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ABSTRACT

Consider a product whose actual demand is stochastic but whose average

demand rate follows a time-varying pattern with known shape over its life cycle.

Initially, the level of the demand pattern may be quite uncertain; as ex-

perience is gained, however, the level of demand becomes somewhat more pre-

dictable. The general situation described here is particularly suitable

for items such as replacement parts for a durable product which undergoes

frequent model and/or substantive style changes. In this paper, it is

assumed that revised forecasts of total demand over the entire product life

cycle become available each period. Backorders for (only) one period are

allowed, at a cost. Setup and variable production costs are non-decreasing

over time. The manufacturer wishes to minimize the discounted expected cost

over the item's life cycle. A dynamic programming formulation of the pro-

blem is presented, and computational aspects are discussed.
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I . INTRODUCTION

Consider the following general problem: A manufacturer must select

the timing and magnitude of production quantities for a product whose actual

demand is stochastic but whose average demand rate has a time -varying pattern

with known shape over the entire product life cycle. The actual level of the

demand pattern is initially unknown, but as experience is gained, it becomes

somewhat more predictable. Setup and variable production costs are non-

decreasing over time; backorders are allowed for only one period, at a cost.

It is assumed that some forecasting mechanism (either human or mechanical)

exists which generates a revised forecast each period of total demand over

the life of the product. The manufacturer's goal is to meet total product

demand at minimum discounted expected cost. This paper describes some al-

ternative forecasting methods which exhibit certain necessary statistical

data-generating properties, and proceeds to integrate one statistical fore-

cast revision process with a framework of decision choices and costs. The

resulting system is formulated and solved as a dynamic programming problem.

Motivating Example

The methodology described here may be applicable in principle to any

number of products with a relatively well-defined life cycle. However, the

primary focus of the methodology is toward products such as spare parts for

durable goods (consumer or industrial) in which the following characteristics

are present:

(1) Wearout characteristics of the part and model obsolescence

of the durable good create a situation of a time-varying

average demand rate whose shape or pattern may be specified.
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(2) Substantial uncertainty about the level of the demand pattern

for the part is present initially.

(3) High setup costs indicate the desirability of large pro-

duction quantities.

(4) Tracking of demands over time allows improved forecasts to

be made as time passes

.

Previous Research

The deterministic version of this problem has been formulated by Wagner

and Whitin [18] as a dynamic programming problem. Moreover, under certain

cost assumptions, they demonstrated a computationally important "planning

horizon" result ensuring that in the optimal schedule one would receive a

replenishment quantity only when on-hand inventory had fallen to zero. The

stochastic version of the problem can be further partitioned into models

assuming independent stochastic demands in each period, as opposed to models

allowing for some type of sequential dependency. We will be concerned ex-

clusively with ways of allowing for dependencies in demands.

Concerning stochastic models which allow for dependent demands, some

previous work focuses primarily on the nature of the statistical data-gene-

rating process for sequential forecast revisions, while other work combines

these concepts with an associated framework of decision alternatives and

costs. Hertz and Shaffir [10] describe a straight-forward approach toward

forecast revisions which is in wide practical use. Through analysis of historical

data, some underlying pattern of average demand over the entire planning
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horizon is obtained, and then actual cumulative demands to date are simply

extrapolated to obtain a revised estimate of total demand over the horizon.

In their case they were dealing with seasonal style goods, and the horizon

was a few months; also, their data supported use of a cumulative Normal

distribution as the underlying pattern of average demand over the short

season. Neither [10] or a similar study [11] integrated the forecast re-

vision process with the related sequential decision and cost framework in

an optimal manner, however. Murray and Silver [14 ] present a Bayesian

model for forecast revision (based on an underlying binomial share-of-market

model) which again presumes some underlying pattern of average demand over

the entire horizon. In their case the initial forecast of total demand made

at the outset continues to carry some weight as demands are accumulated, in

contrast to the pure demand-to-date extrapolation described above. Chang

and Fyffe [3] also describe a method of generating forecast revisions which,

derived from work in optimal linear control by Kalman [12] and Shaw [16],

continues to place appropriate (Bayesian) weight on the initial forecast.

