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I. Introduction

In Part I, one of us— developed a basic model of market timing

forecasts where the forecaster predicts when stocks will outperform

bonds and when bonds will outperform stocks but he does not predict the

magnitude of the superior performance. In that analysis, it was shown

that the pattern of returns from successful market timing has an

isomorphic correspondence to the pattern of returns from following

certain option investment strategies where the implicit prices paid for

tne options are less than their "fair" or market values. This

isomorphic correspondence was used to derive an equilibrium theory of

value for market timing forecasting skills. By analyzing how investors

would use the market timer's forecast to modify their probability

beliefs about stock returns, it v/as shown that the conditional

probabilities of a correct forecast (conditional on the return on the

market) provide both necessary and sufficient conditions for such

forecasts to have a positive value.

In the analysis presented here, we use the basic model of market

timing derived in Part I to develop both parametric and nonparametric

statistical procedures to test for superior forecasting skills.

The evaluation of the performance of investment managers is a

topic of considerable interest to both practitioners and academics.
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To the former, such evaluations provide a useful aid for the efficient

allocation of investment funds among managers. To the latter,

significant evidence of superior forecasting skills would violate the

2/
Efficient Markets Hypothesis,— and such violations, if found, would

have far-reaching implications for the theory of finance with respect

to optimal portfolio holdings of investors, the equilibrium valuation

of securities, and many decisions in corporate finance. With so much

at stake, it is not surprising that much has been written on this

subject. Indeed, a major application of modern capital market theory

has been to provide a structural specification to measure investment

performance. Within this structure, it is the practice to partition

3/
forecasting skills into two components:— 1) "micro" forecasting which

forecasts price movements of individual stocks relative to stocks

generally, and 2) "macro" forecasting which forecasts price movements

of the general stock market relative to fixed income securities. The

former is frequently called "security analysis" and the latter is

referred to as "market timing." Moreover, this partitioning of

forecasting skills takes on added significance through the work of

Treynor and Black (1973) who have shown that investment managers can

effectively separate actions related to security analysis from those

related to market timing.

Most of the recent empirical studies of investment performance

focus on microforecasting and are based on a mean-variance Capital

Asset Pricing Model framework where the one-period excess return on

security i can be written as
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Z.(t) - R(t) = a^ + &^[Z^j^(t) - R(t)] + e.(t) (1)

where Z.(t) is the one-period return per dollar on security i; a.

is the expected excess return from microforecasting; 3. is the ratio

of the covariance of the return on security i with the market

divided by the variance of the return on the market, and e.(t) has

the property that its expectation, conditional on knov/ing the outcome

for the market return Z (t), is equal to its unconditional expectation

which is zero. That is, E[e^(t) |z (t) ] = E[e^(t)] = 0.

Using this specification, both Fama (1972) and Jensen (1972b)

develop theoretical structures for the evaluation of micro- and macro-

forecasting performance of investment managers where the basis for

the evaluation is a comparison of the ex post performance of the

manager's fund with the returns on the market. In the Jensen analysis,

the market timer is assumed to forecast the actual return on the market

portfolio, and the forecasted return and the actual return on the market

are assumed to have a joint normal distribution. Jensen shows that

under these assumptions, a market timer's forecasting ability can be

measured by the correlation between the market timer's forecast and the

realized return on the market.— However, Jensen also shows that the

separate contributions of micro- and macroforecasting cannot be

identified using the structure of (1) unless for each period, the

market timing forecast, the portfolio adjustment corresponding to

that forecast, and the expected return on the market are known.
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Grant (1977) explains how market timing actions will affect the

results of empirical tests that focus only on microforecasting skills.

He shows that market timing ability will cause the regression estimate

of a. in (1) to be a downward-biased measure of the excess returns

resulting from microforecasting ability.

Treynor and Mazuy (1966) add a quadratic term to (1) to test for

market timing ability. In the standard CAPM regression equation, a

portfolio's return is a linear function of the return on the market

portfolio. However, they argue that if the investment manager can

forecast market returns, he will hold a greater proportion of the market

portfolio when the return on the market is high and a smaller proportion

when the market return is low. Thus, the portfolio return will be a

nonlinear function of the market return. Using annual returns for

fifty-seven open-end mutual funds, they find that for only one of the

funds can the hypothesis of no market-timing ability be rejected with

95 percent confidence.

Kon and Jen (1979) use the Quandt (1972) switching regression

technique in a CAPM framework to examine the possibility of changing

levels of market-related risk over time for mutual fund portfolios.

