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Abstract

This paper proposes a family of topologies on the space of consumption patterns in continuous

time under uncertainty. Preferences continuous in any of the proposed topologies treat con-

sumptions at nearly adjacent dates cis almost perfect substitutes except possibly at surprises.

The topological duals of the family of proposed topologies essentially contain processes that are

the sums of processes of absolutely continuous paths and martingales. Thus if equilibrium prices

for consumption come from the duals, consumptions at nearly adjacent dates have almost equal

prices except possibly at surprises. In particular, if the information structure is generated by a

Brownian motion, the duals are composed of Ito processes. We discuss the properties of prices

of long-lived assets in economies populated with agents whose preferences are continuous in our

topologies when there are no arbitrage opportunities. We also investigate some implications of

our topologies on standard models of choice in continuous time as well as on recent models of

non time-separable representations of preferences.

'The authors are thankful for the helpful conversations with David Kreps throughout the years this paper

was in preparation. Huang is also grateful for research support under the Batterymarch Fellowship Program.





1 Introduction and summary

Mom, I can not eat any spinach now. I just had my dinner.

Anonymous

1 Introduction and summary

No "standard" economic agent could use the above convincing argument to delay his consump-

tion. "Standard" economic models assume that very recent consumption has no effect on one's

current appetite; an cissumption that each of us repeatedly violates.

In addition, we frequently violate an important implication of the "standard models" con-

cerning the prices of Eissets. If one knows for sure that the price of a certain asset tomorrow

will be much higher than it is today then one would be willing to delay his consumption for one

day and use the proceeds to buy such an asset. Alternatively, one could borrow from someone

else who is willing to delay his consumption, pay him a relatively low rate of interest and use

the funds to realize the gain in the price of the asset. Our behavior would force today's price

to increase and become very close to the price of the asset tomorrow. If no one were willing to

delay consumption for one day for a small fee, then a situation of a big jump in prices over short

periods in the absence of any new information might prevail in equilibrium. In fact, this is a

prediction of "standard" models in which continuous changes in prices are obtained mainly by

exogenously specifying continuously varying endowments. We ask: could one develop a model

of preferences for consumption over time under uncertainty that agrees with our economic in-

tuition in which past consumption has an effect on current utility and in which the continuity

of prices is a phenomenon implied by continuity of preferences and independent of the nature

of the endowments? This paper is an attempt to address these issues.

This is the second part of a series of two papers. The first part, Huang and Kreps (1987),

which we henceforth abbreviate as H&K, addresses the following questions: How might one rep-

resent a consumption pattern in continuous time under certainty and what are the appropriate

topologies on the space of consumption patterns that capture the idea that consumptions at

nearly adjacent dates are almost perfect substitutes? Moreover, what form would the equilib-

rium prices take when individuals in the economy have preferences continuous in the appropriate

topologies?

"Standard" answers exist for the questions raised by U&iK: A consumption pattern on a

time interval, say [0,1], is represented by a real-valued function c : [0,1] —
> 5R+, where c{t)

is the consumption "rate" at time t. Two consumption patterns are close if they are close as

functions in an 1/ norm topology for some 1 < p < oo. An agent's preferences are represented by
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j} u{c{t),t)dt, a time-additive functional of consumption rates, where, using the terminology

of Arrow and Kurz (1970), u{c,t) is a "felicity" function for consumption at time t. The

equilibrium prices come from L' with p + ^ = !> ^^^ topological dual of I/; that is, the price

at time zero of a consumption pattern c can be represented as /q c{t)y{t)dt, where y is from L'

and y{t) is interpreted as the time zero price of one unit of consumption per unit time at time

t.

H&K argued that these standard answers are unsatisfactory for the following reasons. First,

in modeling consumption over time, one should allow consumption at rates as well as in gulps -

observed consumption behavior such as having meals is in gulps. Second and more important,

the 1/ topology on the space of consumption rates is so strong along the time dimension

that consumptions at nearly adjacent dates are perfect nonsubstitutes! As a consequence of

the strong topology, the space of equilibrium prices is too rich. It includes, for example,

discontinuous functions of time and continuous functions of unbounded variation signifying

that equilibrium prices for consumptions at nearly adjacent dates are either very different or,

even though continuous, fluctuate in a nowhere differentiable manner.

The most general way for representing a consumption pattern over time under certainty is

by an increasing^ and positive function on [0,1]. Let x be such a function. Then x{t) denotes

the accumulated consumption from time zero to time t. If i is an absolutely continuous function

of time, its derivatives exist almost everywhere and can be interpreted as consumption rates.

The discontinuities of x are the gulps of consumption. Letting X be the linear span of the

space of these consumption patterns, H&K introduce a family of norm topologies on X so that,

among other things, consumptions at nearly adjacent dates are almost perfect substitutes. An

example of this family of norm topologies is the L'' topology on accumulated consumption,

where the Z^-norm of a consumption pattern i is given by:

{C\x{t)\^dt
Jo

+ ix(i)r)p.

HiiK also show that preferences continuous in any of the norm topologies can be represented

by maximizing the time-additive functional of consumption rates in the "standard answers"

only if the felicity functions are linear! The equilibrium prices basically come from absolutely

continuous functions - prices of consumptions at nearly adjacent dates are almost equal and

change over time in an almost differentiable manner.

'Note that one might expect equilibrium prices for consumption to fluctuate widely in an economy under

uncertainty due to temporal resolution of uncertainty, however; see Huang (1985a, 1985b).

^Throughout this paper we will use weak relations: increasing means nondecreasing, positive means nonneg-

ative, etc. When the relations are strict, we will say, for example, strictly increasing.
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The purpose of this paper is to develop topologies on the space of consumption patterns

under uncertainty that capture the notion that consumptions at adjacent dates are almost

perfect substitutes. A crucial distinction between an economy under certainty and an economy

under uncertainty is that in the latter the passage of time also reveals partially the true state of

nature, or reveals information. In a world of uncertainty, the preferences of an individual over

consumption patterns may be affected by the way uncertainty is resolved over time. A world in

which any uncertainty is resolved gradually over time, with ample "warning" and "preparation"

for new bits of information is certainly different from a world which is "sudden" and "full of

surprises". Thus it is unreasonable to require a priori that consumptions at nearly adjacent

dates, which may be random, be almost perfect substitutes unless there are no "surprises" there.

Similarly, we would not expect the equilibrium prices to be continuous except at (random) times

of no surprise.

We introduce a family of norm topologies on the linear span of the set of consumption

patterns under uncertainty, which is composed of processes with positive and increasing paths.

This family of topologies are natural generalizations of the H<5iK topologies. In particular,

they reduce to the H&K topologies when the true state of nature is revealed at time and

consumptions at nearly adjacent dates, where there is no discontinuity of information, are

almost perfect substitutes. We then show that preferences continuous and uniformly proper

(to be defined) in any one of the family of topologies exhibit intuitively appealing economic

properties.

In general equilibrium theory, equilibrium prices come from the topological dual spaces.

Thus we also characterize the topological duals of the suggested family of norm topologies and

show that they are essentially composed of processes which are sums of processes of absolutely

continuous paths and martingales. This is a very natural result. H&K have shown that in

the case of certainty the shadow prices for consumption are essentially absolutely continuous

functions. Hence preferences that treat consumption at nearly adjacent dates as almost perfect

substitutes will give rise to nearly equal prices for consumption at nearly adjacent dates and

these prices vary over time in an almost differentiable fashion; an intuitively attractive con-

clusion. In the case of uncertainty a new element, the pattern of information flow, affects the

sample path properties of equilibrium prices. This effect is captured in the martingale compo-

nent of the price process. It is known that a martingale can make discontinuous changes only

at surprises and can fluctuate in a nowhere differentiable fashion. Thus equilibrium prices for

consumption are continuous except possibly at surprises and can fluctuate in a nowhere differ-

entiable manner (due to temporal resolution of uncertainty). This agrees with our economic
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intuition.

