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Abstract

We study the problem of optimal consumption and portfolio choice for a class of utility

functions that capture the notion that consumptions at nearby dates are almost perfect sub-

stitutes. The class we consider excludes all time-additive and almost all the non-time-additive

utility functions used in the literature. We provide necessary and sufficient conditions for a

consumption and portfolio policy to be optimal. Furthermore, we demonstrate our general the-

ory by solving in a closed form the optimal consumption and portfoho policy for a particular

felicity function when the prices of the assets follow a geometric Brownian motion process. The

optimal consumption policy in our solution consists of a possible initial "gulp" of consumption.

or a period of no consumption, followed by a process of accumulated consumption with singular

sample paths. In almost all states of nature, the agent consumes periodically and invests more

in the risky assets than an agent with time-additive utility whose felicity function has the same

curvature and the same time-discount parameter. We also show that the ICAPM of Merton

holds and the CCAPM of Breeden does not. In addition, we compute the equilibrium riskless

rate in a representative investor economy with a single physical production technology whose

rate of return follows a Brownian motion.

'We are grateful to Hua He for pointing out an error in an earlier version, and to Darreil Duffie. John Heaton,

Jean-Luc Vila and Thaleia Zariphopoulou for helpful discussion.



1 Introduction and Summary 1

1 Introduction and Summary

We study the problem of optimal consumption and portfolio choice for an agent whose prefer-

ences over consumption patterns are given by:

where

j u(z(t),t)dt^V{W{T))\, (1)

io-

and where z{t) is the process of average past consumption derived from the consumption process

C{t) which denotes the ^o<a/ amount of consumption till time t. The parameter J is a weighting

factor, -(0~) > is a constant, and \V(T) is the random wealth left at time T . Both u and V

are continuous and increasing functions. Furthermore. V is concave and u is concave in its first

argument.

Preferences for intertemporal consumption represented in (1) come from a class of prefer-

ences analyzed by Huang and Kreps (1989) and Hindy and Huang (1989a). Such preferences

exhibit the notion that consumption at nearby dates are almost perfect substitutes. This no-

tion is absent in the time-additive representations of preferences which are widely used in the

finance and economics literature. Many researchers have recently used non-time-additive utili-

ties; see. for example. Epstein (1987), Duffie and Epstein (1989), Epstein and Zin (1989), who

study generalizations of the utility form introduced by Koopmans (1960) and Uzawa (1968) in

the context of continuous time equilibrium models, and Constantinides ( 1988). Detemple and

Zapatero (1990). Heaton (1990), and Sundaresan (1989) who study habit formation models.

The utility representation in (1) differs from most specifications in the non-time-additive

preferences literature in one aspect which is very crucial in capturing the notion of local sub-

stitution. In most of the currently used non-time-additive models, the index of instantaneous

satisfaction, or felicity, at any time depends explicitly on the consumption rate at that time.

Huang and Kreps (1989) and Hindy and Huang (1989a) show that when the felicity function

depends explicitly on current consumption rates, the resulting preferences do not exhibit local

substitution. In essence, the marginal utility for consumption at any moment is too sensitive

to the current consumption rate and hence the agent would not tolerate delaying or advancing

consumption even for a very small period of time. The utility function in ( 1 ), on the other hand,
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has the key feature that the felicity function at any time depends only upon an exponentially

weighted average of past consumption - one derives satisfaction only from past consumption.

This feature is the main difference between the utility function we study here and those studied

by other researchers, except for Heaton (1989, 1990).

The specification of utility in ( 1 ) leads to an economically interesting consumption behavior

and also to a technically challenging optimization problem. The optimal consumption behavior

for the agent with preferences given by (I) is periodic. The agent does not consume all the time

as most models predict but only periodically. Most of the time the agent derives satisfaction

from past consumption. When the marginal value of average past consumption, r, is higher

than the marginal value of wealth, a situation that arises only periodically, the agent consumes.

Otherwise, the agent refrains from consumption.

From the technical point of view, the standard dynamic programming equations of the

Bellman-Jacobi type do not apply since a heuristic derivation of these equations would suggest

a bang-bang control policy, but there is no natural upper bound on consumption. We follow a

different approach to establish optimaUty.

In this paper, we provide necessary and sufficient conditions for a consumption-portfolio

policy to be optimal. We show that it is necessary and sufficient that the value function, or the

maximum attainable utility starting from any state, satisfies a differential inequality which can

be viewed as an application of the Bellman optimality principle. In particular, the conditions

require that at all times the marginal value of wealth is at least as large as (f3 times) the

marginal value of the average past consumption. Furthermore, consumption should only occur

when these marginal values are equal.

We also construct a closed form solution of the optimal consumption problem for a particular

class of felicity and bequeath functions in the case when the prices of the risky assets follow

a geometric Brownian motion. The idea of the optimal solution is to keep the ratio — less

than a critical number, say k' , and consume only when — — k'. Because of uncertainty about

asset returns, however, an interesting phenomenon appears. The ratio — is subject to random

shocks because of the randomness of the return on the risky assets. Furthermore, the sample

path properties of the Brownian motion lead to peculiar behavior of the quantity — during

the times when it is very close to the critical number k' . The quantity ^ fluctuates so fast

that whenever it hits the value k' it bounces back and forth to hit it again uncountably infinite
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number of times. This results in a process of optimal cumulative consumption with nontrivial

increasing sample paths in which consumption occurs only periodically.

We provide a complete solution for the optimal consumption and portfolio rules in this

example and show how the solution changes with changes in the parameters of the problem.

In particular, we compare the behavior of our agent to that of an agent with a time-additive

utility whose felicity function has the same curvature and the same time-discount parameter.

We show that the agent with local substitution preferences behaves in a /ess risk averse manner,

in the sense that he invests higher proportions of his wealth in the risky assets. This behavior

is reinforced by lower riskless rates, lower time-discount rate and higher effects of substitution

(lower 3).

It is worthwhile to mention that one obtains periodic consumption behavior in time additive

models when the marginal felicity of consumption evaluated at zero is finite. In such a case,

an agent with such preferences will refrain from consumption once his wealth falls below a

critical, possibly time varying, level; see Cox and Huang (1989). In contrast, in our analysis,

the optimal consumption is periodic, even when the felicity function has infinite slope at zero.

In addition, in making his consumption choice, the agent considers both his wealth and his

consumption experience. Local substitution produces important effects of past consumption on

current utility.

We also study the implication of the agent's behavior on the equilibrium in asset markets

and on the determination of the riskless rate. We show that the agent's portfoho choice implies

two-fund separation and, hence, the Capital Asset Pricing Model holds. On the other hand, the

Consumption Capital Asset Pricing Model fails to hold since the marginal utility of consumption

is no longer connected to the marginal utility of wealth. Similar observations were made by

Bergman (1985) and Grossman and Laroque (1990). We also compute the riskless rate in

equilibrium in the presence of a production technology with constant stochastic returns to

scale. We show that the equilibrium risk premium will be lower in the case of local substitution

than in the case of time-additive utility. This result is consistent with the less risk averse

behavior of the agents with local substitution.

The analysis of this paper suggests that IocjlI substitution alone leads to lower risk premium

on equity. Many researchers, most notably Constantinides (1988), have shown that habit for-

mation leads to /ii'g/ierrisk premium on equity. Habit formation, which is complementarity over
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longer periods, can be combined with local substitution to produce interesting and rich behavior

and asset price dynamics. Recent empirical evidences of Eichenbaum and Hansen (1990), Gal-

lant and Tauchen (1989), and Heaton (1989, 1990) suggest that there is substitution over short

periods. In particular, Heaton ( 1990) showed that, after correcting for the problem of temporal

aggregation, the habit formation alone does not provide significant explanation power for asset

pricing over the time-additive models; while local substitution does. In addition, given local

substitution, habit formation in the longer horizon becomes more significant in its explanatory

power. These imply that a model which combines local substitution and habit formation is

worth pursuing. In fact, this is the next step in this research program.

