T in the interval (0, To).

For very large values of To we have

IT t 

- c 2 ( ) R (T) d = 2 R (T) dT = G (0) (39)

Ts0 0

In this case (36) becomes
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S _* R12 (T0 ) FT 
X() meas. 1/2 asT T (40)

Thus, for very large values of To , the measurement signal-to-noise ratio is directly

proportional to the square root of the duration of the observation interval.

c. RC Low-Pass Averaging Filter

A second special case of interest is that where the averaging filter has the form of

an RC low-pass filter. Such a filter is characterized by a system function of the form

H(W) 1 (41)

a

where a is the angular half-power frequency of the filter. The corresponding impulse

response is

-at 0 t

h(t) = (42)
0 t< .

The filter impulse response then becomes

-at 0Qt T

h(t, T ) = (43)
0 otherwise

when we take into account the effect of an observation interval of finite duration.

Let us evaluate the expression (30) for the measurement signal-to-noise ratio.

From (43), we see that the numerator integral of (30) becomes

To - aT) h(t, T) dt = 1-e 0 (44)

0

From (25) and (43), we see that

T -T

Rh(T) = a2 e-aT e-a(T+T) dT

0

= e (T T) ] for 0 - T T (45)

O. otherwise

Thus, the measurement signal-to-noise ratio may be expressed as
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() meas.
R 1 2 (TO) (1 - e

[ 10 _e [I - 2a(
e -- e

-aT )

To-T) R (T) dT]

when the averaging filter has the form of an RC low-pass filter, and a finite duration

observation interval is used.

Again, let us consider the behavior of the measurement signal-to-noise ratio for

very small and very large values of To

For very small values of To
0

-aT
l-e 0 + aT as aT + 0 .

o 0
(47)

Then, substituting (47) into (46) gives

R12 (To) /f0o

02 1 ( 1 _ TR,(T) d /

as aT -+0

Thus, for very small values of aTo, the RC low-pass filter acts as a perfect integrator.

The specification of "small aTo " in (48) corresponds to the requirement that the dura-

tion, To , of the observation interval be small compared to the reciprocal of the half-

power angular frequency, a, of the low-pass filter (i. e. small compared to the filter

time constant). The limiting expression, (38), thus holds for values of T0 small com-

pared to those required by (48). For very large values of To , the exponential terms

containing To vanish in (46). In this case we have

S mea
N meas.

Rl(T o)
+t

-a, R (T) dr

1 as T - - . (49)
12 aTo+ 

Thus for very large values of To , the measurement signal-to-noise ratio becomes in-

dependent of the duration of the observation interval. This limiting case has been con-

sidered in some detail by Fano, (ref. 7).

Let us further investigate the behavior of the measurement signal-to-noise ratio

for large values of To . While Ra(T) has no constant terms, it may well have both

periodic and random terms which are also the periodic and random terms in Rx(T) .

Let us write

P

R (T) = X Rpx(O) Cos pT + Rrx (T) (50)

p=l

where Rrx () is the random term and we have assumed that there are P periodic terms.

-9-
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Let us now use (50) in (49). First of all, for the periodic terms

Co

Rpx(o) e

0

cos p Td T = R (0) 2 2
a + op

(51)

Consider now the Rrx(T) term. Because of the very purpose of the low-pass averaging

filter, we commonly meet the condition that the bandwidth of the averaging filter.is very

small compared to the bandwidth of the random part of the product function, x(t). Hence

Rrx(T) e dT rx
0o
0

00

Rrx(T) dT

0

Grx(O)
2 (52)

since the stated bandwidth conditions imply that e is substantially constant, and equal

to unity throughout the range of values of T for which Rrx(T) has significantly nonzero

values.

We may finally say that

(s) meas.
P=l

for the case of an RC low-pass averaging

intervals.

R1 2 (T0 ) 

1/2
R (0) G (o)P

2 2 2 a +U 2
p

(53)

filter when used with very long observation

III. The Sampling Correlator

a. General Relations

The sampling type of correlator is shown schematically by Fig. 2.