We also investigate properties of arbitrage-free price processes in a dynamic securities mar-

ket economy where an arbitrage opportunity is defined using concepts of continuity derived

from our family of topologies. It is shown that, between lumpvsum ex-dividend dates, price

processes are continuous except possibly at surprises. In particular, if the information struc-

ture is generated by a Brownian motion and accumulated dividend process of a security is an

absolutely continuous process, the ex-dividend price process for this security is an Ito process.

It is worthwhile to point out that earlier models of equilibrium using the standard repre-

sentation of utility had to rely on exogenous factors in addition to preferences to characterize

the sample path properties of equilibrium prices; see Duffie (1986) and Huang (1987). For

example, in the ceise of a Brownian motion filtration, the price process for a security with abso-

lutely continuous accumulated dividend process will not be an Ito process unless the aggregate

endowment process is. In our setup, however, since consumption at nearly adjacent dates are

almost perfect substitutes at times of no surprise, price processes of securities with absolutely

continuous accumulated dividends will be Ito processes independently of the properties of the

aggregate endowment process.

As for the existence of an Arrow-Debreu equilibrium in an economy populated with agents

whose preferences are continuous in one of our topologies, we have little to report. Known

sufficient conditions for the existence of an equilibrium are not satisfied by our topologies. This

opens up a question about the existence of an equilibrium in economies of our type.

The rest of this paper is organized as follows. Section 2 formulates the stochastic environ-

ment under study with a time span [0, 1]. Taken eis primitive is a probability space (n, ,', P)

and an information structure F = {Tt',t £ [0, l]}i where each u E Q denotes a state of nature,

7, a sigma-field, is the collection of distinguishable events at time 1, P is the probability beliefs

about possible events held by the individuals we will consider, and F, an increasing family of

sub-sigma fields of 7 , specifies how distinguishable events in 7 are revealed from time to

time 1.

A consumption pattern x = {x{t);t € [0,1]} is a stochastic process having positive, increas-

ing, and right-continuous sample paths which is consistent with F or adapted to F. The random

variable x{t) denotes the accumulated consumption from time to time t. Let X-(- be the space

of consumption patterns and X be the linear span of X+. Our task is to define a topology T on

X so that preferences continuous with respect to it exhibit economically desirable properties.

We put forth a wishlist for a topology T and introduce a family of topologies to satisfy this

wishlist in Section 3. The agenda on our wishlist is two-fold: First, an economy under certainty
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is a sf>ecial case of an economy under uncertainty where the true state of nature is revealed

at time 0. In such event, we would like our topology to agree with the H&K topology. This

necessitates that the norms of H<kK be used path by path (state by state) on a consumption

pattern. For the L^ example mentioned above, the path-wise distance between x 6 X+ and

is

where i(a;, t) is the value of the random variable x{t) when the state of nature is w. Note that

in (1) p is a function of the state of nature w - there is no a priori reason to expect that the

trade-off of consumption across time is the same for all states.

Second, consider substitutability of consumption across states. One unit of consumption at

a time in a particular event may be a close substitute to one unit of consumption at the same

time in another event for an individual. But there is no economic reason to expect that all

individuals with continuous preferences consider consumptions in different events to be close

substitutes. Thus the topology on X should not a priori build in substitutability of consumption

across states in an arbitrary manner. On the other hand, it is quite intuitive that one unit of

consumption in an event which is very unlikely to occur should be close to not consuming at

all.

With all these considerations in mind, a natural way of aggregating the path-wise con-

struction in the previous paragraph is to just take expectation. Taking expectations embodies

the notion that consumptions at two disjoint events are perfect nonsubstitutes except when

both events are negligible in probability and thus the two consumption patterns are almost

indistinguishable from zero. Taking expectations also embodies the notion that, at any time,

the differences of preferences for consumption in two events with the same probability is a

decreasing function in the degree of overlap of the two events. We here remind the reader that

defining such a strong topology and considering continuous preferences certainly does not rule

out preferences that actually consider consumptions across states to be close substitutes. They

will be special cases of preferences continuous in the "strong" topology. In the same U' example

above, except now that p is nonrandom, the norm of a consumption pattern x G X+ is then

{^^j\x[t)ydt + \x[\)Y (2)

which is a standard U' norm but on accumulated consumptions rather than on consumption

rates.

^

^The reader may have noticed that (2) is not finite for every i € X.).. Thus we will have to restrict our

attention to a subset of X-|. depending on the topology.
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In section 4 we develop some topological and uniform properties of the family of topologies

defined in Section 3. The reader will see that the family of topologies inherit many proper-

ties of the Hi:K topologies when those properties are properly "aggregated" across states by

taking expectations. Basically, the family of topologies exhibit the desired economic property:

consumptions at nearly adjacent dates where there are no discontinuities of information are

almost perfect substitutes. Since uniformly proper preferences (see Mas Colell (1986)) have

been needed for the general equilibrium theory, we also investigate properties of preferences

that are continuous and uniformly proper.

Section 5 characterizes the topological duals of the family of topologies under consideration.

We show there that the topological dual spaces corresponding to our topology - spaces which

contain the shadow price of consumption - consist of processes that can be decomposed into

the sum of two components: an absolutely continuous part and a martingale part. We further

show that a topological dual space corresponding to each one of our topologies may fail to be

a sublattice in the order dual; a property known to be sufficient, together with other things,

to guarantee existence of a Walrasian equilibrium in our model. In particular, in the case of

Brownian motion information, the duals spaces are not sublattices of the order duals.

Section 6 examines how standard models with time-additive utility functions fare in our set

up. Similar to the results of HA:K, preferences represented by time-additive utility functions

over consumption rates are continuous in any of our topologies if and only if they are linear.

In addition, we examine some of the prevalent representations in the literature of "non time-

additive" utility functions such as those in Bergman (1985), Constantinides (1988), Heaton

(1988), and Sundaresan (1988). Although such representations have elements that capture the

effect of pzist consumption on current utility, we find that most of them imply preferences that

are not continuous in the sense that we advocate.

In section 7 we examine the implications of our topologies on the prices of long-lived se-

curities in dynamic asset markets. Our discussion is along two lines. First, we examine asset

prices under conditions of "no arbitrage." We show that in this case the prices over time of

long lived securities inherit the properties of the shadow prices of consumption that we discuss

in section 5. In particular, we show that in the case of Brownian motion information struc-

tures, and absent any arbitrage opportunities, the prices of long lived securities with absolutely

continuous accumulated dividend processes will be Ito processes. This result is purely driven

by the continuity of preferences. Second, we discuss similar issues in the case of markets with

continuous trading in dynamic equilibrium, under the assumption that such an equilibrium

exists. Section 8 contains concluding remarks.
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2 Formulation

Consider an economic agent who lives in a world of uncertainty from time to time 1. There

is a single consumption good available for consumption at any time t G [0,1]. Uncertainty is

modeled by a probability space (fl, J,P). Each w € n represents a state of nature which is

a complete description of one possible realization of all exogenous sources of uncertainty from

time to time 1. The sigma-field / represents the collection of events which are distinguishable

at time 1 and P is a probability meeisure on {CI, 7).

We take as given the time evolution of our agent's knowledge about the states of nature.