The rest of this paper is organized as follows. Section 2 sets up the consumption and portfoUo

problem under uncertainty in continuous time. Section 3 provides a heuristic derivation of the

necessary conditions for optimality, whereas Section 4 shows that these conditions are sufficient.

Section 5 provides a verification theorem for an infinite horizon program. In Section 6, we solve

the optimal consumption and portfolio problem in closed form for a particular felicity function

when the prices of risky assets follow a process of geometrical Brownian motion. Section 7

provides some comparative statics and equilibrium implications and computations of the riskless

rate are presented in section 8. Section 9 contains concluding remarks.

2 Formulation

Consider an agent who lives from time t = to t — T m a. world of uncertainty where there

is a single consumption good available at any time between and T. The primitive source of

uncertainty in the agent's world is modeled by a complete probability space (^,T,P). Over

the agent's life span [0,T], there is an AZ-dimensional standard Brownian Motion defined on

the probability space and denoted by 5 = {Bm{t);t £ [O.T],m = 1,2, . . . ,.iVf }. Information is

revealed to the agent via the realizations of this Brownian Motion. We model this structure of

information resolution by F = {J^u t S [O'?"]), the family of increasing sub-sigma-flelds of/", or

the filtration, generated by B. We assume that F is complete by assuming that Tq contains all

the P-nuU subsets and we note that F is right-continuous. We also assume that all uncertainty

is resolved by time T, or Tt = T . On the other hand, Tq is almost trivial since for an M-

dimensional standard Brownian Motion, 5(0) = a.s} AU processes to be discussed will be

HVe use the notation a.s. to denote statements which are true with probability one.
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adapted to F'.

The agent can consume the good at "gulps" at any moment, and can consume at finite rates

over intervals. She can also refrain from consumption altogether for some time. Moreover, the

sample path of her cumulative consumption at any time t can have a singular component, that

is a continuous nontrivial increasing function whose derivative is zero for almost all (.

Let X+ be the space of all processes x whose sample paths are positive, increasing and right

continuous. Recall that an increasing function x(u;,.) has a finite left-limit at any t 6 (0,T]

denoted by xl^.t~). We will use the convention that x(^%0~) = a.s. Since left limits exist

for the sample paths of any x G X+, a jump of x{u, .) at t is Aitw. r) = x{u), r) - x{u;, r~).

The stochastic process C 6 X+ is a consumption pattern available to the agent with C(u^, t)

denoting the cumulative consumption from time to time t in state uj. For any w' G fi. the

points of discontinuity of C(u^, I) are the moments when the agent consumes a "gulp". Moreover,

C(u;,t) has an absolutely continuous component over the intervals during which the agent is

consuming at rates C'{uj,t), where C'{iJ,t) denotes the consumption rate at time t in state uj.

Finally, C(u>,t) may have a singular part. Singular components of consumption processes will

play an important role in our analysis of the optimal consumption policy.

The agent has the opportunity to invest her wealth in a frictionless securities market with

N + 1, N < M, long lived securities, continuously traded, and indexed by n - 0.1,2 .V.

Security n, where n - 1,2,.....V, is risky, pays dividends at rate PnlO^ a-^d sells for Sn[t),

at time t. We assume that Pn(0 can be written as p„(5(0-0- where we have used S[t) to

denote the column vector [5i(t), Si{t), . .
. , 5a/(0] ^ Security is locally riskless. does not pay

dividend, and sells for B{t) = exp{/o r{S{s)^s)ds) at time i. where 7-(5, i) is the instantaneous

riskless interest rate at time t and r(-,-) is Borel measurable.

We will use the following notation: If /z is a vector in J?^, let |/x| be the Euclidean norm of

\i. In addition, if a is a matrix, let \a\^ denote tr((TCT^), where tr is the tract of a square matrix.

The price process for the risky securities follows a diffusion process given by:

S(t)+ f p{S(s),s)ds = 5(0)+ [ niS{s),s)ds-\- f a{S{s),s)dBis) Wte[0,T] a.s. (3
Jo Jo Jo

^A process K is a mapping Y.Q x[0,T] — ^ that is measurable with respect to .T® S([0, T]), the product

sigma-field generated by F and the Borel sigma-field of [0, T]. For each u/ e n, Y{uj, .): [0, T] — D? is a sample
path and for each t 6 [0, T], Vf, (): H — 9? is a random variable. The process Y is said to be adapted to F if for

each ( € (0,7^, Y(t) is .Ft-measurable. This is a natural information constraint: the value of the process at time

t cannot depend on information yet to be revealed.

The superscript denotes transpose.
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Assume that this diffusion process is strictly positive with probability one and that for each

integer m > 0, there exists a constant c^ so that £'[|5(0P'"] < e'^'"'.'* For brevity of notation

we will sometimes use fi{t), p(t), a(t), and r(t) to denote fi(S{t),t). p(S{t),t), a{S(t).t) and

r(S{t),t), respectively.

An investment strategy is an iV-dimensional process A = {.4(0 = (Ai(0, A,x{t))\t 6

[0,T]}, where An(t) denotes the proportion of wealth invested in the n-th risky security at time

t before consumption and trading. The proportion invested in the riskless security is l-.4(i)^l,

where 1 is a vector of I's. A consumption plan C S X+ is said to be financed by an investment

strategy .4. if

W(t) = WiO) + l^[wis)r{s) + Wis)A^{s)Is-As)iiLis) - r(s)S{s))) ds - C(r
)

+ J^W(s)A^(s)[s-^{s)a{s)dB{s) V< e [0,T] a.s.,

where W{t) is the wealth at time t before consumption and Is-i(t) is an N x N diagonal matrix

with the n-th element on the diagonal being equal to S{t)~^. Note that the wealth process has

left-continuous sample paths and that VF(f+) = ^V{t) - i\C{t).

The agent derives satisfaction from her past consumption and from her final wealth. The

felicity function at time t is defined over an exponentially weighted average of past consumption

z{t) = z(0-)€-^* + ^3 f e->^^'-'UC(s) a.s., (5)
No-

where z{0~) > is a constant, /3 is a weighting factor, and the integral of (5) is defined path

by path in the Lebesgue-Stieltjes sense. Note that the lower limit of the integral in (5) is 0~.

to account for the possible jump of C at f = 0, and that z is a right continuous process which

jumps whenever C does. Moreover, z has a singular component whenever C does. Observe that

higher values of imply higher emphasis on the recent past and less emphasis on consumption

in the distant past. It has been shown by Hindy and Huang (1989) that this kind of preferences

views consumption at nearby dates as close substitutes: delaying or advancing consumption

for a very small period of time, without violating the condition that consumption at t depends

only on information available up to t, has a very small effect on the agent's total satisfaction.

A consumption plan C and the investment strategy A that finances it are said to be ad-

*The latter can be ensured by a growth condition on (/i — p) and on u; see Friedman (1975, theorem 5.2.3)
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missible if (4) is well-defined*, and for all integers m > 0. there exists km so that, for all

t,

E[\C{t)\'^'^] < e*-'

(6)

£'[|H^(OP'"] < e^-'.

Denote by C and A the space of admissible consumption plans and trading strategies, respec-

tively.

Formally, the agent manages her wealth dynamically to solve the following program:

supcec E [jj u(z(t),t}dt + V{W{T^))

s.t. C is financed by Ae A with W{0) - Wq, (7)

and ir(<) - AC(i) > V^ G [0,r],

where \Vq is the initial wealth of the agent. u(-,t) is the felicity function at time t. and V'(-) is

the felicity function for final wealth. Note that the second constraint of (7) is a positive wealth

constraint - wealth after consumption at any time must be positive.