Using a maximum likelihood test, they separate their data sample into

different risk regimes and then run the standard regression equation

for each such regime. They find evidence that many mutual funds do

have discrete changes in the level of market-related risk they

choose which is consistent with the view that managers of such funds

do attempt to incorporate market timing in their investment strategies.
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The model of market timing forecasts presented here differs from

tiiose of these earlier studies in that we assume that our forecasters

follow a more qualitative approach to market timing. Namely, we

assume that they either forecast that Z^(t) > R(t) or forecast that

Z (t) <_ R(t). The forecasters in our model are less sophisticated

than those hypothesized in, for example, the Jensen (1972b)

formulation where they do forecast how much better the forecasted

superior investment will perform. However, as is shown in Part I,

when this simple forecast information is combined with a prior distri-

bution for returns on the market, a posterior distribution is derived

which would permit probability statements about the magnitudes of the

superior investment's performance.

A brief formal description of our forecast model is as follows:

Let Y(t) be the market timer's forecast variable where yCt) = 1

if the forecast, made at time t - 1, for time period t is that

Zj^(t) > R(t) and Y(t) = if the forecast is that Z (t) £ R(t) .

We define the probabilities for y(.t) conditional upon the realized

return on the market by

p^(t) = prob{Y(t) = 0|Zj_j(t) < R(t)}

(2a)

1 - p^(t) = prob{Y(t) = l|Zj^(t) < R(t)}

and

P2(t) = prob{Y(t) = l|Zj^(t) > R(t)}

(2b)

1 - P2(t) = prob{Y(t) = 0|z,^(t) > R(t)}
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Therefore, p, (t) is the conditional probability of a correct

forecast, given that Zj^(t) <_ R(t) and P2(t) is the conditional

probability of a correct forecast, given that Z (t) > R(t). It is

assumed that p, (t) and p^(t) do not depend upon the magnitude

of |Zw(t) - R(t)|. Hence, the conditional probability of a correct

forecast depends only on whether or not Z^.(t) > R(t) . Under this
M

assumption, it was shown in Part I that the sum of the conditional

probabilities of a correct forecast, p, (t) + p (t) , is a sufficient

statistic for the evaluation of forecasting ability.

Unlike the earlier studies of market timing, this formulation of

the problem permits us to study market timing without assuming a

Capital Asset Pricing Model framework. Indeed, provided that the

market timer's forecasts are observable, we derive in Section II of

this paper a nonparametric test of forecasting ability which does not

require any assumptions about either the distribution of returns on

the market or the way in which individual security prices are formed.

Although the substantive context of the test presented there is

market timing, the same test could be used to evaluate forecasting

ability between any two securities.

If the market timer's forecasts are not directly observable, then

to test market timing requires further assumptions about the structure

of equilibrium security prices. In Section III, we derive such a test

using the assumption that the CAPM holds. However, in contrast to the

Jensen formulation, our parametric test permits us to identify the

separate contributions from micro- and macroforecasting to a portfolio's
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return using as our only data set the realized excess returns on the

portfolio and on the market. Although the test specification in Section

III assumes a CAPM framework, it can easily be adopted to a multi-factor

pricing model as described in Merton (1973) and Ross (1976)

.
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II. A Nonparametric Test of Market Timing

In Part I, it was shown that a necessary and sufficient condition

for a forecaster's predictions to have no value is that

p (t) + P2(t) = 1, Under this condition, no investor would modify

his prior estimate of the distribution of returns on the market portfolio

as a result of receiving the prediction and therefore, would pay nothing

for the prediction. It follows that a necessary condition for market-

timing forecasts to have a positive value is that p, (t) + p„(t) / 1.

As shown in Part I, a sufficient condition for a positive value is

that p, (t) + p^Ct) > 1. For example, a perfect forecaster who is

always correct will have p,(t) = 1 and PjCt) = 1, and therefore,

p (t) + p^Ct) = 2 > 1. Formally, forecasts with p, (t) + p^Ct) < 1

can be shown to have a negative value because such forecasts are

systematically incorrect. However, such forecasts are perverse in

the sense that the contrary forecasts with p'(t) El- p (t) and

p'(t) El- p (t) would satisfy p|(t) + p'(t) > 1 and therefore,

have positive value. For example, a market timer who is always wrong

will have p, (t) + p„(t) = 0. However, such forecasts have all the

informational content of a forecaster who is always right because by

following a strategy of always doing the opposite of the forecasts

that are always wrong, one will always be right. Thus, one can

reasonably argue that forecasts with p, (t) + p„(t) < 1 have

positive value as well, provided one is aware that the forecasts

are perverse.