This is modeled by a filtration F = {Tt; t E \0,l]}, which is an increasing family of sub sigma-

fields of J; that is, T, '^ 7t ii s < t. Interpret 7t as the information that the agent has at time

t. We assume that T = 7i, that is, the true state of nature will be known at time 1, and the

filtration F satisfies the following usual conditions:

1. F is complete in that 7o contains all P-null sets;

2. F is right continuous in that /( = Tt+, where 7t+ = At<« ^»-

Besides these usual conditions, we will further suppose that the information structure satisfies

a regularity condition, which almost always holds in applications. Before we do that, some

definitions are in order.

Definition 1 The function T : Q — [0,oo] is an optional time with respect to F if

{ujen:T{uj)<t}eTt VtG[0,l].

An optional time can always be interpreted to be the first time a certain event happens. The

condition {wen: T{oj) < t} E Tt in the above definition then says that at any time t, it will

be known whether a certain event happened or not.

Definition 2 An optional time T is said to be predictable if there exists a sequence of optional

times {Tn} such that T„ < T a.s. and on the set {T > 0}, almost surely, Tn < Tn+i < T and

Tn y T. The sequence {Tn} is said to announce T.

Intuition suggests that if the first time an event happens is announced by the occurrence of

a sequence of other events, then the event will not take one by surprise. This intuition turns

out not to be correct for general information structures and is valid for a quasi left-continuous

information structure:
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Definition 3 An information structure F is quasi left- continuous if for a predictable time T

and its announcing sequence {T„} we have

oo

^r = V ^T„ = 7t- ,

n=l

where 7t is a sigma-field of events prior to T consisting of all events A E 7 such that

Af]{T < t} e 7t, for allte\0,l].

We assume throughout our analysis that F is quasi left-continuous. This is without much

loss of generality. For example, the filtration generated by a diffusion process, a Poisson process,

or a combination of the two is quasi left-continuous once the filtration is completed.^

A measurable stochastic process y is a mapping V : n x [0, 1]
—

> 9i that is measurable with

respect to 7 ® S([0,l]), the product sigmarfield generated by 7 and the Borel sigma-field of

[0,1]. For each we fi, Y{ui,-) : [0,1] -> dt is & sample path and for each t G [0, l], F (-,«): fi -» !R

is a random variable, which we will usually simply use Y{t) to denote. The process Y is said

to be adapted to F if for each t E [0,1], Y{t) is /^-measurable. This is a natural information

constraint: the value of the process at time t cannot depend on the information yet to be

revealed in the future. For brevity, all the processes to appear will be measurable and adapted

to F unless otherwise mentioned.

The life time consumption pattern of an agent is represented by a process x whose sam-

ple paths are positive, increasing, and right-continuous with x{uj,t) denoting the accumulated

consumption from time to time t in state w. We denote the set of such processes by X+.

The linear span of X-(., the space of processes having right-continuous and bounded variation

sample paths, will be denoted by X.

For technical reasons, which will be made clear later, we will consider preferences defined

only on a subset of X+. Denote this subset for now by £.^ The agent is assumed to have

preferences over £, which are given by a complete and transitive binary relation > that is

"continuous." Our task is to define a topology, say T , on C such that preferences continuous

with respect to which exhibit desirable economic properties. This is the subject to which we

now turn.

*It has been shown by Meyer (1963) that any information structure generated by a process that is continuous

at predictable optional times (defined with respect to its natural filtration) and has the strong Markov property

is quasi left-continuous.

^This subset in fact depends on the topology chosen. The reader can think of the the classical Banach space

example: L''(Q,7,P) certainly does not include all the random variables and is "topology-dependent."
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3 A family of norm topologies

Before proceeding, we will first briefly review the family of H<kK norm topologies on the linear

span of the space of consumption patterns under certainty. This space, denoted by X, is a

linear space composed of functions on [0, 1] that are right-continuous and of bounded variation.

An element of the positive orthant of X, denoted by X+ , is an increasing, positive, and right-

continuous function on [0, 1]. If i € X+, x{t) denotes the accumulated consumption from time

to time t. A topology in the H&K family corresponds to a function /i : St^. —* !R+ with /i(0) =

and fi{oo) = oo that is strictly increasing, continuous, and concave. Defining rj = n~^ , the

inverse of /i, r; : !R+ —> SR+ with f7(0) = and r?(oo) = oo is strictly increaising, continuous, and

convex. Then

inf{a > :
/" r,{\x{t)\/a)dt + r,(|i(l)|/a) < 1}
Jo

defines a norm for x E X. Let > be a preference relation continuous in the topology defined by

the above norm. H&K showed that the following properties are satisfied by >.

(1) Two patterns of consumption that have almost equal accumulated consumption at every

point in time are close: if lim„_oo sup^giQ
ij |in(i) — x{t)\ = 0, then Xn > y for all n implies

X > y and y > Xn for all n implies y > x.

(2) Sizable shifts in consumption across small amounts of time are regarded as insignificant:

for I, y € X+ , let

p{x, y) = inf{f > : i{< + e) + e > y{t) > x{t - e) - e, t e [0, l]}.

(This is the Prohorov metric on the space of increasing functions on [O, l].) If p(xn,x) —
> as

n —» oo, then Xn ^ y for all n implies x > y, and y >; in for all n implies y >: x.

Moreover, for >: that is uniformly proper in the direction X|m)> the indicator function of

[t, 1], in the sense of Mais Colell (1986)^, shift of an increasingly large amount of consumption

across a decreasingly small amount of time is regarded negligible. This is where the function /i

comes into the picture:

The formal definition of uniform, propemets will be given later.
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(3) Let {x„} and {t/n} be two sequences of consumption patterns with the properties that (i)

{i„(l)} and {y„(l)} are both o(/i(rj)), and (ii) p(in,yn) < 1/", then for all sufficiently large n,

Xn + Xt > Vn, where {in(l)} is o{fi{n)) means lim„^oo x„(l)//i(fi) = 0.

Litereilly, (3) means if the amount of consumption shifted increases to infinity at a rate

slower than the rate at which n incresises to infinity and if the decreasingly small time interval

aw;ross which consumption is shifted goes to zero faster than 1/n goes to zero, then the shift is

insignificant in terms of preferences.

Note that (l) and (2) are topological properties while (3) is a uniform property since the

sequences in (3) diverge rather than converge.

With these above facts about the H<kK topologies in mind, we now turn to two considera-

tions that determine a family of norm topologies on subspaces of X.

First, note that an economy under certainty is a special case of an economy under uncer-

tainty. The former corresponds to a case of the latter where the true state of nature is revealed

at time 0. Therefore, a candidate topology under uncertainty should have the property that it

degenerates to an HitK topology when Jo = 7i. That is, if the true state u> E. Q were known at

time zero, the topology on X should be generated by the "norm:"

||x|| =inf{a>0: / <p{u,\x{u,t)\/a)dt + ^{<^,\x{uj,l)\/a) < l),
Jo

for some tp{u,-) : 5R+ —> 5R+ with <p[oj,0) = and ^(a;,oo) = oo that is continuous, strictly in-

creasing, and convex. Note that n{u, •) = (p{uj, •)~Ms a /i in HA:K that measures how fast shifts

of consumption across time increase to infinity in property (3) above. (Here, however, /i may

depend upon the state of nature since every state of nature can be viewed as a different economy

under certainty and there is no a priori reeison to expect that the trade-off of consumption over

time will be identical in each one of these different economies.) This consideration necessitates

that an H<kK norm be used on a path of an i G X.