One objective of this paper is to derive necessary and sufficient conditions for a consumption

pattern C E C financed by some A G ^ to be optimal. To achieve this end, we will also consider

the utility maximization problem of the agent at time t > given that her wealth is W and

the exponentially weighted past consumption is z, both before consumption at that time. We

define^

J(iy,z,5,0 = supcec. E, [// u{z{s),s)ds + V{WiT^))\

s.t. C is financed by .4 e ^( with H''(0 = It^, (8)

and VF(5) - AC(5) > V5e[<.r],

where Ct and At are the spaces of admissible consumption plans and trading strategies starting

from t with the convention that C(- = for all C € Ct, the admissibility is defined by (6) with

t replaced by s, for all 5 G [<,T], and

z{s) = ze"*^'*-'' +13 r e-'^^''-'UC{v).

Note that J{W{t),z{t ),S{t),t) is the agent's optimal expected life time utility at time t before

her consumption purchcises at that time and J{W(t'^),z{t),S{t),t) is her optimal expected life

For this we mean both the Lebesgue integral and the Ito integral are well-defined. When A(t) is a feedback

control depending on {\V{i), z{t~), S{t),t) and C{t) depends on the history of (VV'.S), we mean there exists a

solution W to the stochastic differential equation (4).

^ Et denotes expectation conditional on /*!.
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time utility after the consumption purchases at time t. Often, we will refer to J as the value

function.

Note that if C is a solution to (7) financed by .4, then Ct = {C{s) - C(t~};s G [^T]} is a

solution to (8) financed by .4 restricted to [t,T].

3 Heuristic Derivation of Necessary Conditions

We will use Bellman's optimality principle to derive necessary conditions about J assuming

that it has certain smoothness properties. One difficulty that arises in this endeavor is that the

usual Bellman equation in dynamic programming is derived when the admissible consumption

plans are purely at rates and are feedbaclc controls. Here, cumulative consumption can be

in gulps and may have singular parts. Moreover, if the cumulative consumption has singular

components, it cannot be expressed in feedback form. Thus, our derivation of the necessary

conditions will be heuristic in nature.

First, we observe that if a consumption gulp of size A is prescribed at time t when W{t) — W,

z{t~) — z, and S{t) = S, we must have

J{W,z,S,t) = J{W- A,z + (3A,S,t). (9)

This is so because both quantities are equal to

Et[J u(z{s),s)ds + V{W(T+))],

where {2:(5);5 £ [^T]} and W{T'^) are defined along the optimal path on [t,T]. Moreover, the

size of the gulp should be chosen to maximize J . Thus, we must have

Jw{W - ^,z + i3A,Sj) ^ I3J,{W - X- + I3A,SJ), (10)

where Jw and Jz denote the first partial derivatives of J with respect to its first and second

arguments, respectively.

We now show that (9) and (10) imply that J\v must be equal to fSJ, at any (\V,z,S,t)

where a gulp of consumption is prescribed. Differentiating (9) with respect to W while noticing

that A is an implicit function of VV and z defined through (10) gives

dA
Jw{W,z,S,t) = [-JwiW-A,z + (3A,S,t) + i3J,{W-A,z + l3A,Sj)]dw
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+7vv(ir- A.z + /3A,5,i)

= Jw{\y - ^.z + ^3A.SJ),

where we have used (10) to get the second equality. Similarly, we have y.(U^;.5. = J;(ir -

A, 2 + a3A,5,0- Given (10), we then have

Jw{W,z,Sj)^3J,iW,z,S,t) (11)

at {W,z,S,t) where a consumption gulp is prescribed.

Second, assume that J is sufficiently smooth for the generalized Ito's lemma to apply' . For

any time t < T, the principle of optimality in dynamic programming and the generalized Ito's

lemma imply that

= maxjc.A Et[jl^^ u(z(s).s)ds + //+^[2?^ J(5) + J,{s)]ds

+ /;+^[/3J,(3) - Jw(s)]dCis) + E,[J{r,^) - J{r,)] - Z.[Jw{t^)AW{t,) (12)

+ J,(t,)Az{t,)]^ a.s..

The generaJized Ito lemma we will use throughout can be found in Krylov (1980, theorem 2.10.1) and

Dellacherie and Meyer (1982, VIII. 27): Fix a consumption policy financed by a trading strategy and define the

proportion invested in risky securities A{t) accordingly. Let S{t),W{t), z(i} follow the dynamics in (3), (4) and

(5), respectively. Let /(W^, 2, 5, t): R'^'*'' x [O.T] — » be once continuously differentiable on 3?''^+' x [0, T] in

all of its arguments and twice continuously differentiable on 3?
''"^ x [0, T] in its first N + 2 arguments, except

possibly on a smooth manifold M. (A smooth manifold M in 'R^'*'^ x [0,7^ is given by: M = < (W,z,S,t) €

«^+' X [O,T]:0,(W,z,S.t) = 0, / = 1,2 l\. where 0,(^^' -. ^S, <):
»'^+^ x [0, 7] — » , / = 1, 2 L, with

Z- < A' + 3, is continuously differentiable in all its arguments.) Then, for all optioned limes t < T, we have:

f{W(t*),z{t),S(t),t) = f{W(0),z{0-),S(0).0)+ f [V^f{s) + f,{s)]ds
Jo

+ / [fw(s)W{s)A(sf Is-^i^Ms) + fs(sf a(3)] dB(s)
Jo

+ I (0Us)-fw(s))dC(s)
Jo-

+ ^A/(r.)-^[/w(r,)AVV(r,)+Mr.)Jiz(r.)]a.3.,

I I

where ri.ri,..., are the jump points of C on [O.t], where aJl the partial derivatives are evaluated at the points

{W{t), z(t~),S(t),i), where V* f is the differential generator of / associated with the trading strategy and is

given by:

+2/^5(^^<^'^''/5-"-1) + 'M/s5<T(t"') .

and where A/(r,) = /{VV(r+),2(r.),5(r.),r.)-/(VV(r,),r(r.-),S(r.),r.).
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where dC denotes the consumption plan on the time interval [t, ( + A ), r, is the i-th jump point

prescribed by dC on [t,t + A), J(s) and its derivatives are evaluated at ( VV(s),z(5~ ), 5(5),5),

V'^J is defined in footnote 7. and we have assumed without loss of generality that the Ito integral

appearing in Ito's lemma is a martingale and thus vanishes when the conditional expectation

is taken.

Since no consumption is always feasible, putting dC = in (12) and letting A decrease to

zero gives

> u(:{t),t) + m^\[V-'^J(t)] + Jt[t). (13)
A

This relation must hold for all values of W. :, S, and t.

Suppose t is not a point for consumption gulps. Then for small enough A. by the right-

continuity of C, there will not be any gulps on [t,t + A). For a nontrivial consumption dC,

with no discontinuities on [t,t + A), to maximize the right-hand side of (12) for small enough

A, it must be the case that Jw{t) = i3Jz(t). This, together with earlier discussion when there

is a consumption gulp at f, implies that nontrivial consumption, independent of its form, can

only occur at time t when (5Jz{W{t),z{r),S(t).t) = JwiW{t),z(t-),Sit),t). Moreover, when

optimal cumulative consumption is continuous on [t,t + A), standard arguments in dynamic

programming show that (13) holds as an equality at t when A decreases to zero.

Next suppose that optimal consumption plan prescribes zero consumption on [i, i + A). For

zero dC to maximize the right-hand side of (12) for small enough A, it must be the case that

i3J^{W{t),z(t-),Sit),t) < Jw(W{t],z(t-),S{t)J). Moreover, given that dC = Is the optimal

consumption plan at t, (13) holds as an equality.