Therefore, a test of a forecaster's market timing ability is to

determine whether or not P-, (t) + p„(t) = 1. Of course, if
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p (t) and p„(t) were known, then such a test is trivial. However,

p (t), p (t) , or their sum, are rarely, if ever, observable.

Generally, it will be necessary to estimate p^ (t) + p_(t), and then

use these estimates to determine if one can reject the natural null

hypothesis of no forecasting skills. That is, H : P-, (t) + p«(t) = 1

where the conditional probabilities of a correct forecast are not

known. Essentially, this is a test of independence between the market

timer's forecast and whether or not the return on the market portfolio

is greater than the return from riskless securities.

The nonparametric test constructed around this null hypothesis takes

advantage of the fact that the conditional probabilities of a correct

forecast are sufficient statistics to measure forecasting ability and

yet they do not depend on the distribution of returns on the market

or on any particular model for security price valuation. The essence

of the test is to determine the probability that a given outcome from

our sample came from a population that satisfies the null hypothesis.

To determine this probability, we proceed as follows: Define the

following variables:
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N- = number of observations where Z„ < R
1 M —

N_ = number of observations where Z„ > R
^ M

N = N + N = Total number of observations

n^ = number of successful predictions, given Z j< R

n = number of unsuccessful predictions, given Z > R

n = n^ + n„ = number of times forecasted that Z,, < RLI M —

By definition, E(n /N ) = p and ECn^/N-) = 1 - p where E

is the expected value operator. Fron the null hypothesis, we have

that

E(nj^/N^) = p^ = 1 - P2 = ECn^/N^) , (3)

and from (3), it follows that

E[(n^ + n^)n^^ + N2)] = E(n/N) = p^ E p . (4)

"0

Both n^ /N and n„/N„ have the same expected value under our null

hypothesis, namely, p, and both are drawn from independent subsamples.

Hence, only one or the other need be estimated.

Both n and n are sums of independently and identically

distributed random variables with binomial distributions. Therefore,

the probability that n. = x from a subsample of N. drawings can
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be written as

N.-x
p(n. = x|N.,p) = p^'ci - p)

"-
; i = 1,2 . (5)

Given the null hypothesis, we can use Bayes' Theorem to determine

the probability that n = x given N, , N , and n, i.e.,

PCn = x|N, ,N„,n). Denote the event that our market timer forecasts m

times that Z„ < R (i.e., n = m) as "A" and the event that of theM —

times he forecasts that Z _< R, he is correct x times and incorrect

m - X times (i.e., n = x and n- = m - x) as "B."

P(n = x|N^,N„,m) = P(b|A), and by Bayes' Theorem, we have that

p(BlA) = P(B_+^^ P(B).
^^^J^-* P(A) P(A)

N- \ / N„ \ N -X N.-m-hc
' ' ' ' ' P"(l - P) ' P"-"(1 - P)

'

X / \ m - X,
(6)

N',
m , T , N-m

^ . P (1 - P)m

^1 ^2

\ X / \m - X

Hence, under the null hypothesis, the probability distribution

for n , the number of correct forecasts, given that Z < R, has the

form of a hypergeometric distribution and is independent of both p

and p„. Therefore to test the null hypothesis, it is unnecessary to
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estiinate either of the conditional probabilities. So, provided that

che forecasts are known, all the variables necessary for the test are

directly observable. Given N , N , and n, the distribution of n

under the null hypothesis is determined by (6) where the feasible

range for n is given by:

n^ S Max[0,n - N2] £ n^ £ Min[N^,n] E n^ . (7)

Equations (6) and (7) can be used in a straightforward fashion to

establish confidence intervals for testing the null hypothesis of no

forecasting ability. For a standard "two-tail" test with a probability

confidence level of c, one would reject the null hypothesis if

n _> x(c) or if n £ 21^^) > where x and JL ^^^^ defined to be the

-, . , . 6/solutions to the equations—

i::rj)C^)/(:>a--^

and

x=x

X

x=n, ^ ' ^

1

However, we would argue that a "one-tail" test (or at least one

which weights the right-hand tail much more heavily than the left) is

more appropriate in this case. If forecasters are rational, then it

will never be true that p., (t) + p„(t) < 1, and a very small n^ would

simply be the "luck of the draw" no matter how unlikely. It seems most
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unlikely to us that a "real world" forecaster who had the talents to

generate significant forecasting information would not have the talent

to recognize that his forecasts were systematically perverse while at

the same time, we as outside observers of those forecasts can clearly

see the errors of his ways. For such a one-tail test with a probability

confidence level of c, one would reject the null hypothesis if

n >^x*(c) where x*(c) is defined as the solution to

n - x/' \ n

"ii f'l M -./..= 1 _ c . (9)

=X*x=x

By inspection of (8a) and (9), x*(c) < x(c), and therefore, given an

observation in the right tail , a one-tail test is, of course, more

likely to reject the null hypothesis than a two-tail one for any fixed

confidence level c. However, this fact in no way implies a greater

likelihood of rejecting the null hypothesis when it is true by using a

one-tail test.