Second, we expect that one unit of consumption at any time and in an event which is

negligible in terms of probability P should be "close" to not consuming at all. On the other

hand, a priori, there is no reason to expect that one unit of consumption at time t in event

>1 is a close substitute for one unit of consumption at the same time but in another event A'

disjoint from A except when both A and A' are negligible in terms of probability P, since in

which case, both consumption patterns are "close" to zero.

These two considerations suggest that we use H&K path-by-path and "pa^te" together these

path-wise constructions by taking expectation according to P. This leads us to the notion of
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a Generalized Orlicz space. (Musielak (1983) is a good reference.) The following is a brief

introduction.

Consider the measure space (n x [0,1],0,P x A), where is the optional sigma-field -

the sigma-field generated by all the processes adapted to F having right-continuous paths, A is

the Lebesgue measure on [0,1], and P x A is the product measure generated by P and A. A

mapping on fJ X [0, 1] that is meeisurable with respect to is an optional process. It is known

that an optional process is adapted to F; see Chung and Williams (1983). Denote the space of

optional processes with equivalence P x A almost everywhere by O. Note that X is a subspace

of O.

Let $ be the collection of functions ^ : n x !R+ —» 5R+ meeisurable with respect to J B(!R)

with, almost surely,

<p{u),0) = and v'(a;,oo) = oo,

that are continuous, strictly increasing, convex, and integrable in that

/ (p{ijj, z)P{d(jj) < oo Vz > 0.

Jn

A modular is a function ^ : O —+ [0,oo] such that

(a) e(0) = 0;

(b) ^(i) = implies i = 0;

(c) e(-i) - e(x);

(d) ^{ax + ^y) < ^{x) + ^(y) for x, y G O and for a, ^ > 0, a -h /? = 1.

For <p € ^ and for all i € O, ^(w, |i(a;, <)|) : n x 5R+ —» 5R+ is measurable with respect to

7 ® S (5R) and

^W = In /o V>{<^, \x{uj,t)\)dtP{duj) + /n ^(u;, \x{uj, l)\)P{du)

^E[l^cpi\x{t)\)dt + r{\x{l)\)]

is a modular on O.

The modular ^ defines the so called generalized Orlicz space, U' , where

(3)

V xeO-.E /V(7|x(t)l)dt + vp(7l^(l)l) as 7 -» 0-f-

The set

^=\xeO:E f\{\xmdt + ^{\x{l)\)
Jo

< oo

(4)

(5)
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will be called a generalized Orlicz class. It is known that Lq is a convex subset of L'^ and L^ is

the smallest vector subspace of O containing Lq. The largest vector subspace of O contained

in Lq is

(6)1^
<p['j\x{t)\) dt + <p[t\x{l)\) <oo V7>ol.E^ = <x e O: E

An X € E^ is said to be a finite element of L^.

Remark 1 If (p{u!, x) = <p{x) is independent ofu, we say that L"^ and Lq are Orlicz space and

Orlicz class, respectively. Also, in the case of certainty, there is no distinction between L^ , Lg,

and Ef.

We will henceforth restrict our attention to E'^ , on which we define a norm:

Definition 4 Given the function <p E ^, we define a norm
\\

•
\\

on E'^ as follows: Vi G E'^

,

\\x\\^ = mL>0:E l\[^-^)dt + ^{^-^) <l|. (7)

(For the fact that (7) defines a norm on E'^ , see Musielak (198S).)

Here it is worthwhile to remark that if <p{ijJ, \z\) = \z\'^ for some 1 < p < oo, then

L^ = L^ = E^ = L''(n X [0,1],0,P X A),

and the norm defined in Definition 4 is equivalent to the standard 1/ norm.

As we mentioned earlier, X is a proper subset of O, therefore £'^ contains processes whose

sample paths are not of bounded variation or right-continuous. Now putting f '^ = E'^ f]^, the

following proposition shows that (£''',11 •
||^) is a normed space with compact order intervals,

where
||

•
||

is as defined in (7) but restricted to £'^.

Proposition 1 (if''',!! •
||,^) is a normed space with norm-compact order intervals.

Proof. The first assertion follows from the fact that
||

• \\^ is a norm on E'^ and if^ is a

subspace of E'^. A proof of the second assertion is provided in Appendix A. I

Note that the norm
||

•
||^ peistes together the path-wise H&K construction by taking expec-

tation under P - as we envisioned earlier. Henceforth, denote the topology on if '^ generated

by \\-\\^ by T^.

Denote the positive orthant of f '^ by f^ h <f^f|X+, which is a cone. Each i € f^ is

then a consumption pattern. The cone S^ defines an order on f ''' in the following way: Let

i,y e S'^. We say x is "greater" than y, denoted by i > y, if i - y G f^.
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For the analysis to follow, we shall cissume that our agent's preferences > are defined on if^

and are continuous with respect to T^. Using the terminology of general equilibrium theory,

C^ and f^ are referred to as the commodity space and the consumption set, respectively.

A natural question that arises from the above definition of commodity spaces is how these

spaces and their corresponding topologies compare. The answer to such a question is given in

the following proposition.

Proposition 2 Let <pi,(p2 & ^ satisfy:

<P2{<^, z) < ki(pi{(jj,k2z) + h{u)) Vz > and P x X — a.e.

where h is a positive integrable function on Q and ki, fcz <i''c strictly positive constants. Then

£fi c f'2, and T^, is stronger than T^j.

Proof. See Musielak (1983, Theorem 8.5). I

Among all the topologies {T^; ip G $}, there is a weakest one - the one generated by

(p{uj,z) — \z\ and denoted henceforth by T. This is formally stated in the following corollary.

Corollary 1 T is weaker than T^ for all y? e $.

Proof. It is easily verified that, for all <p e ^,

\z\ <tp{uj,\z\) + h{u>) Vz > PxA-a.e.

for some positive integrable random variable h on {Q,T,P)- The assertion then follows from

Proposition 2. I

The commodity space corresponding to <p{uj,z) = \z\ will be denoted by £.

Remark 2 // ipi and <p2 are independent of ui, then the condition in Proposition 2 can be

written as: There is ki,k2 > and zq > such that

(P2{z) < ki<pi{k2z) Vr > Zq.

Now that we have defined a family of commodity spaces and their corresponding topologies,

the next item on our agenda is to see whether continuous (and uniformly proper) preferences

give rise to economically desirable behavior.
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4 Topological and uniform properties of 7^

In this section we will investigate whether the topology T^ gives economically reasonable sense

of "closeness" for consumption patterns in f^ for all <p € ^. The reader will find out that

Tip inherits many properties of a H<kK topology when those properties are appropriately ag-

gregated across states. In particular, consumptions at nearly adjacent dates where there is no

discontinuity of information are almost perfect substitutes - a natural generalization of HiiK.

We first record two facts about {S'^,T,p).

Proposition 3 Suppose that [Cl,T,P) is separable. Then (f',7^) is a separable normed topo-

logical vector space.

Proof. Recall that [Q, 7 , P) is separable if there exists a countable set {Bn G 7; n = 1,2, . . .}

such that for every e > whatever small and A E. T there exists B„ such that P{AABn) < e,

where A denotes the symmetric difference of two sets. Then it is easy to see that a countable

dense set of (f '^, T^) is the set of right-continuous bounded simple processes that change their

values at rational time points, take rational values, and vanish except at finite subsets of {fin}.