In sum, we have derived the following necessary conditions for optimality:

consumption gulp at t
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In additions to the above necessary conditions, it is clear that J must satisfy the following

boundary conditions:

JiW,z,S,T) = ViW), (15)

J{0,z,Sj) - / u{ze-^^'-'\s)ds + V{0). (16)

The first boundary condition is implied by the fact that any optimal consumption plan must

involve no gulps at time T since such a gulp cannot contribute to the agent's satisfaction from

increases in z and. furthermore, it reduces the terminal wealth. The second condition is implied

by the constraint that wealth at any time cannot become negative. Thus, whenever wealth is

zero, the only feasible policy afterwards is no consumption.

4 Sufficiency

In this section we provide a verification theorem for optimal controls. We will proceed with

two steps. First, we show that if there exists a solution J to the differential inequality (14)

with the two boundary conditions (15) and (16), and J satisfies some regularity conditions,

then J{W,z,Sj) > J(W.z,Sj) for all (W.z.SJ). Second, we then give conditions so that

J{W,z,S,t) is attained by a candidate feasible investment and consumption policy. It then

follows that J(W,z,S,t) = J(W,z,S,t) and the candidate investment and consumption policy

is the optimal policy.

Proposition 1 Let there be a differentiable function J(K 0: ??+"'"^ x [0,T] — 5? U {-oo}, con-

cave in its first two arguments, which is continuously differentiable over J?'^"*"^ x [0,T] in all

of its arguments, and twice continuously differentiable over JJ^."^^ x [0,T] in its first N + 2

arguments, except possibly on a smooth manifold M,^ satisfying the differential inequality (14)

in the interior o/R^"*"^ with boundary conditions (15) and (16). In addition, let u and J satisfy

the growth conditions: there exist K\ > and A'2 >

Hx,t)\ < A"i(l + |x|)^'' Vx G 3?+, ( G [0,r],

\J{Y,t)\ <K,{\ + \Y\)^'^ w e R'^^\ t e [0,T],

For the definition of a smooth manifold see footnote
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Then, for all t G [O.T],

rT

E, f u(z{s),s)ds + V(W{T+)) < j{W(t).z{r),Sit)j) < .7(17(0, -(r), 5(0.0. (18)

for all C € Ct financed by some A £ At, where z(s) and W{s), s 6 [t,T], are the average past

consumption and wealth, respectively, associated with C and A.

Proof. Let C £ Ct financed hy A £ At he Sl feasible policy for (8). Let \V{s) and z{s~ ) be

the wealth and average past consumption at time s 6 [t,T] associated with (C, A). Since wealth

after consumption must be nonnegative, whenever the wealth reaches zero, the only feasible

policy is to consume and invest zero afterwards.

Recall that W has left-continuous and that z has right-continuous sample paths. For sim-

plicity of notation, we will denote J and its partial derivatives with respect to W ,z,S and

time, evaluated at ( VF(s), z(5~ ), 5(3),.s), by J(s), Jw(s), Jzis), Js{s), Js{s), respectively.

Note that, given the admissibility condition (6) and the growth condition on u given in (17),

we know

Et
J

!«(-(•«), •s)\dt
It

< 00. (19)

Define g = mi{s > t : 1^(5) = 0}, where we have used the convention that if the infimum

does not exist, we set it to be T.^ Also, let the points of discontinuity of C{uj,s) on the

stochastic interval [t, g) be ti(uj),t2{u)), .

.

..

Generalized Ito's lemma implies that

J'
u{z(s),s) ds + J{W{g),z(g-), S{g), g)

= J\{z(s),s)ds + J(Wit),z(t-),S(t),t) + J\v^J{s) + Js{s)]ds

+ j"[Jwis)W{s)Aisf Is-i{s)a(s) + Js(sfais)]dB(s) + j[ [fij,{s) - Jw{s)]dC{s)

By the hypothesis that J is concave in its first two arguments, we know that,

J{tt)-J{U) < Jw{t,)AW{t,) + Mt,)Az{ti)

= -7w(f,)AC(i.) + 7,(i.)/?AC(i.) V^ a.s.

' g is an optional time in that, (u) g Q: q(uj) < t} £ Tt ^t £ [0, 7"].
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Thus.

lfu{z{s),s)ds + J{\V{g),z(g-),S(g),Q)

<J{W{t),zit-),S{t),t) + lf[Jw(s)W{s)A(s}^Is-i(sMs) + Js(sfa(s)]dB{s)

where we have used the fact that J satisfies the differential inequality and C is increasing.

Now define

Pn = inf{5 < g : f' [Jw{s)W{s)Aisf Is-i(s)ais) + Jsisf <j(s)]'^ds = n}.

From the application of the generalized Ito's lemma in (20), we know that

/ {Jwis)W{s)A{sf Is-i{s)a{s) + JsS{sf a{s)]'^ds < oo a.s.,

and. hence, we conclude that gn ] 9 a-s. On the stochastic interval [i,On],

J'[Jwiv)Wiv)A{vf Is-i{v)aiv) + Js{vf (T(v}]dB{v)

is a martingale; see, for example, Liptser and Shiryayev (1977, chapter 4).

Replacing g of (21) by gn and taking expectation gives

Et[jf"u(z(s),s)ds + J{\V{gr,),z(g-),S{gn),g.)

<JiW(t),z(t-},S(t),t).

Note that (19) and the fact that gn ^ Q a.s. imply

(21)

Et

/en re

u(z(s),s)ds —^ Et / u{z(s),s)ds

(22)

by Lebesgue dominated convergence theorem. We want to show that

Et[J(W{gn),z{g-),S(gn),gn)] - Et[J(W{g),z{g~),S{g),g)]

as n — oo. In our current context, this conclusion follows from Lebesgue theorem by the left-

continuity of the sample paths of (W(5),z(5~),5(5)), the growth condition on J in (17) and

the moment conditions on W and on C in (6); see, for example, Fleming and Rishel (1975,

theorem V.5.1).

The assertion then follows from the boundary conditions of 7 at T and at W = 0. and the

fact that V is increasing and W(T-^) < WiT). I
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Now, if there exists, for any time t < T and given {W{t),z(t~),Sit)J), a feasible consump-

tion plan C £ Ct financed by A' 6 At so that

rT

J{W{t),z(r),S{t]J) = Et
I

u(z'{s),s)ds^V(\V'(T^

where z' and W denote the weighted average past consumption and the wealth associated with

(C*,.4'). respectively, then it must be the case that J(W[t),z(r ),S{t),t) = J(W(t),z{r).S[t).t),

and (CA*) is the optimal consumption and investment policy starting from the (W{t), z[t~),S(t),t]

The following is the main theorem of this section, which provides conditions for a candidate

consumption and investment policy to be optimal.

Theorem 1 Let J satisfy the conditions of Proposition I. Assume furthermore that, starting

at any time t S [0,T], with \V{t),z(t~),S(t), there exists a consumption policy C G Ct financed

by A' £ At with the associated state variables W and z' , such that, putting g — inf{5 > t :

P^*(5)=0},

i

u{z' ,s)-\-V'^' J ^ J, = V a.e.5 e («,p) a.5.. (23)

\jw{W\z\S,v)-iih{\y\z\S,v)\dC'{v) = V5G(f,£»]a.5., (24)

and

J{Wit,),z(t-),S{t,),t,) - J{W(t,) - AC'M,z(t-) + f3^C'{tr),S{t,).t,) = a.s.. (25)

where (, 's are the times of gulps prescribed by C on [t,Q). Then J{W{t),z{t~),S{t),t) =

J{W{t),z{t~),S{t),t) and {C',A') is an optimal consumption and investment policy starting

att.