However, Chang and Fyffe explicitly omit consideration of "... the associated

2
decision problems ..." involved in their motivating example. In contrast,

Murray and Silver do^ imbed their forecast revision process in an optimizing

framework of sequential decisions and costs; they are concerned with ordering

and reordering style goods for retail sale. In principle, the Murray and

A similar approach was used by Ichihara, Neidell, Oliver and William-Powlett

[11] as summarized in Hausman [6],

2
Reference [3], p. 3.
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Silver formulation could be used directly for the problem under consideration

here. However, if their use of a binomial share-of -market approach to the

demand data-generating process is not a natural representation of the situa-

3
tion, then it is not clear how one should "scale" their formulation.

In related research, Brown, Lu and Wolfson [2] present a general frame-

work in which a number of distinct demand data-generating processes are con-

sidered, and in which Markovian transitions from one demand-generating state

to another take place. The actual demand observed in a period is used to

compute a posterior probability distribution over the different states of

demand types. The model to be presented below may be viewed as a special

case of their more general framework.

All of the research described above can be characterized in a broad manner

as allowing for Bayesian updating of prior demand estimates, based on actual

demands recorded to date (in Hertz, Shaffir and related cases the initial

prior distribution may be considered infinitely diffuse, so that only sample

information is used subsequently). In related research, this writer [6] found

that it was generally possible to characterize both mechanistic extrapolating

forecasting methods and complex, ambiguous "black box" human forecasters in a

useful statistical manner. Specifically, a small number of different fore-

cast revision processes and associated historical data were studied, with the

following conclusion: "The data are generally, although not entirely, consistent

3
For example, if we are dealing with a manufacturer's replacement part demands,

the manufacturer may be the sole source of supply; moreover, wearout con-

siderations may dominate the demand pattern. In this situation the "under-

lying market-share" approach of [14] is not a natural representation of the

situation.





- 5 -

with the hypothesis that ratios of successive forecasts [of the same unknown]

are independent variates; their distribution appears to be ... Lognormal."

Only one of the forecasting mechanisms out of the several studied was a pure

mechanical extrapolation; the others involved human beings who presumably

processed a huge amount of potentially-relevant information between forecasts,

and produced a revised point estimate on the basis of their previous ex-

perience in attempting to deal with the complex problem at hand. Thus,

although the model to be presented below, like previous ones described earlier,

uses recent demand data to update forecasts in a purely mechanical manner, in

the light of [6] it may also be of some use in cases where a more complex

"black-box" forecaster is active and/or in cases where continuing Bayesian

weight is placed on the initial forecast.

II. A MODEL OF THE FORECAST DATA-GENERATING PROCESS

Following [3], [6], [10], [11], and [14], we presume knowledge of the

shape (but not the level) of some underlying pattern of average demand over

the entire product life cycle involving N periods. Let:

R. = cumulative expected fraction of total demand received through
J

period j ; j = 1, . .
. , n; 1 > R. > R._^ > 0.

X. = revised forecast of total demand over the entire planning horizon,
J

with the forecast made at the beginning of period j; j = 1, ... N

4
Reference [6], p. 93.

The various individuals were forecasting (and reforecasting) agricultural

vegetable crop supply of a particular company, total U.S. vegetable crop supply*

and earnings-per-share for firms in three industries (electricity, oil and drugs).

The mechanical forecasting scheme was forecasting total wholesale demands of

cruise-season women's dresses. See [6] and [4] for further details.
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X^
^

= actual total demand for the product over periods 1 through N.

D, " actual demand during period j;j='l. ...,N;D>0.