(A process Y is simple if there exists a finite subdivision = to < ti < • • < tn = I o{

[0,1], and random variables a,ai, . . . ,a„_i, where a,- is 7t_-measurable and bounded such that:

Y{u;,t) = a{u)x{o}{t) + E7:I Mu;)xit,.t.^,]{t).) I

Remark 3 In most applications, (n, J,P) is separable. For example, in many models of finan-

cial markets, CI = C[0, l], the space of continuous function on [0, 1], J is the Borel sigma-field

generated by open sets defined by the sup norm on C[0,l], and P is the Wiener measure. The

fact that this probability space is separable can be found, for example, in Billingsley (1968).

An immediate consequence of Proposition 3 is that any continuous preference relation > on

separable (f^, T^) has a numerical representation; see Debreu (1954).

Next we will examine in what alternative forms the three properties satisfied by a continuous

preference relation in HA^K as reviewed in the beginning of Section 3 continue to hold. In the

process, we will also show that absolutely continuous consumption patterns are dense.

First, we give an example to show that two consumption patterns that have almost equal

accumulated consumption at every point in time and in almost every state of nature may not

be close.
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Example 1 Fix pE^. Let Bn e T be such that B„+i c B„ V n, P(B„) > 0, and P[B„) ->

as n —* oo, and let the random variable ¥„ > be such that (p[ijj,Yn{oj)) = n/P[Bn) a.s.

Consider the sequence of consumption patterns

Xn['^,t) =
ift< 1;

where XB„ ** the indicator function of the set Bn- That is, i„ provides for no consumption

until time I, at which time it provides Yn units of consumption in the event Bn and nothing

otherwise. Let x{t) = for all t. It is easy to see that

lim sup \xn{uj,t)\ = 0, a.s.

"-'~«elo,il

But

oo as n oo.E ^ <p{xn{t))dt + ^{x„{l))^= j^ <p{u;,Yn{uj))P{du;) = n

Note that ||i„ - x\\^ —> i/ and only if for all 7 > 0,

E f <p{-i{xn{t) - x{t)))dt + >p{i{xn{l) - x{l))) -> as n-^ 00;
.Jo

see Musielak (198S, Theorem 1.6, p. S). Thus ||i„ — i||^ 7^ as n —* 00 and we do not expect

Xn >i y for all n to imply that x > y.

In the above example, x„ converges uniformly to zero pointwise. Along the sets {Bn},

however, in(l) increeises to infinity in such a way that (p[(jj,Xn{<^,i)) grows to infinity faster

than the probability of B„ decreases to zero. Thus a:„ does not converge to zero in T^. For

Xn to converge to x, supj^rg ji l^nC'^, t) ~ 2:(w,t)| cannot grow too fast even on sets of gradually

vanishing probability. The following proposition gives an alternative form of property (1) of

H&K.

Proposition 4 Let x,y,Xn € if' for all n. // lim„_oo sup^gfo,!] |in(w,t) - x{ijj,t)\ = a.s.

and if there exists a random variable K with the property that E[^{X)] < 00, such that

supj^fQi] |i„(cti,t) - x{ijj,i)\ < K{(jj) a.s., then in >: y for all n implies x > y and y > Xn

implies y > x.

Proof. By the continuity of >: with respect to T^, we only have to show that ||in - x\\p —>

eis n —» 00. Recall from Example 1 that it suffices to show for any 7 >

E
1^

<p{l\Xn{t) - X{t)\) dt + ^(7|X„(1) - l(l)l) 0.
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The assertion then follows from the Lebesgue convergence theorem and the fact that (p[uj,z) is

continuous in z and ip[(jj,0) = 0. I

Second, we want to show that sizable shift of consumption within the "information con-

straint" over a small enough interval is regarded as insignificant. The information constraint

here is absent in H<JiK. One unit of consumption at time t in an event A E 7t may not be

advanced to time t — e in the same event for f > however small, since A may not be a distin-

guishable event in Tt-e and doing so will violate the information constraint that consumption

patterns be eidapted to F. On the other hand, one unit of consumption at time t in an event

can always be delayed to any time s > t in the same event. Moreover, one unit of consumption

at a "surprise" cannot be advanced to an instant before by the nature of a surprise.

The following proposition formalizes these discussions, whose proof is contained in Appendix

A. A definition is needed.

Definition 5 Let T and S be two optional times. The stochastic interval {T,S] is the set

{{u/,t) : T(w) < t < S{uj)}.

Let T < 5 be two optional times. It is known that [T, S] E and thus the process

x{<^,t) =X[T.l]{<^,t),

denoting a consumption pattern that provides for one unit of consumption at time T, is optional

and therefore adapted (to F).

Proposition 5 Let T be an optional time. Then kx\T,i\ ^ <^+ /"'' <ill k > and T + ^ is also

an optional time for all n. Fix k > and put

Xn = kxiT+i.,1] and X = kx\T,i]-

Suppose that P{T = 1} = 0. Then

PX[r+i,il - *:Xir,i]L -* as n — CO.

Thus x„ y y for all n implies x > y and y >: x„ for all n implies y >: x. On the other

hand, suppose that {Tn} is a sequence of optional times with Tn < T, and on the set {T > 0}

,

Tn < T„+i < T.

Putting i'„ = kx[T„,i],

||i'„ — x\\^ —> as n —» oo

if and only if T is predictable and {Tn} is an announcing sequence.
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Proof. See Appendix A. I

Proposition 5 states that delaying the consumption of k units, even for large k, for a small

period of time will be regarded insignificant by an agent with preference relation continuous

in T^. However, advancing consumption over a small interval from an optional time to an

earlier optional time is regarded insignificant if and only if the optional time is predictable;

that is, consumptions at a random time and at random times instants before are almost perfect

substitutes if and only if there is no left discontinuity of information at those random times

instants before. It is worthwhile perhaps to recall that any deterministic time is predictable and

thus consumptions at nearly adjacent deterministic times are always almost perfect substitutes!

Discontinuity of information can only occur at random times. For example, the first time a

Poisson process jumps is a surprise that happens at a random time.

Remark 4 Note that although T+ - is an optional time whenever T is, T — - is in general not

an optional time except when T is deterministic. Thus an announcing sequence of a predictable

optional time T in general cannot he constructed by putting Tn = T — ^.

With the aid of Proposition 5, we now show in the following proposition that the set of

absolutely continuous consumption patterns is dense in if '^. This is the counterpart of a result

in H<kK with one caveat. Under certainty, one unit of consumption at time t E (0, 1) can be

approximated arbitrarily closely by consuming at an average rate "around" (. For example,

X[i/2,il can be approximated arbitrarily closely by three sequences,

-nit) = -(^-^ + ^)X|l-^,i.^,(0 + X(i,^„(0, (8)

x4t) = n((-^ + ^)x(i_i,ij{0 + X(i,i](0. (9)

-n{t) = n(t-i)X|i,i + i](0 + X(i + i,i|(0- (10)

The sequences above shift consumption around, before, and after t = 1/2, respectively, at an

average rate. They all converge to consuming one unit at time 1/2 in any of the H&K topologies.

From Proposition 5, however, we know that consumption at nonpredictable optional times

cannot be approximated by earlier consumption. Consumption at all times can nevertheless be

approximated by delayed consumption except at the final date t = I, which is not a random

time and creates no problem. This observation is formalized in the following proposition, whose

proof is contained in Appendix A.
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Proposition 6 The set of absolutely continuous consumption patterns in i'^ is dense with

respect to the topology Tp.

Proposition 5 also suggests a more general measure of "shifts" of consumption in the spirit

of the Prohorov metric used by H<kK.

Let x,y € f^ and define a Prohorov metric path-by-path:

pA^'V) = inf{e> 0:i(t + f.w) + e > y{t,u) > x{t - e,u) -e,Vf € [0,1]}.