Proof. The generalized Ito's lemma allows us to write

E,
[J'

u{z'is), s) ds + J(W'{e), z'iQ-), S{q), g)

= Et ru(z'{s),s)ds + JiW'{t+),z'(t),S(t),t)

+ j [Jw{s)W'{s)A'{sf Is-i{s)a{s) + Js{s)^ais)]dBis)]

= J{W'{t+),z'{t).Sit)J) = J{W'{t).z'it-),Sit)J),
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where the first equality follows from (23). (24) and (25), the second equality follows from the

identical arguments used to prove Proposition 1, and the third equality follows from (25). Using

the boundary conditions of (15) and (16) allows us to conclude that J - J and thus (C.-l")

is an optimal policy. I

The optimal consumption and portfolio policy characterized in Theorem 1 of course satisfies

all the necessary conditions of Section 3.

5 .\ \ erification Theorem for the Infinite Horizon Program

The necessary and sufficient conditions for optimality presented in the above two sections are

for the finite horizon program of (7). In this section, wo will let T = oc and 1' = in (7) and

replace the admissibility conditions of (6) for C financed by .4 by:

E[ \u(z{s),s)\ds]<^, (26)

where z is cissociated with C, and for all integers m > and T G 3?+, there exists kj^ so that,

for all t < r,

^[|C(OP'"] < e*-',

(27)

Similarly let C and A denote the space of admissible consumption policies and investment

policies starting at < = 0, respectively. In addition, Ct and At are the corresponding admissible

spaces starting at t.

Consider the infinite horizon program:

J(W,z,S,t) = supcec. £'[/r u(z{s),s)ds\J't]

s.t. C is financed hy A e At with \V{t) - \V, (28)

and Wit) - AC(s) > V5 > <.

We record below a verification theorem for this infinite horizon program:

Theorem 2 Let J :
^^'^ — 3?+ be positive, concave in its first two arguments, continuously

differentiable over 3?^
"*"

in all of its arguments, and twice continuously differentiable over 3?^"*"

in its first N + 2 arguments, except possibly on a smooth manifoldM , satisfying the differential

inequality of ( I4) with the boundary condition

7(0,2,5,0= / u(ze-'^^'-'\s)ds< 00.
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In addition, J satisfies the growth condition: for every T £ ^+, there exists KJ > and

KJ > so that

\J{Y,t]\ < A'f(l + \Y\f? Vy e R^+\ t 6 [0,T]. (29)

Assume furthermore that, starting at any time t < oc with \V{t), :(t~ ), S{t), there exists a

consumption policy C € Ct financed by A' 6 At, with the associated state variables W and

z', such that, putting g = inf{s > t : ir'(5) = 0},

u{z\s) + 'D'^' J + J, = "^ a.e.s £ {t,Q) a.s. (30)

r[Jw(W\:',S,v)- 3j,{W\z',S,v)]dC'{v) = 'i se(t,g]a.s. (31)

lim £,[J(VF"(< + 5),z"(« + 5-),5(« + 5),i + 5)] = 0, a.s.. (32)
5—'OO

and

J{W{t,),z{t-),S{t,)J,)- J(W{t,) - ^C'{t,),z(t-) + pAC'{t,),S(t,},t,) = a.s., (33)

where t,'s are the times of gulps prescribed by C on [t,g). Then J = J and {C',.A') is an

optimal consumption and investment policy starting at t.

Proof. For any finite T, using identical arguments as in proving Theorem 1 we get.

rT

J{W{t),z{t-),S{t)J)> Et J
u{z(s),s)ds + J(W{T),z(T-),S(T),T]

Since / is positive, we can drop the second term on the right-hand side of the above relation

and still maintain the inequality. Since the inequality holds for all T > t. We can let T — oo

and conclude that J > J

.

Then the assertion follows from arguments identical to those used to prove Theorem 1 in

addition to using condition (32). I

In the infinite horizon program, two more conditions are added. First, J is positive. Second,

the expected value of J{t) along the optimal path must converge to zero as t increases to infinity.

The latter condition ensures that the agent exhibits enough impatience so that accumulating

wealth indefinitely without consumption is not optimal. We imposed the former condition for

technical convenience and we can replace it by a stronger condition which requires that (32)

holds not just for the optimal policy but for all feasible plans.
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6 A Closed Form Solution for an Infinite Horizon Program

In this section we provide a closed form solution for a particular example of the optimal con-

sumption and portfolio problem formulated in section 5, in which the horizon is infinite. In this

analysis, we use a felicity function u{zj) = ^e"*';", where < a < 1, and where the discount

factor 6 expresses the agent's impatience.

In addition, we assume that the prices of the risky securities follow a geometric Brownian

motion given by:

S{t)+ [ p(s)ds = S(0)+ f [s(s)^lds+ f Is(s)adB{s), (34)
Jo Jo Jo

where /s(0 is a diagonal ;V x N matrix whose diagonal elements are Sn{t)-'n = 1 -V,

where /x is an iV-dimensional vector of constants, and a is an N x M matrix of constants. The

instantaneous interest rate r is a constant. We assume that aa''' is nonsingular.

Note that since the asset price parameters and the interest rate are constant, the value

function J depends only on wealth \V, the average past consumption r, and t. Also, it is easy

to see that J{\V,z,t) = e"^* J{W,z,0), since the felicity function is time separable and with a

constant impatience factor. We will therefore focus our attention on the function J{W, z. 0) and

henceforth denote this function simply by J{\V,z). The differential inequality of (14) becomes

max{— + max[P^ J] - 6J,i3J, - Jw} = 0. (35)
Q A

The boundary condition when Vr = is

^(0,-^)=—4tTT-'"- (36)

We will show that the optimal solution to the agent's problem takes the form of a ratio

barrier policy. The optimal investment decision is to invest constant fractions of wealth in

the iV risky assets at all times. The optimal consumption is the amount required to keep the

ratio of wealth W to average past consumption z less than^° a critical number k' in almost

all states of nature. If the agent starts at time zero with wealth W(0) and initial consumption

experience z{0~) such that .

'_' is strictly less than k' . then the optimal consumption policy

is to consume nothing and wait while W increases on average and z declines until the (random)

Rec^l that we use weak relations and hence r less than y means that i is strictly less than or equal to y.
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time r when the ratio -4^ is equal to k' . Starting from that moment, the agent consumes

only when — = k' the amount required to keep — < k' forever in all states of nature.

On the other hand, if the agent starts at time zero with ,^J. > k' . then the optimal

consumption policy is to take a "gulp" of consumption, reducing W and increasing -, to bring

the ratio ^ immediately to k'. Following this gulp, the optimal amount of consumption is

that required to keep — < k' forever, and consumption occurs only when -^ = k' . As we shall

see, the erratic behavior of the price of the risky assets implies that the optimal consumption

pattern will have "singular" sample paths. In almost all states of nature, the agent consumes

a non-trivial amount at infinitely many points of time. However, the times when consumption

occurs are a set of Lebesgue measure zero.

In essence, when the wealth in relation to z is too high, the agent will convert wealth

into consumption. Conversely, when the wealth relative to ; is low, the agent will refrain

from consumption altogether to accumulate her wealth and in the mean time, will enjoy the

satisfaction derived from her past consumption purchases. The singularity of the sample paths

of the optimal consumption pattern is caused by the erratic behavior of a Brownian motion.

This is a feature of the modeling choice in which the returns on risky securities follow a Brownian

motion. The economic content of the solution is the periodicity of consumption, which is in

part due to the fact that the agent derives satisfaction from past consumption.

We will employ probabilistic methods to compute the function J and the optimal consump-

tion and portfolio policies. We present the logic behind the optimal solution in two steps.

First, we analyze general consumption and portfolio policies of the k-ratio barrier form. For

any A; > 0, the corresponding k-ratio 6arner policy is the policy of investing constant fractions

of wealth in the A'' risky assets together with a consumption policy of keeping the ratio —

less than or equal to k forever in all states of nature and consuming only when — = k. This

policy is followed after an initial "gulp" of consumption if the initial conditions are such that

,J_|
> k, or after a (random) period of no consumption if

^.J_(
< k. We will show that

the expected life-time utility associated with any /c-ratio barrier policy and initial state {W,z),

denoted j''{W,z), satisfies

max
A
{— + D-^7*-(57*} = if W<kz and

J^ - 13J^ = if W>kz.
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Second, we will show that there is a unique vjilue k' > such that the A:*-ratio policy

together with its associated value function. J'(W,z), satisfy all the conditions of Theorem 2

and hence is the optimal policy.