Computation of the confidence intervals for either the two-tail

or one-tail test using (8) or (9) is straightforward when the sample

size is small. However, for large samples, the factorial or gamma

function computations can become quite cumbersome. Fortunately, for

those large samples where such computations become a problem, the

hypergeometric distribution can be accurately approximated by the

normal distribution.— The parameters used for this normal approximation

are the mean and variance for the hypergeometric distribution given in

(5) which can be written as
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nN
E(n^) =

-fp (10a)

a^(n^) = [n^N^(N - N^) (N - n) ] / [N^(N - 1) ] . (10b)

Tables II.1-II.3 give values of n, for a one-tail test that

reject the null hypothesis at the 99 percent confidence level for

different values of N , N„, and n. As would be expected, the

required estimated value of p, (t) + p«(t) decreases as the size of

the total sample increases. Table II.1-II.3 also demonstrate that the

normal distribution can be an excellent approximation for determining

the confidence intervals for the hypergeometric distribution, even

for observation samples as small as 50.—

By focusing on the conditional frequencies of correct forecasts,

the test procedure described in (6) -(10) takes into account the

possibility that the market timer may not have the same skill in

forecasting up-markets as down-markets. That is, P-t(t) need not

be equal to p (t) . However, if one knows that the forecaster

whose predictions are being tested has equal ability with respect to

both types of markets, then the conditional probabilities of a correct

forecast, p, (t) and p^(t), are equal to each other, and therefore,

each is equal to the unconditional probability of a correct forecast,

p(t). That is, p (t) = P2(t) = p(t). In that case, one need only

measure the unconditional frequency of a correct forecast to test for

market timing ability where the null hypothesis of no forecasting

skills is that p(t) =0.5. The distribution of outcomes dra^TO from
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a population that satisfies this null hypothesis is the binomial

distribution which can be written as

p(k|N,p) = [Jp^a - P)^"^

(11)

where k is the number of correct predictions and N is the total

number of observations. One can use (11) in an analogous fashion to

(6) to construct either one-tail or two-tail confidence intervals for

rejecting the null hypothesis. While the simplicity of this test

may be attractive, the reader should be warned that a test which uses

(11) instead of (6) is only appropriate if there is strong reason to

believe that p. (t) = P2(t).

As is discussed at length in Part I, the unconditional probability

of a correct forecast cannot, in general, be used as a measure of

market-timing ability. Specifically, it is shown that an unconditional

probability of a correct forecast greater than a half (p(t) > 0.5) is

neither a necessary nor a sufficient condition for a forecaster's

market timing ability to have positive value. To see why it is not

sufficient, consider the case of a forecaster who always predicts

that the return on the market will exceed the return on riskless

securities. Such completely predictable forecasts, like a stopped

clock, clearly have no value. However, if the historical frequency

with which the returns on the market exceeded the returns on riskless

securities were significantly greater than a half, then this forecaster's
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unconditional probability of a correct forecast would exceed a half,

and the null hypothesis would be rejected. Indeed, if a two-tail

test were used, then all that would be required to reject the null

hypothesis is that the historical frequency of up-markets versus down-

markets be significantly different than a half. However, if this

"stopped clock" forecaster were evaluated by the test procedure

described in (6)-(10), then, independent of the relative frequencies

of up-and down-iaarkets, the null hypothesis of no forecasting

ability would not be rejected because for any sample of observations,

p (t) = and p^Ct) = 1, and hence, P-^^(t) + P2(t) = 1. Therefore,

by using the unconditional probability procedure in (11) , one is

actually testing the joint null hypothesis of no market-timing ability

and Pj^(t) = P2(t).

In summary, we have derived a nonparametric procedure for testing

market-timing ability which takes into account the possibility that

forecasting skills are different for up-markets than for down-markets.