The output of a sampler corresponds to the value of its input at the instant of samp-

ling. The sampler outputs are multiplied to form a product sample

x(t s) = fl(ts) f 2(ts - TO) (54)

where t s is the instant of sampling fl.

The process of averaging in the sampling correlator is performed by adding a finite

number, M, of the product samples. When M product samples have been added, their

sum is presented as the correlator output

-10-



M

Y=E 1 (tS) f 2 (tS - T) (55)
s=l

The correlator output, y, is thus a random variable dependent upon the values of the

correlator inputs at the sampling instants, t s , and upon the number of samples, M.

The mean value of the correlator output is directly related to the desired correlation

function, and the variations of the correlatoi output about its mean will be considered

as measurement errors.

The mean, or statistical average, of the correlator output is

M

= E fl(ts) f(ts - T) (56)
s=l

since the mean of a sum is the sum of the means. Under the assumption that we are

dealing with ergodic input functions, we may replace the operation of statistical averag-

ing by that of time averaging. Thus

fl(t ) f2 (ts - T) = < f(t) f2 (t - To) >av = R 1 2 ( (57)

irrespective of the value of t. The mean value of the correlator output is then given by

= M R12(To) (58)

and is M times the desired correlation function evaluated for the specific delay of T.

The mean measurement error is by definition

2 = 2[y.]2 2 -2 (59)

The mean square of the correlator output is given by

Y X f 1 (tS) f(tS - TO)

s=l

M M

> >-3 f 1(tj) f 2(tj- T) fl(tk) f2(tk -To) (60)

j=l k=l

In this double summation, there are M terms of the form (j=k), and for each of these

terms we have

f2(t) f2(t T) < f(t) f(t - T ) >a

since we are dealing with statistically stationary input functions. The mean-square

correlator output may then be expressed as

-11-
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M M

+ X 1 fl(tj) f2 (t j- To) fl(tk) f2(tk - T) (61)
j=l k=l

(ktj)

l. -I

y

Fig. 2 The sampling correlator.

Now, as in the continuous correlator case, we will define a measurement rms signal-

to-noise ratio as the ratio of the average value of the correlator output to the rms varia-

tion of the correlator output about its mean

( in meas. y62)

Thus, for the general case of sampling at arbitrary instants of time, the measurement

signal-to-noise ratio for the sampling correlator is given by

(S- M R 1 2 (T)

M < f(t) f(t- o >av - MZ Rz2 (T)

M M

+ , Z 1 (tj) f2(tj - o) fl (tk) f2(tk To)
j=l k=l

(ktj)

I/t

(63)

We note that this ratio is a function of the number of samples, M; the instants of

sampling, ts; and of the statistical properties of the correlator input functions, including

the fourth order probability density required to determine the mean of the product:

f 1 (tj) f2 (tj - To) fl(tk) f2 (tk - T).

b. Periodic Sampling

Perhaps the case of greatest practical interest is that where the sampling is done

periodically. In this case, the M samples are spaced equally throughout the observation

interval of duration To . The sampling period is thus
0

-12-
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T
ot =

o M (64)

If then the observation interval starts at t=o (a matter of convenience only) the kth

sampling instant is kt o . We may rewrite our expression (61) for the mean square of

the correlator output as

y2 = M< f(t) f2(t-- ) >av

M klM

j=l k=l

(65)
f1 (jt o ) f(jt o - To) f (kt o ) f 2 (kt o - To)

(k j)

Let us consider the double summation terms in (65). For this purpose, it is convenient

to visualize an M by M array of the elements (j, k) making up the sum. First of all, the

principal diagonal terms (j, j) are missing because of the restriction (kj). Second, each

element (j, k) is equal to the element (k, j). Thus every term above the principal diagonal

has an equal counterpart below that diagonal. Further, each element (j, k) is equal to

each element of the form (j + i, k + i), since we are dealing with statistically stationary

input functions. All of the (M-m) elements in the mth diagonal above the principal diag-

onal above the principal diagonal are equal. Applying these relations, (65) becomes

2 =M< 2 ( 2( >
y = M< f(t) f (t - T 0 )>av

(M-m) < f(t) f 2 (t - TO) f(t+mto) f2 (t+mto - o ) >av (66)

and our measurement signal-to-noise ratio may be expressed as

(N) meas.