The e neighborhood of a path x{uj, •) is any other path t/(w, •) that lives entirely within a "sleeve"

around x{uj, •) that is determined by moving up and to the left and down and to the right ( a

distance e in each direction) from x{ijj,-) at every point {t,x{uj,t)). Hence if y(w, •) is within e

of x(a;,-) in the Prohorov sense, then at every time t in state uj, the totd consumption under

X is within f of the total consumption under y at some time no more than e away from t.

The idea here is that if p^{x,y) is uniformly smaller than c across states of nature, then

sizable shifts of consumption at predictable optional times can only occur across a time interval

less than e in width. Such shifts should not drastically change an agent's utility for the original

pattern x. At nonpredictable times, however, Proposition 5 implies that as f —
> 0, the e

neighborhood of x will not contain any y that advances consumption to earlier time since

that will violate the information constraint. As it turns out, Puj[^,y) being uniformly small

is too strong, and we can allow p^[x,y) to be large on a set of small probability. (Note that

Pu{xn,x) —> a.s. for a sequence of consumption patterns (i„) is too weak for \\xn - i||^ —» 0.

A counter example can be constructed along the lines of Example 1.)

Proposition 7 Let x,Xn G £^ with the property that there exists an T -measurable function,

say K , such that

Pu.(in,x)<—^ P-as. and Y.\'p[K)\<oo.
n

Then \\xn — x\\p —> as n —> oo. Thus in ^ y for all n implies that x > y and y > Xn for all n

implies that y > x.

Proof. See Appendix A. I

This proposition concludes our investigation into how continuous preferences behave with

respect to "shifts" of consumption. With the aid of Proposition 7, the following proposition

shows the fact that (if', T^) is not a topological vector lattice.

Proposition 8 {S'^,Tp) is not a topological vector lattice.
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Proof. The sequence of sure consumption patterns Xli/2,1] ~ X\{n+i)/2n,i\ converges to zero by

Proposition 7. But the positive part (or the negative part) obviously does not. I

Third, we now consider how our topologies perform when an increasingly larger amount of

consumption is shifted over a decreasingly smaller amount of time. Intuition suggests that as

long as the increjisingly larger amount being shifted goes to infinity slowly enough, the shift

should be regarded as negligible. The meeisure of how slowly the amount of a shift increeises to

infinity is naturally related to <p, the state-by-state inverse of which meeisures the same thing

in a corresponding economy under certainty.

We first put /I = <p~^, the inverse of ip state-by-state. It is eaisily seen that ^l{u),) is

strictly increasing, continuous, concave, and with n[uj,0) = and ^(u;,oo) = 00. The following

proposition essentially shows that if the amount shifted increases to infinity slower than /i grows

to infinity state by state except possibly on a set of small probability, then the shift will be

negligible.

Proposition 9 Let n = (p~^ and let {x„} and {t/n} be two sequences in f^ . Suppose that

{x„{(jj, 1)} and {yn(w, 1)} are both o(/i(a;,n)) and satisfy

Pu{Xn,yn) < p-a.S.,
n

where K[ijj) is an 7-measurable function such that E[^(ii')] < 00. Then ||x„ - y„||i^ —* as

n — 00.

Proof. See Appendix A. I

The sequences {xn} and {«/„} in Proposition 9 are both divergent and thus we could not

hope for the validity of statements such as

I* + i„ >- j/„, for n sufficiently large (11)

when > is continuous and strictly monotonically increasing in the direction of i* G £^ with

I* ^ 0, where >- is the strict preference relation derived from >. In Appendix B we give an

example of a linear preference relation that violates (11). The reason for this is that although

W^n — VnWip
—

» as n —+ 00, I* + 1„ - t/n may lie outside of f^ and we cannot use the continuity

and strict monotonicity of >: to conclude that i'+i„-y„ y for large n and thus i' + i„ > y„.

However, (11) is a property of uniformly proper preferences defined formally below:

Definition 6 (Mas Colell (1986)) Preferences > on (f^ are said to be uniformly proper with

respect to T^ in the direction x' G f^ with x' ^ if there exists a T^ open neighborhood V of

the origin such that, for every x E f^, v eV , and scalar a > 0, x - ax' + av "^ x.
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The uniform properness is a form of strong monotonicity. The uniform part of properness

comes from the fact that x' and V must be chosen independently of x. It is important to note

that X — ax' + av >: i is allowed to fail by virtue of the fact that x — ax' + av ^ £^ . (See Mas

Colell (1986) for further details.)

Proposition 10 Let the sequences {in} <"*<' {Vn} ^c as in Proposition 9. Suppose that > is

uniformly proper in the direction x' . Then

x' + Xn >- Vn 1« " ~* OO.

Proof. Rather than mimicking the proof of H<kK, we use a different argument. Richard

and Zame (1986) have shown that if >: is uniformly proper, it can be extended to an open

set containing f^. By Proposition 9, for large n, i* + !„ - t/„ lies inside this open set and

I* + 1„ — y„ is strictly preferred to for the extended preferences by continuity. Then it follows

that x' + Xn > j/n for large n. I

In the positive orthant, (11) is not a topological property of continuous preferences - there

exists continuous preferences that violate (11); it is a uniform property. On an open set con-

taining S'^, however, (11) becomes a topological property for continuous preferences. Since

continuous and uniformly proper preferences on S+ behave like continuous preferences on an

open set containing f^, they satisfy (11).

5 Duality

In standard general equilibrium theory of the Arrow-Debreu sort, equilibrium prices come

from the space of linear functionals continuous in the topology with respect to which agents'

preferences are assumed to be continuous. This space of continuous linear functionals is called

the topological dual spaced Let ^ be a continuous linear functional that gives equilibrium prices.

Then i/'(i) is the price at time of the consumption claim i. We will find out soon that \p can

be represented in the form

^{x)=-E\r f{t)dx{t)
Uo-

iGf^,

where, roughly, / is a process that is decomposable into two parts: a process having absolutely

continuous sample path and a martingale. We interpret f{oj,t) to be the time shadow price of

one unit of consumption at time t in state tv. Since a martingale can have discontinuities only

^More formally, (f", T^) ie a topological linear space and the space of continuous linear functionals on (£'*', T^)

is its topological dual.
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at nonpredictable optional times (see Meyer (1966, Theorem VI. 14)), we thus conclude that

consumption at nearly adjacent (random) dates have almost the same shadow prices except

at surprises. It is known that a continuous martingale is either a constant or of unbounded

variation. Thus when information is revealed continuously throughout, shadow prices for con-

sumption can fluctuate widely in a nondifiFerentiable faishion. In particular, if the information

structure is generated by a Brownian motion, the shadow price process for consumption over

time is an Ito process.

We now proceed to characterize the topological dual of (f *', T^), denoted by f '^
. We shall

make use of the concept of complementary generalized Orlicz spaces for most of our analysis

here. We provide some definitions.

Definition 7 A function <p E ^ is said to be an N -function if the following conditions hold:

• lim^^o+ ^^^ = V'^ e Q; and

• limi_oo ^^''^ = oo Vcj € n.

Remark 5 By convexity, for (p an N -function, we can write (p{u;,\x\) = Jq v[(jj,s)ds, where

v{uj,s) is the right-hand derivative of ip{uj,s) for a fixed uj.

Definition 8 Let (p E ^ be an N -function, and let v{uj,s) be as in the above remark. Let

v'{uj,a) = sup{s: v{uj,s) < ct}, then

<p*{oj,x)= / v'{ui,a)da
Jo

is said to be complementary to <p. The generalized Orlicz space L'^ is then said to be comple-

mentary to L'^ , where we recall the definition of a generalized Orlicz space in (4).