Before proceeding, we make two observations. First, let C be the optimal consumption

pattern with initial state variables {W,z) foT a. A:- ratio policy. By the linearity of the dynamics

of wealth and the average past consumption, given in (4) and (5), respectively, aC is the

consumption pattern for the same fc-ration policy with initial state variables {a\V,az) for any

scalar a > 0. Thus j''{a\V,az) = a'^j''(W,z). That is. J^ is homogeneous of degree q in that

j''(W,z) = z'^j''{W/z,l)- Second, it is easily seen that the optimal investment strategy A'

must be time independent and is a function of W and z. Direct computation shows that

IV JWW

where F = {aa'^)(fi - rl) and 1 is an .V-vector of I's. The investment policy is always propor-

tional to the vector F.'^

The object of control under a A:- ratio policy is the ratio — and the purpose of control is to

keep this ratio less than A;. Suppose that the agent starts from a state {W,z) such that -r < k,

and suppose that she invests constant proportions of her wealth in the iV risky assets, denoted

by .4*^, and consumes nothing until the stopping time r when .^V = k. Also suppose that

from T on. the agent consumes the minimum amount required to keep the ratio -^^ < k for cdl

t > r. The wealth dynamics of this policy is well-defined by Lions and Sznitman (1984). Let

us compute the expected utility j''{W,z) obtained from such a policy.

^From the definition of the utility, we can write, for (W,z) such that ^ < ^'•

j''{W,z) = e\ r e-^'—e-''^'ds + e-^^j''{W{T),ze-'^^)
'Jo a '

= e[
, f^.J l - e-(<^'3+5)^]| + E\e-'^j'{W(T),ze->'n] •

Given that J* is homogeneous of degree q, for a point on the boundary {W{r),z{T)),

J{W{t),z{t)) = z(TfJ{k, 1). We thus know that

j'{wir),z(T)) =a,z{Tr, (38)

"Here we note the two-fund separation property imphed by (37); see Merton (1971).
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for some constant a^. Hence, we can rewrite J^{W,z) as:

J^'i^V.z) =
, f ,^ + [flfc -

, I ^ J z°E[e-'"^+^'^] . (39)
Q(Q/i + 6)

' a(a3 + S)' i J ^ '

Assume that the constant investment policy A'' = bt-T for some scalar 6*;. Then starting

from a state ^ < k, the logarithm of the ratio ^, before ^ reaching /c, follows a Brownian

motion with drift ^i/t = r + /j + b^f — bJ.-f/2 and a standard deviation ctj. = bi^^. where

7 = [// - rl]^(i7<r^)~^[/i - rl]. From Harrison (1985, proposition 3.23), we conclude that

where

ak = —[{^il + 2al(af3 + S))2-fi^]. (41)

^'(^-') = m£tT) + f"^ - ^^]-"(E)' • ^''^

Substituting from (40) into (39), we get, when ^ < A;,

t(af3 + S) '

^"^
a(al3 + 6)'''

Now, consider the situation when — > k. The ^•-barrier policy prescribes a jump of size

A =
^ ~^^f to a point on the boundary and the corresponding utility is

Notice that (43) implies Jw - QJz for all ^ > A:. We then choose the value of the constant a^

such that J^ = /JJj when ^ = A;. From this condition, we get

«. = ^ r + ^^^. m
(a/3 + (5)[ajt(l + /3A;)-Q/3it] a(Q/J + <5)

To summarize, the value function associated with a constant proportions investment strategy

A = bkT and a A;-ratio consumption policy is given by

+ zn[̂^l>-.(^] 'f^<^-

*
* l«4l^)" ifT>^-

'

where a^ is given in (44) and a^ is given by (41).

Note that in deriving (45) we started by assuming a constant proportions investment strat-

egy A'^ = bkT. This investment strategy together with the fc-ratio consumption policy implies
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the functional form J'' . If J^ were the optimal value function, the optimal investment strategy

would be determined through (37). In particular, since the fc-ratio policy would keep y < k,

the optimal investment strategy would be equal to r/(l - Q/t). Thus, if there exists a solution

to the system of equations composed of (41) and bk = 1/(1 - Qfc) and this solution is less than

1 to make j'' a concave function, then we have produced a consistent J*^ in that the implied

investment behavior of ,/'' generates the functional form of J^ .
We need to make enough as-

sumptions on the parameters of the problem to ensure that a desired solution of a^ exist. We

assume throughout this section that:

Assumption 1 The parameters of the problem satisfy

Q7
6 > ar -^ and (\ - a)l3 > 6 - r .

2(1 - Q)

Given these restrictions, we can easily establish the following result, whose proof uses ele-

mentary algebra and is left for the reader.

Lemma 1 There exist a unique q^ < 1 that solves the system of equations of (41) and b^ =

1/(1 - Qjt) and

[7/2 + (r + 3) + {a3 + 6)] - ^[7/2 + [r + (3) + (al3 + 6)^ - 4( r + J)(ad + S)

'''
=

^i^TW)
•

Moreover, a^ > a and a^ is independent of k.

As a consequence of Q/t being independent of k, A'' = r/(l - Q,t) is also independent of k.

We will henceforth denote by a' the solution characterized in Lemma 1 and by .4' the constant

proportions investment strategy r/(l - q*). It is also understood that the q^ is replaced by a"

in the definition of a^ of (44). The following proposition gives properties of j'' defined in (45).

Proposition 2 The function J^ of (45) with a^ replaced by a' is increasing, continuous,

strictly concave, and twice differentiable. has continuous first derivatives, has continuous second

derivatives except possibly on the smooth manifold Mk = {{^^^^) '• ^ = ^^}> ''"'^ satisfies,

together with A'

,

^^
+ D^V*^ -SJ'= = if W < kz and (46)

Q

J^v- ^Jz =0 if W > kz, (47)
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and the boundary conditions

J{0,z) =
1

a(Q/3 + 6]
and

\imE\e-'' j'={Wk{t),z,(t))\ =0,
t\oo

(48)

(49)

where W^ and z^ are the wealth and the average past consumption associated with the k-ratio

consumption policy and the investment strategy A'. In addition, e~^^J^ satisfies the growth

condition of (29).

Proof. All the assertions except for the last can be verified by direct computations using

the fact that q < q' < 1. For the last boundary condition note tb t Wk{t) < kzt;{t) for all

t > 0, and hence J^{\Vk{t),Zk{t)) is less than akz'^(t), where we recall that a^ is defined in (44).

Note that

Zk{t) = z[Q-)e-^'^i3 f e-^^'-'UC,{s)
Jo

< z(O-]e-^' + [0Ck{t)],

where Ch denotes the A:-ratio consumption policy. ^From the budget constraint of (4), we can

see that Ch{t) < lV{t) a.s., where W{t) is the wealth realized at time t when following the

portfolio rule .4' with no consumption withdrawal before t. Using the dynamics of W. one can

easily verify that

limE
(Tco

But

hence

e-''j(Wk{t),Zk(t))\ < limE[a,e-^'r?(0] < rimE[a,,e-%{0-)e-^' + (3W{t)Y
J (loo tfoo

z(0)e-^' + l3W{t)\ -^ \tSW{t)\ uniformly in w as t ] oo

and thuslimEle-^^ iz{0)e-'^' +l3W(t))°-] = limE[e-*'/3'*Pr'^(T)

\imE\e-'"J{Wk(t},Zk(t))\ < limEle-" ff^Wit
f\oo 1- J (Too I-

-St,

But

E Vr(0 = W{0)e{4^-^T^hi^f^y
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where the first inequality follows from the property that q < q", and the last inequality from

the definition of qV Hence E[e-*ny°'(o] < W{0)e>^^''-''"i'
. Noting that q - q' < 0. the

required result follows.