S. = cumulative demand received through period j; j = 1, ..., N;

J

(1) S. = I D.
J i=l

^

Also, by definition X^ = S
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Pure Demand Extrapolation: A Completely Diffuse Prior

Now, following [6], [10] and[ll], consider a simple demand-to-date

extrapolation as our forecasting scheme; then

(2) X. = S._ /R , j = 1 N .+ 1.

Also let:

(3) Z. = X^+i/Xj, j = 1, .... N.

Substantial evidence has been presented in [6] to assume, as a first approxi-

mation, that the variates {Z.} representing ratios of successive forecasts

are independent two-parameter Lognormal variates; i.e.,

,2,„^2^-uog z. - y^;z^.f,,(z^l.,.a.)=;,=i^r<^-^j-V'^°r

< Z^ < ~, j = 1, ... , N,

with Cov(Z ,Z ) = if j ?i k.

We shall subsequently see that some (fortunately minor) approximation must

necessarily be involved with this assumed distribution.

It is presumed that some method to produce an initial forecast X^ is avail-

able; however, we assume in this section that this method has so little to re-

commend it that as soon as one period has been completed, equation (2) is

the sole source of the revised forecast X , and the initial forecast is com-

pletely disregarded subsequently. The quantities {R.} are specified con-

stants; moreover, at any period j, previous cumulative actual demands

{S,_^} are known. Substituting (2) into (3) and using the identity

S. = S. , + D.,
J J-1 J
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(S +D )/R R R

(^) S ° s\ j^ ,

'

° -i^ ^ R^ ^r

where S-/R^ = X^ , thereby defining the ratio ^ JS . From equation (4) there

is a linear relationship (Z. = a, + b.D.) between the random variables D.
J J J J J

and Z , with both parameters a and b. in the range (0,1) inclusive. Since

we assume no returns, D. is non-negative; therefore, in each period j, the

constant term in (4) is a lower boxmd on Z., and thus Z. cannot be a variate
J J

distributed precisely according to the two-parameter Lognormal distribution

indicated above. However, since the constant term (a, = R. -/R ) is known,

the three-parameter Lognormal distribution described in reference [1] may

be considered. In this distribution the quantity (Z, - a.) is distributed

as two-parameter Lognormal, with the third parameter merely shifting the

distribution upward so that the lower bound of the distribution of Z is a.

rather than zero. Intuitively, the reason for the excellent fit of the two-

parameter Lognormal distribution to the apparel forecasting data

cited in [6] is due to the fact that the dispersion of the distribution of

Z was not excessive relative to the lower bound. For example, in the
J

apparel data the ratio (R^
i /^) "^^ approximately .90, but the dispersion

in Z-j ^
was consistent with .90 being an approximate lower bound. In other

words, because of the limited dispersion of Z.,it turned out that the lower

bound was very close to the zeroth percentile of the distribution in its two-

parameter form. This state of affairs may not always exist; for example,

if the planning horizon were divided into a very large number of periods so

that the ratio R._-|/R. were very close to unity, then the lower bound may

be more binding, and Z. may not fit the two-parameter Lognormal distribution.

^See [6], Figure 10 (p. 103)
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It should be emphasized that as long as the value of the ratio

R /R. is known, one may always work with the three-parameter Lognormal by

making the transformation

(5) Z- = Zj - (R^_^/Rj)

and then estimating new parameters y'. and a' from the transformed data.

We present the above discussion solely to illustrate that previous results

demonstrating approximate two-parameter Logtiormality and independence of ratios

of successive forecasts remain approximately valid.

Proceeding with equation (4) , if Z . is three-parameter Lognormally dis-

tributed with parameters yl, 0l and shift parameter (R._,/R.), then it can

Q

be easily derived that D . is distributed as two-parameter Lognormal with

parameters (y! + log(R. / (R S ._j^)) , a'.):

Also, the forecast-revision equation (2) may be rewritten to be a function

of D.:

(6) Xj^^ - S./R^ = (Sj_^ -H Dj)/R .