Example 2 (1) If<p{u;,x) = \x\''^''\l < p(a;) < oo, then <p'{uj,y) = |y|«("), where :^ +^ =

1. (2) If'p{u;,x) =e' -x-1, then 'p{uj,y) = (1 + y)/n(l + y) - y.

The following proposition describes T^-continuous linear functionals on the space f'' in

terms of elements of L'^ .
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Proposition 11 Let <p G ^ be an N -function and with a complementary function (p' . Then

ip : C^ —* yt is a T^-continuou8 linear functional if and only if there exists an adapted process

f with absolutely continuous sample paths, and with f & L'^ , so that

f 9{t)dx[t)
Jo-

Vi€(f'^, (12)

where g[t) = f{t) + rn(t), and

m(0=E[-/'(l)-/(l)|7,] VtG[0,l] (13)

is a martingale, or equivalently, g[t) = /(() — /'(I) — /(I), which is a process with absolutely

continuous paths but may not be adapted.

Proof. See Appendix A. I

An important special case of Proposition 11 is when <p{uj,z) = \z\'' with 1 < p < oo. The

case when p = 1 is not covered in Proposition 11, however, since |2;| is not an A^ function.

The following proposition gives the duality result for this 1/ family, whose proof is left for the

reader.

Proposition 12 Let (p{(xi,z) = \z\^, for alluj, with 1 < p < oo. Let q be such that l/p+l/q = 1.

Then tp :
6'^ — 5R ts a T^-continuous linear functional if and only if there exists an adapted

process f with absolutely continuous sample paths so that

rP{x) = E y^' g{t)dx{t) ViGf^, (14)

where

if'j'il)) e L'(n X [0,ll,O,P X A) X L'(n,7,F),

g{t) = f{t) + m{t), and

m(0 = E[-/'(l)-/(l)|J,l V<€[0,1] (15)

is a martingale, or equivalently, g{t) = f{t) - /'(I) - /(I); which is a process with absolutely

continuous paths but is not necessarily adapted.

Note that in the above proposition, when p = 1, the dual space is composed of processes

that are sums of processes with Lipschitz continuous paths and bounded martingales.

Another important ceise of the function (p which is not covered in the above propositions is

when ip is sisymptotically linear, in that for some a; G n, we have limi_oo ~^ = a > 0. In the
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case of certainty, HiiK have shown that the space of shadow prices in this case is the space of

Lipschitz continuous functions. We obtain a similar characterization for the case of uncertainty

under the assumption that the function ip is "integrably asymptotically linear." This result is

recorded in the following proposition.

Proposition 13 Ltl the function ip be integrably asymptotically linear, in that for any e > 0,

there exists a random variable K, with the property that E[v?(/if)] < oo, such that

(p{oj,x) < ax + € yx> K{(jj) a.s. (16)

In this case, we have the equivalence £'^ = £ , and T^ is the same as T , where we recall that t

and T are the consum.ption space, and the topology constructed using <p{x) = |i| for all u) E n.

In particular, this shows that an element of the dual space to C^ is the sum of a process with

Lipschitz continuous sample paths and a bounded martingale.

Proof. See Appendix A. I

In H&K, a continuous linear functional can be represented essentially by an absolutely

continuous function. Here, however, a continuous linear functional is represented by a process

that is the sum of an absolutely continuous process and a martingale. It is known that the

sample path properties of a martingale are determined by the way information is revealed

over time: A martingale can have a discontinuity only at nonpredictable optional times; see,

for example, Meyer (1966, Theorem VI. 14) It then follows that prices for consumptions at

nearly random adjacent dates are almost equal when there are no "surprises." An information

structure F is said to be continuous if P{A\Tt) = E[x/i|/t] is a continuous process for all

AE 7; that is, the posterior probability of any event evolves continuously. It is known that an

information structure is continuous if and only if all optional times are predictable; see Huang

(1985a). Thus when F is continuous, the dual of f*' consists only of continuous processes and

prices of consumption at nearly adjacent random dates are almost equal. It is also known that

if a martingale is continuous on a stocheistic interval, it is either a constant or of unbounded

variation there (Fisk (1965)). Hence there are cases where prices for consumption at nearly

adjacent dates are almost equal but fluctuate widely in a nowhere diff"erentiable fashion. This

comes about because of uncertainty. When there is no uncertainty, the martingale part of the

prices for consumption disappears and prices degenerate to absolutely continuous functions of

time.

An important special case of continuous information structure is when F is generated by a

Brownian motion. In this case, the dual space only contains Ito processes. This characterization

is given in the following proposition:
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Proposition 14 Let F be generated by a Brownian motion and let g be an element of any of

the dual spaces characterized in Propositions 11, 12 and IS, then g is an ltd process:

g{t)=
f*

f'{s)dB+ f9{sfdw{8),
Jo Jo

where f is a process with absolutely continuous paths and /' denotes its derivative with respect

to time, where w is a Brownian motion and where 9 is adapted to F and satisfies:

I \9{t)f dt < oo a.s.

Jo

Proof. From Propositions 11, 12, and 13, we know that g{t) = f{t) + m{t), where / is an

absolutely continuous process and rn{t) is a martingale. The assertion then follows from the

fact that a martingale adapted to a Brownian motion filtration can always be represented as

an Ito integral (see Clark (1970, Theorems 3 and 4)). I

An example of a discontinuous information structure is when information is obtained by

observing the realizations of a simple Poisson process. In this ceise, a martingale may have a

discontinuity only when the Poisson process jumps. That is, the shadow price process can have

a discontinuity only at a "surprise" which occurs when the Poisson process jumps.

Before we leave this section, we show below that the dual spaces characterized above in

general fail to be sub-lattices of their order duals. We demonstrate this by showing two exam-

ples. The first example uses a very specialized information structure, while the second is in the

context of a Brownian motion information structure, which is the case of prevalent applications.

Example 3 Let Q — {wi,W2} o^rid the filtration be composed of

j {n,0} vte [0,1/2),
^'-\ {{a;i},{a;2},n,0} VtG [1/2,1].

Assume that each of the two possible states has a strictly positive probability of occurrence.

Define two processes with absolutely continuous sample paths as follows:

Vwen te [0,1/2)

4((-l/2) t/a; = wiVtG [i 5),
[

2t Vw G fi t G [0, 1/2)

-4{t-l/2) ./a;=a;2Vte[|,|), f2{u,t) ^ I

1 t/a; = wiVtG[|,l],
-1 t/w =a;2Vt G [f,l].

/i(<^,t) l-4(t-l/2) i/a;=a;iVtG[i,l],

1 j/w = a;2Vt G [i,l].

Note that

-/(.,.)-/!«.,.)={-'
;^:::;; -/,k.)-/;k.)={a :^:=:;:
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It is easily verified that gi{t) = fi{t) — E[/,(l) + /,'(l)|/tl '»«« "» the dual spaces characterized in

Propositions 11, 12, and IS for i = 1,2. Note that the order dual of C^ is composed of positive

processes g that are measurable with respect to T ® B{[0,1]) so that the integral

•1

E / 9it)dx{t)
.Jo-

is well-defined for x E C^ . The order generated by the order dual is then the pointwise order;

that is, gi < g2 ifgi{'^,t) < g2{u),t) a.e. From Proposition 11, we can think of the topological

dual of f^ as composed of processes not necessarily adapted but with absolutely continuous

sample paths. In this example, we can think of 3, as

g,{uj,t) = fi{u,t) - fi{i^,l) - f'ii^A)-

Then the pointwise minimum of gi and g^ is

?l(w, A?2(w,

-1 t/w = a;i tG [0
i),

4(t-l/2)-l ifuj = uxte\\,\),

ifu = uite\\,\],

-\+2t t/w = W2 «G [0,
i),

t/u; = a;2 te[|,l].