The last assertion is obvious. I

Now. we show that a ^--ratio policy financed by .4' is an admissible policy in (28). Moreover,

the function y*"'
is indeed the expected utility that the agent gets from following this /c-ratio

policy.

Proposition 3 The wealth process and the consumption pattern associated a k-ratio barrier

consumption policy financed by the investment strategy A' satisfy (27). In addition, the function

e~^'j''{W,z) gives the expected utility of following these policies at time t.

Proof. Let W^, Ck, and Zk denote the wealth, the consumption, and the average past

consumption associated with the ^--ratio consumption policy financed by A'. Recall from the

proof of Proposition 2 that Ck{t) < W{t) a.s., where we recall that Wit) is the wealth realized

at time t when following the investment strategy .4" with no consumption withdrawal before

t. Similarly, Wk{t) < W{t) a.s. It is easily verified that W satisfies (27) since it is a geometric

Brownian motion and thus W'(i) is log-normally distributed. The first assertion follows.

For the second assertion, identical arguments used to prove Theorem 2 show that

^1/'
Sv^kiv)SvthM> J,. ,

^-S' -St jk.
e-'^^^^ dv + e-"' J'{\Vk{s),Zk{s)) = e'^' r{Wk{t),Zk{t)),

Q J

where we have used Proposition 2. The assertion follows from monotone convergence theorem

by letting 5 — 00. I

iFrom the above discussions, we know that any Ar-ratio consumption policy together with

A' satisfies many of the sufficient conditions for optimality. All policies, except one, however,

fail to satisfy the differential inequality (35). The unique barrier policy that satisfies inequality

(35) is the optimal solution, which is recorded in the following proposition.
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Proposition 4 Let

f3{a' -a)

Then k' > and the solution to (28) consists of the investment strategy A' and the k' -ratio

harrier consumption policy.

Proof. First k' > by lemma 1.

Next let the value function associated with the A;'-ratio barrier policy be J'. In view of

Proposition 2, we only need to show that J' satisfies:

Jw - JJ: <0 if W < k'z and

— + V'^'J' -SJ' <0 if VV>k'z.
a

We start with the first inequality. Using the definition of J', we can write J^y — 3J' in the

region W < k' z as:

7^-/37; = az^-'gi'Q-} where
VV

g(y) = /3(a--Q)t/<^- + ^y(-'-i'-—^,
k' ap +

where a is a constant. Note that ^(1) = 0, and that since q' > 0, 5(1/) f oo as y f cxd.

Computing the derivative of g, we get

— = a j3{a -a)y + y .

dy k'

Substituting k' in the expression for j^, we conclude that j^ = for 1/ = 1, and that j^ >

for 1/ > 1. It then follows that J^ - pJ' > 0, for all points {W,z) such that W < k'z.

Now, we verify the second inequality. Consider any point x = {W,z) such that W > k'z.

Let a be the point on the intersection of the line W = k'z and the straight line passing through

the point x with slope ^T ~ ~h' ^^ other words, a is the point on the boundary W = k'z, to

which one would jump if one starts at x. By construction, J'{x) = J'{a).

Let

fiW, z) = - + J'^rW - -^7 - J'J^ ,

a 'Jww
and note that /(a) - SJ'{a) = 0. Applying the fundamental theorem of calculus along the

straight line connecting a and x, we obtain

/(£)-/(£)- r fwdW + f^dz.
Ja
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N'oting that along the line connecting a and x, we have d : = -3d\V. and that d\V > in the

direction from a to x, it then follows that /» - J/. < is sufficient to conclude that

l- + j-^.r\V Jl_^ _y;^, _^y < if — > k'

.

a 2A*ivv ^

Computing f\y - J/j in the region W > k':. and using the properties of q', the reader can

easily verify that fw - 3fz <0 for k' = jffrr^^-

The following proposition records the optimal consumption and investment policy starting

at ( = 0. The optimal policy from any ( > can be constructed similarly.

Proposition 5 Let

A'(t)= —^-— r for all t.

and let the budget feasible consumption processC which has continuous sample paths almost

surely, be given by:

C-{t) = AC-{0) + J^^^^dl{s) P-a.s. (50)

where

AC-,0, = ma.(o. "-'°|;^;f-' }.
(51,

r Wis) 1 +
l{t) = sup log—^- logr p-a.s., (52)

Wit) = (vVo-AC-(0))e(''"^^^^''"'^^'^'''^"" P-a.s.. (53)

z(t) = [zo + 3AC'(0))e-^' P-a.s.. (54)

and where W'is) and z'(s) are the state variables associated with C . The strategy .\' and C
defined above are the optimal solution for the agent's problem.

Proof. To prove this proposition, all we need to show is that the above strategy is the

ratio barrier strategy associated with k' . The A:' ratio barrier policy calls for a jump at ( = 0,

if wo=) > ^' The size of the jump A is calculated to achieve the condition .(q-i
' Tj^ = ^''

from which we compute A as in (51).

Let us proceed now to compute the consumption process after t — 0. The /:'-ratio barrier

policy is equivalent to the condition that

W'[t)

z-[t)
< k' 'it.P-a.s. or (55)
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loglI-1^ < \ogk- ^t.P-a.s. (56)
z'{t)

Now consider the "unregulated" process {W,z), which gives the wealth of the agent and her

past average consumption under the assumption that no consumption takes place after the

initial jump at i = 0. The values of \V{t) and z{t) are given in (53) and (54). The ratio -~^

will fail to satisfy condition (55) for some periods and for some sample paths, and the idea of

the solution is to "regulate" this ratio using the consumption process C to ensure that at the

optimal solution condition (55) is satisfied.

To achieve this regulation, define the process

l(t) = sup [log——-- log/:'] P - a.s.

and let the "regulated" process log -;t- be given by:

log^ = .og|li>-,(„ F-a.s. (07,

For each state u). the sample path /(^,.) has the following properties:

• /(u;,.) is increasing and continuous with l{^,0) = 0. for almost all cj.

• log^p^ < logfc" for all t > 0. P-a.s.

• l{u>,.) increases only when log ^"^'V = log/:'.

This "regulated" process (log 7777, ) is a candidate for the logarithm of the ratio of the state

variables associated with the optimal consumption plan, since from the above construction, we

can easily conclude that condition (55) is satisfied. The question now becomes whether there

exists a feasible consumption process C" that could enforce the relationship in (57). Expanding

both sides of (57) using Ito's lemma, we get

,
W{t) H^(0)-AC-(0)

, p.
, , ,

7(1 -2a') ,,
''^1^ = ^°^.(o-) + JAC-(0)+yot'" + ^^^(T^^^'^

W{t) W{0)-AC'{0)
, f\ , ,, ,

7(1 -2a') ,,

+ f j^—-T^crdBis) P-a.s.
Jo (1 - a-)

log
i(0
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Thus, we conclude that the consumption process given by:

7o U'(5) :-(s)

satisfies the condition in (57). Note from the above equation that C increases only when

/ increases for all sample paths. Therefore, C increases only when , .
^' = k' and hence

condition (31) of Theorem 2 is satisfied.