We also presume that sufficient historical demand data of relevant compara-

bility is available so that the necessary estimates of R ,
y

' and a' can be

made .

These parameters are not equal to the previously-cited parameters y, and a .

g
See reference [1] for such a derivation.
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At this point we have fully described the statistical data-generating

process associated with a pure demand-to-date extrapolation forecast. Now

this process is integrated with the decision and cost framework posed at the

outset.

III. DYNAMIC PROGRAMMING FORMULATION OF COMPLETE PROBLEM

For ease of reference we include previously-defined symbols in the

following list. Let:

N = number of periods into which total product life-cycle is divided

A <= setup cost in period j; A. < A . . , j = 1 N

c. = unit production cost in period j; c. < c,,-, j = 1, .... N

X = revised forecast of total demand over the entire planning horizon,

with the forecast made at the beginning of period j; j =» 1, .... N

Y . = inventory on hand minus backorders at beginning of period j

;

j = 1. .... N

!0
if Y. >

cost of (-Y.) units backordered at beginning of period j, if Y <

D, = actual number of units demanded during period j

S, = cumulative demand through period j inclusive;

j

S^ = S D.
J i-1

^

R. = ctunulative expected fraction of total demand received through

period j inclusive; < R. < R.^^ < 1

a = present value discount factor for one time period (risk-free rate)
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e = unit salvage value of item after period N

P . = number of units produced in period j (the decision variable)

P. > 0.
J

-

i:

if P =«

6(P,) =< J

-• *i if P >

Note: backorders must be filled one period after they are incurred.

The Demand Data-Generating Process

Based on earlier discussion we shall assume that demand in each period

is a conditionally independent two-parameter Lognormal variate with parameters

as shown (R., yl and o[ are estimated from other relevant historical data):

°j'^^LN(^>j^l°s(R^.l/(Yj-l»''^J>-

The Forecast Revision Data-Generating Process

Again from earlier discussion we assume that successive forecasts

{X.,,} of total demand are generated by equation (6), reproduced here for

convenience

:

(6) Xj_^^ = S /Rj = (S._^ + Dj)/Rj . J = 1 N.

Dynamic Programming Formulation

At the beginning of each period j the state variable will be the two-

dimensional vector (X , Y ) whose first element is the latest revised fore-

cast of total demand, and whose second element represents current inventory
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less backorders . (We assume all production is completed within a period so

there is never any inventory on order.) Following the usual dynamic programming

approach, we define the return function as follows:

g,(X ,Y.) = minimum discounted expected cost from period j on through
•J ij W

period N+1, given state (X,,Y,) obtains at the beginning

of period j and optimal decisions are made subsequently.

At period N+1 any remaining inventory contributes a negative cost

(salvage value) of e per unit. Recalling that all backorders must be filled

within one period, if demand in period N is larger than inventory plus any

production in that period, then a final production quantity of size (-Y^^

)

must be produced in period N+1 to satisfy backorders incurred. Thus at

period N+1,

-(\+l^ " Vl > °

(7) %+i(^+r^N+i> M \+i + -N+i(-\+P " \+i <

Now in general, for period j, the following recurrence relation applies;

Min
(8) h^yV^^^, ^^ja,) + ^(Pj)(Aj + c.P.)

P >-Y^ if Y. <

00

where from equation (6)

(9) X.^^ - (Sj_^ + D^)/Rj
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and by definition, the following Inventory balance equation holds:

(10) Vi^"j^'j-"j-

The first term on the right-hand side of (8) represents a charge for any

backorders if present; the next term charges setup and production costs for

any production in period j ; and the final term represents the discounted ex-

9
pected cost associated with all future periods, the expectation being per-

formed with respect to the random variable D • By (9) and (10), (8) may be

rewritten as follows:

(11) g.(X.,Y ) = Min {b.(Y.) + 6(P.)(A. + c.P.)JJJ 2 3 JJJJ
P.>0,

P >-Y, if Y.<0

for j = 1 N.