Because the critical statistic for the test is p,(t) + p^Ct), it is

not essential that the individual conditional probabilities be

stationary through time. Rather the critical stationarity property

for the validity of Equation (6) is that their sum, p,(t) + P2(t),

be stationary which is, of course, true under the null hypothesis of

no market forecasting ability. Moreover, it is straightforward to

show that this same procedure can be used to test forecasters who have

more confidence in their predictions during some periods than they do

in other periods. One such application can be found in Lessard,



-20-

Henriksson, and Majd (1931) where the predictions of some foreign

exchange forecasters are tested using our procedure. However, it is

essential to our test procedure that the forecasts of market timing

be observable. We, therefore, now turn to the development of a

procedure to test market-timing ability when such forecasts cannot

be observed.
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III. Parametric Tests of Market Timing

To use the nonparametric procedures to test investment performance,

the predictions of the forecaster must be observable. However, it is

frequently the case v>7hen measuring managed portfolio performance that

the examiner only has access to the time series of realized returns on

the portfolio and does not have the investment manager's market timing

forecasts themselves. Wliile under certain conditions it is possible to

infer from the portfolio return series alone what the manager's

forecasts were, such inferences will, in general, provide noisy

estimates of the forecasts. These estimates will be especially noisy

if the manager's portfolio positions are influenced by his micro-

forecasts for individual securities. In this section, we derive

procedures which permit the testing of timing ability using return

data alone. Of course, there is a "cost" of not having the time

series of forecasts, and this cost is that these test procedures require

the assumption of a specific generating process for the returns on

securities. Thus, these procedures are parametric tests of the joint

hypothesis of no market timing ability and the assumed process for the

returns on securities.

As noted earlier, most of the recent empirical studies of

investment performance assume a pattern of equilibrium security returns

which is consistent with the Security Market Line of the CAPM in

addition to some assumptions about the market timing behavior. The

standard regression equation specification for portfolio returns used

in these studies can be written as
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Z (t) - R(t) = a + Bx(t) + £(t) (12)

v/here Z (t) is the realized return on the portfolio;
P

x(t) E Z„(t) - R(t) io the realized excess return on the market, and

e(t) is a residual random term which is assumed to satisfy the

conditions

E[e(t)] =

E[e(t)Ix(t)] = (13)

E[e(t) |£(t - i)] = , i = 1,2,3,...

Provided that the investment manager does not attempt (or, at

least, is unsuccessful at) forecasting market returns, the standard

least-squares estimation of (12) can be used to test for microforecasting

skills. However, Jensen (1972b) shows that it is impossible to use

this structural specification to separate the incremental performance

due to stock selection from the increment due to market timing when

the return data alone are used. The tests derived here do permit such

a separation.

As in the earlier studies, we also assume that securities are

priced according to the CAPM although the tests can easily be adapted

to accomodate a multi-factor model provided that the factors are known.

We further assume that as a function of his forecast, discretely-

different systematic risk levels for the portfolio are chosen by the fore-

caster. For example, in the case we analyze in detail here, it is assumed

ttiat there are two target risk levels which depend on whether or not
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the return on the market portfolio is forecasted to exceed the return

on riskless securities. That is, the investment manager is assumed

to have one target beta when he predicts Z (t) > R(t) and another

target beta when he predicts that Z (t) <^ R(t). In Section IV, we

indicate how the test procedures can be adapted to the more general

case of multiple target risk levels.

Let ri-, denote the target beta chosen for the portfolio by

the manager when his forecast is that Z (t) _< R(t) and let r]

denote the target beta chosen when his forecast is that Z (t) > R(t)

.

If 6(t) denotes the beta of the portfolio at time t, then

3(t) = ri for a down-market forecast and 3(t) = T]^ for an up-market

forecast. If the forecaster is rational, then ri > 1-, • Of course,

if 6(t) were observable at each point in time, then, as discussed

in Fama (1972), the market timing forecast is observable, and one

could simply apply the nonparametric tests of the previous section.

However, if beta is not observable, then 3(t) is a random variable.

Under the assumption that beta is not observable, let b denote the

unconditional (on the forecast) expected value of 3(t) • Then

b = ^iP;^\ + (1 - ppn2] + (l - q)[P2^2 + (^ - Pz^^l^ ^^^^

where q is equal to the unconditional (on the forecast) probability

that Z„(t) < R(t). In Part I, the distribution from which q is

computed was called the prior distribution. If we define the random

variable 0(t) as equal to [6(t) - b] , then 9(t) is the unanticipated

component of beta, and its distribution, conditional on the realized
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excess return on the market, x(t), can be written as:

Conditional on x(t) j< 0:

6=9, where

®1 " ^'^1 ~ n2Hl - qPj, - (1 - q)(l - P2)] with prob = p^

= [ri2 - nj^][qP]^ + (1 - q)(l - P2)] with prob = 1 - p^

and

Conditional on x(t) > 0:

6 where

(15a)

(15b)

62 = [112 - n^][qP-,^ + (1 - q)(l - P2] with prob = P2

= [\ - ri2Hl -
qpj^

- (1 - q)(l - P2)] with prob = 1 - p^

From (15), it follows that the conditional (on x(t)) expected

value of 6 can be written as

E[e x] = 6-
^ (16a)

and

= (1 - q)[P;^ + P2 - l][ni - ^2] . for x(t) <

E[elx] = e„
^

(16b)
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The per-period return on the forecaster's portfolio can be

written as

Z (t) = R(t) + [b + 0(t)]x(t) + X + e (t) (17)
P P

where A is the expected increment to the return on the portfolio

from microf orecasting or security analysis, and e (t) is assumed

to satisfy the standard CAPM conditions given in (13)

.