M R 1 2 (T0 )

r Mf 2. 2 2 2 1/2
o < f(t) f -(t ) av - M R 1 2 ( O)

M-1

+2 (M-m) < fl(t) f 2 (t- To) fl(t+mto) f 2 (t+mto- o) >av

m=l

To visualize the variation of the measurement signal-to-noise ratio as a function

of the duration of the observation interval, it is convenient to define a new variable, ,

equal to the variation of the product function, x, about its mean

-13-
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(t) _ x(t)- < x(t) >avav

= f(t) f 2 (t - ro) - R 1 2 (To) (68)

Using this variable, we may rewrite our expression (66) for the mean square of the

correlator output

y = M [<t2(t) >av

M-1

+ 2 Z (M-m)

m=l

= M Rg(O) +M 2

+ R12(T o)

[< (t) (t + mto) >v + R12(TO) ]0avI

M-1

R22(TO) + 2 i (M-m) R (mto )
m=l

a result which will be recognized as being essentially the same as that obtained by Costas

(ref. 8) in his study of a single random variable.

If we then use (70), we may finally express the measurement signal-to-noise ratio for

the sampling correlator as

(N meas.

[
R(M)-+ 2 7 1- )

m=l

(71)
R.mT o1/2

R (2

in the case of periodic sampling.

If the duration, T o , of the observation interval is held fixed, and the number of

samples, M, in that interval is allowed to increase without limit, then (71) becomes in

the limit the same as the expression (36) obtained for the case of the continuous corre-

lator with a perfect integrator as an averaging filter. The results obtained in II(b) then

apply to the case of the sampling correlator satisfying the above conditions,

Let us now consider the limiting case where, for a given number M of samples, the

duration of the observation interval approaches zero. In this case

T + R
R -* R ( 0) (72)

for all m. Then

(1- ) R.Q( 2)T + (M-1) R () (73)

M-1

m=l

-14-
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and the measurement signal-to-noise ratio becomes

) meas. [R 1 / as T (74)

Thus we see that, for very short duration observation intervals, the measurement

signal-to-noise ratio is independent of the number of samples and is dependent solely

upon the properties of the correlator input functions. The specification of "very small

To" in (74) corresponds to the requirement that the correlation function Ra(T) be es-

sentially constant throughout the interval (0, To) in T, as shown by (72).

Let us finally consider the case where the duration of the observation interval

becomes very large. In this region, entirely different behaviors of the measurement

signal-to-noise ratio may be obtained, depending upon the relation between the method

of sampling and the statistics of the correlator input functions. The most favorable

case is that where R (T) contains no periodic components. In this case RE(T) 0 as

T . Therefore, for a given value of M, R(mT /M) 0, for all m, as To X. The

measurement signal-to-noise ratio then becomes

(N) ma R2() JI as T o (75)

which corresponds to the situation where successive product samples are statistically

independent.

On the other hand, the most unfavorable situation arises when R (T) contains a

periodic component whose period is that of the sampling process. In this case R (T)

contains a component

RPX(0) COS pT = Rpx(0) COS (-M T) (76)

and the summation in the denominator of (71) contains a set of terms

M-1T
2 ( M*) Rp(0) cos r M) (M-l) Rpx(0) . (77)

In this case the measurement signal-to-noise ratio becomes

) meas. 2 as To (78)
[RPx(0) 

which is independent of the duration To of the observation interval, and of the number

of samples, M!
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