In the usual manner equations (11) and (7) may be solved recursively, starting

with equation (7) and working backward until j = 1. The optimal decision rule at

th * /
the j stage, P. (X ,Y ) , is tabulated as a function of the state vector and

*
stored for reference. The set of optimal decision rules {P.(. , .)} con-

stitutes an optimal policy . Finally, given an initial forecast X and initial

inventory Y =0, the return function g (X ,Y =0) represents minimtmi dis-

counted expected costs associated with following the optimal policy from periods

1 through N.

9
Note that the parameters of the distribution of D. include R. , and R. , which

J J-1 J

are known constants, and S. ,, which equals X.R. ,.
J-1 J J-1
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Computational Aspects

The state space of above formulation has dimensionality two; this

represents a tractable dynamic programming formulation. That Is, one may

form a grid over the two-dimensional state space, perform the indicated

optimization operation of equations (11) and (7) by complete enumeration,

and program the entire operation on a computer (see [5] for further dis-

cussion). Further, if specific assumptions concerning the various cost

elements are made, one may take advantage of previous work (see reference

[15]) to prove rigorously that the form of the optimal policy is of the

(s,S) type. Specifically, under appropriate assumptions the optimal policy

would be as follows: if current inventory less backorders Y is less than

some quantity s (x.), then one should "order up to" the quantity S , (X )

;

otherwise, do not produce any units in period j. Such a proof will not be

pursued here, however.

Estimation of the {R.} 'quantities could be performed directly by a manager

familiar with related product demand growth curves, as suggested in [14].

Alternatively, depending on the nature of the product, a Gompertz curve or

a Welbull curve for total demand may be applicable.

Finally, it should be emphasized that the forecasting model studied in

detail here assumed a completely diffuse prior distribution about the initial

point forecast X^ of total demand for the product over its entire life cycle.

There may be situations in which it is appropriate to maintain some reliance

In contrast to a computationally-infeasible many-dimensional state space

formulation for a related multlproduct problem; see [9],

Se references [13] and [7], [8] respectively (and their bibliographies) for

situations in which each of these distributions have been successfully used

to describe demand curves over a product's life cycle.
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on the initial estimate X even when current demands depart substantially
1

from its implications. In this case the Bayesian procedures of Murray and

Silver [14], Chang and Fyffe [3], or of Brown, Lu, and Wolfson [2] could

potentially be adapted to our equations (7) and (11). It is important to

recognize that in this situation, the mechanics for updating the forecast

12
based on current demand D. must be completely specified. That is, in

equation (11) one must be able to express the next forecast (X } as some

function of D.. Only when this is possible can one deal solely with the

distribution of D . as is done in equation (11). Alternatively, if there

exists a "black, box" forecaster in the spirit of [6] whose ratios of

successive forecasts Z. = X^^/X. follow some Lognormal relationship, it

would be necessary to estimate the joint probability density function over

the variables (Z
.

, D.). This could be a difficult estimation problem to
J J

perform in practice, since the two variates would clearly not be independent,

and the amount of dependency is a function of how much Bayesian weight is

continued to be placed on the initial forecast X made at the outset.

IV. CONCLUSION

A model has been formulated for a problem in which a product has a known

time-varying pattern of variation in average demand, but whose level of de-

mand is unknown and whose actual demand in any period is stochastic. Two

versions of the associated forecasting problem have been considered: One

involving a completely diffuse prior distribution about the initial point

estimate and mechanical updating by extrapolation, versus one allowing for

12
As they are in references [2], [3] and [14]
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Bayesian updating of an Initial estimate. The former framework has been

integrated with the relevant sequential decision and cost framework to create

a dynamic progranming formulation which would produce optimal production

decisions.
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