Under the posited return process for the portfolio given in (17)

,

a least-squares regression analysis can be used to identify the

separate increments to performance from microforecasting and

macroforecasting. The regression specification can be written as

Z (t) - R(t) = a + Bix(t) + 3„y(t) + e(t) (18)
P 1 ^

where

y(t) E Max[0,R(t) - Zj^(t)] = Max[0,-x(t)]

The motivation behind the specification given in (18) comes from

the analysis of the value of market timing presented in Section IV of

Part I. There it was shown that up to an additive noise term, the

returns per dollar invested in a portfolio using the market timing

strategy described here will be the same as those that would be

generated by pursuing a partial "protective put" option investment

strategy where for each dollar invested in this strategy,

[poHo + (1 - Po)n-,] dollars are invested in the market;

[p + p - l][ri', - rill put options on the market portfolio are12 ^1
purchased with an exercise price (per dollar of the market) equal
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to R(t); and the balance is invested in riskless securities. The

value of the market timing (per dollar of assets managed) is that, the

[p + p - l][ri^ ~ T-, ] puts are obtained, in effect, for no cost.

Note that y(t) as defined in (13) is exactly the return on one such

put option.

From (17), the expected return on the portfolio, conditional

on X > 0, can be written as

E[Z |x > 0] = R + (b + e2)E[x|x > 0] + X , (19a)

and the expected return, conditional on x < 0, can be written as

E[Z Ix < 0] = R -!- (b + 0,)E[x|x < 0] + X (19b)
p '

— 1 —

where bars over random variables denote expected values.

For the analysis of the regression coefficients and error term

in (18) , it will be convenient to express the relevant variances and

covariances of the regression variables in terms of the expected

values and variances of the random variables x, (t) and x-j(t) which

are defined by

Xj^(t) E Min[0,x(t)]

(20)

X2(t) = Max[0,x(t)]

2
If Var[x.(t)] = a. , i = 1,2, then we can write the variances and

covariances of the regression variables as
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Var[y(t)] E o^ = O^

2 11--
Var[x(t)] - 0^ = a -Hj^-Zx X2

Cov[x(t),y(t)] E a = x^x^-a^ (21)

Cov[Zp(t),x(t)] = Qp^ = (b+e^)(aJ-x^X2)+(b+e2)(a2-x^X2)

Cov[Z^(t),y] = a = (b+ejx,x--(b+e-,)a?
P py •^ X z -L -1-

From (18) and (21) , it follows that the large sample least squares

estimates of 6-, and 3^ can be written as

2
O Q - Q O

piim I = p"/^ py "y

a a - a
x y xy

b + 62 (22)

P2n2 + (1 - P2)i1^

and
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2
o a - a o

00 - o
X y xy

(23)

[p-^ + P2 - i](n2 - n-,^)

From (22), Plim B = E[B(t)|x(t) > 0], and it is also equal to

the fraction invested in tlie market portfolio in the option strategy

used in Section IV of Part I to replicate the market timing strategy.

Q„ is a measure of the investment manager's market timing ability.

The true B will equal zero if either the forecaster has no timing

ability (that is, if p, (t) + p^(t) = 1) or he does not act on his

forecasts (that is, if ri„ = ri-, ) • With reference to the replicating

option investment strategy, from (23), Plim B^ is equal to the number

of "free" put options on the market provided by the manager's market

timing skills. Indeed, as shown in Part I, the value of market timing

skills per dollar of assets managed is equal to [p. + p„ - l](r|^ - n-,)g(t)

where g(t) is the market price of such a put. Thus, B«g(t) is

an estimate of the value of the market timing ability of the manager.
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Formally interpreted, a negative value for the regression

estimate g would imply a negative value for market timing. However,

a true negative value for 3„ would violate the rationality assumptions

of P-|^(t) + P2(t) >_ 1 ^^^ Ho i Hi • Hence, as was discussed for the

nonparametric tests in Section II, the reader should consider the

relative merits of a one-tail versus the standard two-tail test of

significance with respect to rejecting the null hypothesis that g„ = 0.