Now let the process y be given by y{t) = pw'{t)+z'{t) - From Ito's lemma, we get:

y{t)l{t) = y{0)l{0) + fyis)dl{s)+ fl{s)dy{s) P - a.
Jo Jo

Noting that /(O) = . P - a. 5., and that dl{s) = ^—f-, we find that

.5.

yit)lit) = C'it) + f l(s)dyis) P-a.i
Jo

Integrating the second term in the right-hand side by parts, we have that

Jo ii\V'{s) + z'[s)

But from the properties of /, we know that / increases only when ../^y = k' . We thus conclude

that

" W{3)
'^"*" = iniF'"w '-''

The solution we constructed has the following features. After the initial (possible) gulp, the

agent consumes the minimum possible amount required to keep the marginal ratio of wealth

equal to (/3 times) the marginal value of z. Consumption takes place only when these marginal

values are equalized. If the marginal value of wealth drops below (/j times) the marginal value

of 2, the agent stops consuming. These rules result in a consumption process with singular

sample paths. Consumption occurs at uncountably infinite number of times, but the set of

all times when consumption occurs has Lebesgue measure zero, for almost all sample paths.

This result occurs because of the unbounded variation property of the Brownian motion sample

paths.
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7 Comparative Statics

It is interesting to compare the behavior described in the previous section to the behavior of

an agent with a time-additive utility function defined on the subspace of absolutely continuous

consumption patterns and given by:

Jo a J

where c{t) is the consumption rate at time t. Note that the utility function in (59) is the limit

of the utility function analyzed in section 6 as /3 t oo.

Consider the consumption-investment problem of an agent whose preferences are given by

(59) and who faces the investment opportunities given by (34) and a constant riskless rate.

Merton ( 1971) shows that the agent's optimal policy is to consume continuously at a rate equal

to a constant fraction of total wealth, and to invest constant proportions yt^^ of his wealth

in the risky assets.

Now compare the investment policies of the agent we studied in this paper with those of

Merton's time- additive agent, assuming that the corresponding felicity functions have the same

curvature q, and that the agents have the same time preference parameter 6, and face the same

investment opportunities. From lemma 1, we know that q' > a. Furthermore, \\mpi~^ a' = q.

Hence the agent whose preferences exhibit local intertemporal substitution invests more in the

risky assets and appears to be less risk averse. Furthermore, the weaker the effect of local

substitution (higher 3), the less that the agent invests in risky assets, ceteris paribus. One

could explain such a behavior by arguing that the fact that past consumption affects current

and future utility leads the agent to tolerate higher probabilities of reduced future level of

wealth and hence take more risky positions.

The reader can easily verify that ^^ < 0, and ^^ < 0. In other words, higher values

of riskless rate and higher discount factors lead to less investment in the risky assets, ceteris

paribus.

Another interesting property of the solution for the non-time-additive utility is the steady

state distribution and the expected value of the the ratio -p-. Following the computations in

Harrison (1985, §5.6), we conclude that, from any starting point (Wo,zq), as t —' oo:

^ z{t) - / 1 1 ifi>fc-
(60)
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and
'^"" "

k-. (61)
z(t) i /i- +a-^/2

where Pq and Eq are the probability distribution and expectation, respectively, conditional on

starting at (lV(0),z(0)) and where

7 7

v/7
(T =

(1-a-)'

and where 7 = [;i - rl]'''(CTi7"'" ) ^[fJ. - rl).

Denote lim(_,3o Eo[t77) ]
by [Vloo- The reader can easily verify that:

d W d W d VV d W

One can intuitively understand these relationships as follows. The ratio of wealth to average

past consumption eventually settles down to [— ]oo- Wealth is the investment in risky assets

which the agent holds for purposes of future consumption, whereas z is an indication of his

past consumption experience, which also contributes to his future satisfaction. The agent

decides on an optimal division between these two sources of future satisfaction. This division is

naturally dependent on the strength of the local substitution effect and the outside investment

opportunities. When the local substitution effect is high (low t3), the agent tends to derive

relatively more satisfaction from ;. and hence [— ]oo is low. On the other hand, when the

investment opportunities are more attractive (high r or low a), [y-Joo is high, reflecting more

emphasis on deriving future satisfaction from wealth.

8 Equilibrium Riskless Rate

In this section, we briefly state some of the implications of the form of utility studied in section 6

on asset prices in equilibrium. We adopt the representative agent equilibrium framework of

Cox, Ingersoll and Ross (1985a). In the general framework of section 4, we note that the

optimal investment policy implies the mutual fund separation results of Breeden (1979) and

Merton (1971). Thus the Intertempor2Ll Capital Asset Pricing Model of Merton (1973) holds

in equilibrium. In the special case of constant parameter production processes, the constant
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proportion optimal policy given in (37) implies two-fund separation. Therefore, the Capital

Asset Pricing Model holds. However, the Consumption Capital Asset Pricing Model of Breeden

( 1979) fails to hold because the marginal utility of instantaneous consumption is no longer equal

to the marginal utility of wealth. For similar results, see Bergman (1985) and Grossman and

Laroque (1990).

Next, we consider the determination of the riskless rate. Suppose, for simplicity^^. that there

is one risky production technology whose rates of return follow a (/i,<T)-Brownian.''' Consider

an agent with preferences as given in section 6. Using arguments similar to those of Cox,

IngersoU and Ross (1985b), and using the computations of Harrison (1985, §3.2), we conclude

that the equilibrium riskless rate, r. is given by:

r = /i-(l-d)cr^ where

a = -^ yifi + ,3- (tV2)2 + 2a^{at3 ^ 6) - [p + ^3 - a^l'l) .

In contrast, if the agent has a time additive utility function whose felicity has the same

curvature a and the same time discount parameter b, the interest rate, is given by /x — ( 1 — a)a^.

Given that a/i < 6, the reader can easily verify that a > a and hence the interest rate in the

case of local substitution preferences is /izg/ierthan that for time-additive preferences. In other

words, the risk premium, which is the excess of /i over the riskless rate, is lower in the case

of preferences with local substitution. This is consistent with our earlier observations that the

agent whose preferences exhibit local substitution behaves in a /ess risk averse manner compared

to an agent with time-additive utility. In addition, as local substitution decreases (/3 increases),

the risk premium increases.

9 Concluding Remarks

In this paper, we have provided necessary and sufficient conditions for a consumption and

portfolio policy to be optimal for a class of time-nonseparable preferences that consider con-

sumptions at nearby dates to be almost perfect substitutes. We demonstrated our general

' This result can be easily generalized to the case of many production technologies.

^''More specifically, V(t), the level of risky capital at time t starting from one unit continuously reinvested,

evolves according to the following equation: dV(t) = nV{i) dt-\-<TV(i) dB(t), where /i > and u > are constants

such that an < S, and 5 is a one-dimensional standard Brownian motion. Note that we use n and <t in a different

meaning from that in section 6, and 6 is the parameter of time discount.
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theory by explicitly solving in closed form the oplimaJ consumption and portfolio policy for

a particular felicity function when the prices of the risky assets follow a geometric Brownian

motion process.

We have also explicitly solved for the equilibrium interest rate in a Cox, IngersoU, Ross

(1985) type economy with a physical production technology whose rate of return follows a

Brownian motion.

Two avenues of future research deserve attention. First, we can incorporate the notion of

habit formation into our model while preserving the feature that consumptions at nearby dates

are almost perfect substitutes. This can be accomplished by defining two weighted averages of

past consumption, zi and Z2, where ::i has heavier weights on more recent past consumption

than does Z2 and ^2 has heavier weights on more distant past consumption than does ;i.

Consider felicity functions defined on zi and tt, denoted by u{zi,Z2,t), having the property

that ui2 > 0, where ui2 denotes the cross partial derivative of the first two arguments of u. Then

the higher the distant past consumption is, the higher the marginal felicity for an additional

unit of more recent past consumption will be. And Z2 has the interpretation of a living standard.

This formulation treats consumption at nearby dates as close substitutes; while incorporates

the notion that "habit" is formed not over a short period of time but over a longer horizon.

Second, the interest rate derived in Section 8 is of limited interest as it implies a flat yield

curve. One needs to explore possible specifications of the production technology to derive

explicit and interesting term structure of interest rates.
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