The increment to portfolio performance from microforecasting can

also be measured using regression Equation (18) . The large sample

9/
least squares estimate of a can be written as—

Plim a = E(Z ) - R - Plim § x - Plim § y

(24)
= X

Hence, from (23) and (24), regression Equation (18) can be used to

identify and estimate the separate contributions of microforecasting

and macroforecasting to overall portfolio performance.

To complete the analysis of (18) , we now investigate the properties

of the error term e(t) being careful to take into account the

differences between the actual betas and their estimates. That is,

if the forecaster strictly follows the posited behavior of two discrete

risk levels n-i ^^'^ H^* then the actual B(t) of the fund will never

be equal to the estimated B unless, of course, he is a perfect

forecaster.
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Define the variables:

A, = 1 if X <^ and the market timer's forecast is correct

= otherwise

V - 1 if X <^ and the market timer's forecast is correct

= otherwise

A™ = 1 if X > and the market timer's forecast is incorrect

= otherwise

V„ = 1 if X > and the market timer's forecast is correct

= otherwise

It follows immediately that:

E(A^) =
p^ E(V^) = 1 -

pj^

(25)

E(A2) = 1 - P2 I^CV^) = ?2

From (13), each period's estimation error £ can be written as;

£ = A^(l-p^) (nj^-n2)xj^-V^p^(n^-ri2)x^+A2P2(n^-ri2)x2-V2(l-P2) (\-^2^^2^%

(26)

where £ includes any error term resulting from microforecasting.

Since by definition, microforecasting is independent of x, £ is

independent of x. It follows by the Law of Large Numbers that as the

number of observations, N, gets large.
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y^ y-^ Y^i and T ~
L^ N

will all

approach their expectation. Therefore, from (26)

lim
N-K50

= [p^(i - Pj^Xn^^.- n2) - (1 - Pi)Pi(n-,^ - 112)]^^

+ [(1 - P2)P2(^i " ^^2^ ~
^Z^-"-

" P2^
'^l

" ^2''^^2

+ lim
N-KO

£ /N
p

(27)

lira =

Thus, for large samples, the coefficient from lease squares estimation of

(18), plus the realized excess return on the market, will give us an

10/
unbiased estimate of the portfolio return.

—

As discussed, the motivation behind the regression specification

(18) was the analysis in Part I which showed the correspondence

between market timing investment strategies and certain option

investment strategies. However, there is alternative, but equivalent,

specification which some may find to be more intuitive. Namely, by

a linear transformation of (18) , we can write this alternative

regression equation as

Zp(t) - R(t) = a' + 6{x^(t) + B^X2(t) + e (25)

where x^ (t) and x„(t) are as defined in (20). Because x, (t) =
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and x„(t) = x(t) if x(t) > 0, 3' has a rather intuitive interpreta-

tion as the "up-market" beta of the portfolio. Similarly, because

X, (t) = x(t) and x„(t) =0 if x(t) <_ 0, B' can be interpreted

as the "down-market" beta of the portfolio. Indeed, the large sample

properties of the regression estimators 6' and ^' fit these

intuitive interpretations (at least in the sense of expected values).

That is.

and

Plim B[ = E[e(t) |x(t) < 0]

= Pj^n^ + (1 - P]^)n2

Plim e>2 = E[6(t)|x(t) > 0]

(26a)

= p^r]^ + (1 - P2)n^ , (26b)

where E[B(t) |x(t) > 0] = b + 9^ and E[B(t) |x(t) < 0] = b + 0^ . The

test for market timing ability using this specification would be to

show that 3' is significantly greater than Q . That is, show that

the expected "up-market" beta of the portfolio is greater than the

expected "down-market" beta of the portfolio. The large sample

properties of a' are the same as for a in (18) : namely,

Plim a' = X .



-33-

IV. Summary and Extensions

Provided that the forecaster only attempts to predict the sign

of Z (t) - R(t) but not its magnitude and provided that his

forecasts are observable, a procedure for testing market timing has

been derived which does not depend on any distributional assumptions

about the returns on securities. The test includes the possibility

that the forecaster's confidence in his forecasts as measured by

(p ,p ) can vary over time, and indeed, if such variations are

observable, then the test can be refined to measure his forecasting

ability for each such variation.

In the case where the forecaster's predictions are not observable,

a parametric test procedure was derived which permits separate

measurements of the contributions to portfolio performance from

market timing and security analysis. As is apparent from the analysis

of the error term in Section III, this test will accomodate the case

where the two-target risk levels chosen by the manager vary over time

provided that these variations are random around a stationary mean.

The test is also applicable to the case where the forecaster

selects from more than two discrete systematic risk target levels, as

long as the different levels are based on differing levels of

confidence in the forecasts and not differing expectations of the

level of the return. In this case, the large sample least squares

estimates of g^ and 3„ represent a weighted average of the

different risk levels.

The test procedures presented here can be extended to evaluate
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the performance of a market timer who segments his prediction of x(t)

into more than two discrete regions. For example, a forecaster might

have four possible predictions:

x(t) < - 10%

-10% < x(t) <

< x(t) < 10%

10% < x(t)

We briefly illustrate how the analysis would be applied to such multiple

regions for the parametric test case. As in the two-region case, it is

assumed that the probability of a particular forecast will only depend on

the region in which x(t) falls. However, there are nov/ more than two

possible forecasts. Specifically, we assume that there are n different

regions that the forecaster might predict and define p . as the

probability that the forecaster's prediction was that x(t) would be

in the j region, given that x(t) actually ended up in the i

region. The only constraint on the conditional probabilities is

n

that y^ p.. =1, i = l,2,...,n. The return on the forecaster's

j=l

portfolio can be defined as in Section III except that now

i=l j=l

\jhere 6. is defined as the probability that x(t) will end up in

region i and n • is the chosen level of systematic risk when the
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forecast is that x(t) will end up in region j

.

The regression equation corresponding to (25) in the two region

case can be written as

Z_ - R = a + y* 3^x^ + e

where

P
i=l

X. = X if X is in region i

= otherwise

The large sample least squares estimates of Q and a are;

piim g. =
f; p. .n.

j=i

Plim a = X

From this analysis, it follows that for sufficiently finely-partitioned

regions (that is for large enough values of n) , it is at least in

principle, possible to separate the incremental returns from micro-

and macroforecasting without any restrictions on the distribution of

forecasts. All that is required are the actual returns from the

market, the portfolio, and riskless securities.
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FOOTNOTES

*Earlier versions of the paper were presented in seminars at Berkeley,
Carnegie-Mellon, University of Chicago, Dartmouth, Harvard, University
of Southern California, and Vanderbilt; we thank the participants for
their comments. Aid from the National Science Foundation is
gratefully acknowledged.

1. Merton (1981). We refer to this paper throughout as "Part I."

2. As a tautology, superior forecasting skills must be based on
information that is not reflected in security prices. Therefore, if

such information is obtainable, then security prices will not reflect
all available information, and the market will not be efficient. Fama

(1970) provides an excellent discussion of both the Efficient Markets
Theory and various attempts to test it.

3. Cf. Fama (1972).

4. The "Capital Asset Pricing Model" (CAPM) refers to the equilibrium
relationships among security prices which result when investors have
homogeneous beliefs and choose their portfolios based on a mean-variance
criterion function. For the original derivations, see Sharpe ((1964),
Lintner (1965), and Mossin (1966). For a comprehensive review of the

model, see Jensen (1972a).

5. See Jensen (1972b), p. 317-318. This result is also derived in

Treynor and Black (1973).

6. Because the hypergeometric distribution is discrete, the strict

equalities of equations (8a) and (8b) will not, in general, be attainable.
Therefore, in (3a), x should be interpreted as the lowest value of x for

which the summation does not exceed (1 - c)/2. In (8b), x should be

interpreted as the highest value of x for which the summation does not

exceed (1 - c)/2.

7. The large-sample cases where direct computation of the confidence

intervals using (8) or (9) are most cumbersome are when N^ ~ N2 or

n« N/2. In these cases, the normal approximation will be quite good

for even moderately large samples. See Lehmann (Theorem 19, 1975) for a

general proof. The normal approximation will not be a good one even

for quite large samples in those cases where there are substantial

differences between N^ and N2 or between n and N/2. However, it

is precisely in these latter cases where direct computation using (8)

or (9) is not cumbersome even for very large samples.
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8. As discussed in footnote 7, this excellent approximation should only
be expected to obtain when Ni « N2 and n « N/2.

9. When testing for forecasting ability, the relevant portfolio returns
are those earned before any deduction for management fees. If one uses
the returns earned after the deduction of management fees and if the
fees charged can be expressed as a fixed percentage of assets, m, then
Plim a = A - m.

10. Although unbiased, Ordinary Least Squares estimation is not efficient
because 3(t) is not stationary and therefore, the standard deviation of

the error term is an increasing function of |x(t) |. To improve the

efficiency of the estimates, one could use Generalized Least Squares
estimation to correct for this heteroskadasticity

.
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