On the interval [0, j), gi A ^2 'i'** different derivatives along wi and ui^- Since a martingale on

[0, 1) must be a constant, it is impossible to write gi A 52 ^^s a sum of an adapted process with

absolutely continuous paths and a martingale and thus it cannot be an element of the topological

dual of S'^.

The next example is in the context of a Brownian motion filtration.

Example 4 Let the filtration be a Brownian motion filtration. From Proposition I4 we know

that the dual contains only Ito processes. It is well known that the minimum of two Ito processes

is a generalized ltd process in that it can be decomposed into two parts: a continuous process

with bounded variation sample paths and an Ito integral (see Harrison (1985),^6). That is, by

taking the pointwise minimum of two Ito processes, one creates a process whose time trend part

may have a singular component. Thus the space of Ito processes is not a lattice. We note, in

contrast, that the space of generalized Ito processed is indeed a lattice.

A generalized Ito process is a continuous process with bounded variation sample patlis plus an Ito integral.
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6 Comparison with standard models

In this section we will see how the standard models fare in the context of our current model.

Using a standard model, one assumes that an agent maximizes his exp>ected utility of the

following form

U{x) = -E\f\{x'{t),t)dt\, (17)

for absolutely continuous consumption pattern, where u{z,t) is a time-additive "felicity" func-

tion. This model does not permit gulps of consumption. This creates no major problem. Recall

from Prop)osition 6 that the set of absolutely continuous consumption patterns is dense in f ^.

We can therefore follow HA:K in defining the expected utility of a consumption pattern involv-

ing gulps to be the limit of the expected utilities of a sequence of approximating absolutely

continuous consumption patterns.

The above procedure will work provided that U{x) is 7^-continuous. We show, however,

in what follows that if u{z,t) is jointly continuous then U{x) is T;^ continuous only if u[z, t) is

linear. Our proof is identical to that of HiiK in the ceise of certainty by using Proposition 7

and the fact that a nonrandom consumption is certainly feasible in a world of uncertainty.

Proposition 15 Let u{z,t) : 3f+ x [0,1] —
> 9? 6e jointly continuous. The utility function

U : f^ — 5R is continuous in T^ only if there exists continuous functions a : [0, l] —» !R and

;9 : [0, 1]
-» !R such that u{z,t) = a{t)z + l3{t).

Proof. See Appendix A. I

The converse of the above proposition is a direct application of the duality results in Sec-

tion 5.

Proposition 16 Let u{z,t) = a{t)z + 0{t). Then U of (17) is continuous in T^ if a' e L'^'

,

where oc'{t) is the derivative of a(t).

Proof. Observe that

1/(1):= e[/" a{t)x'{t)dt
+ I 0[t)dt =Ef/" a{t)dx{t)+ f ^{t)dt .

Thus U is a. linear functional plus a constant. Then the assertion follows directly from Propo-

sition 11. I

The above analysis reveals that the standard representation of utility as the expectation of

the integral of felicity of current consumption fails (except in a very special case) to produce
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preferences continuous in our topologies. The problem is that the additive form of felicity of

current consumption implies that consumption at an earlier date, no matter how recent it is,

has no effect on current satisfeiction. This is in direct conflict with our concept of preference

continuity in which consumptions at nearby dates are close substitutes if there is no discontinuity

of information.

The standard model also fails to capture our economic intuition in situations different from

the single perishable consumption good case that we deal with here. Take for example the case

of durable goods. One could interpret the consumption plan x{t) as the level of accumulated

purchaise of durable good up to time t. A durable good is most often acquired in single units, and

only a few times over the horizon [0, 1]. However, the owner of the good receives a continuous

flow of services from the earlier acquired durable goods. His level of satisfaction from owning

the good at any time should reflect his enjoyment from the services provided by the good, in

spite of the fact that the good was purchased in the past.

We would like to propose an alternative representation of utility, which keeps the spirit of

the standard model, is mathematically tractable, and gives rise to preferences continuous in our

topologies. To achieve this objective, we will express utility as an integral of felicity as in the

standard model. However, the felicity at time t depends not only on consumption at time (,

but also on consumption in the "recent past." Our construction goes as follows; let x(w,t) be

a consumption plan. Consider an adapted process 6{uj,t), which is uniformly bounded across

the states of nature u>, which is differentiable in t, and whose first derivatives are uniformly

bounded over u. An example of such a process is the Gauss-kernel given by:

e{u;,t) = ^^e^. (18)

Now using the process 6, construct from x another process i which gives a path-by-path

weighted average of recent past consumption. In other words, put

x{ui,t)=[ 0{oj,s)dx{t- s). (19)

The new process x will be the element over which preferences are expressed using the standard

model. Let u{x,t) be a felicity function which is state-independent, continuous and concave in

X. Let

U{x) = E[/ u{x,t)dt]. (20)
Jo

The fact that under these conditions, the utility function given in (20) is continuous in any of

our topologies is recorded in the following proposition.
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Proposition 17 Let the averaging process 6 and the felicity function u satisfy the conditions

described above. Let U{x) be constructed as in (SO). Preferences represented by U are continuous

in any T^.

Proof. See Appendix A I

It is important to point out that many authors have attempted to capture the effects of

the time complementarity of consumption using functional forms that appear to be similar to

(20). It turns out, however, that there is a crucial difference. In our proposed representation

of utilities, the felicity function u depends only on the "smoothed" consumption process x

and time. In contrast, most "non time-additive" formulations in the literature posit a felicity

function, say v, which takes as arguments the current consumption "rate" x'{t) together with

the "smoothed" earlier consumption x{i). Thus one represents preferences by:

V{x) = -E[l\{x',x,t)dt\. (21)
Jo

Notable examples of such representations include Bergman (1985), Constantinides (1988),

Heaton (1988), and Sundaresan (1988). Inclusion of the "smoothed" recent consumption in the

instantaneous utility function v captures the effect of past consumption on one's current satis-

faction. However, including current consumption in the felicity function destroys the continuity

of preferences in the sense we argue for in this paper except possibly for uninteresting special

cases. We record this fact in the following proposition.

Proposition 18 Let v(c, 2, (): !R^ x [0, 1] be jointly continuous. The utility function V^: £^ —
» 9?

defined in (21) is continuous in T^ only if there exists jointly continuous functions a: 9?+ x

[0,1] — ?R and ^: 5R+ x [0,1] —
» !R, and a subset A of ^+ with a strictly positive Lebesgue

measure such that v{c,z,t) — a{z, t)c + ^{z, t) for all z G A.

Proof. See Appendix A. I

7 Issues related to arbitrage and general equilibrium

One of the central topics in modern financial theories concerns properties of security prices when

there are no arbitrage opportunities. Using a similar commodity space and a Mackey topology

generated by the space of bounded and continuous processes and barring arbitrage opportu-

nities, Huang (1985b) has shown that security prices over time are continuous at predictable

optional times when there are no lump-sum dividends. In particular, price processes will be
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generalized Ito processes between lump-sum ex-dividend dates if the information structure is

generated by a Brownian motion. However, requiring the dual space of the commodity space

to have only continuous processes is a bit too strong. It implies that consumption at nearly

adjacent dates are almost perfect substitutes even at times of surprise. Using the family of

economically more reaisonable norm topologies discussed in previous sections, we get essentially

all the results of Huang (1985b) in the following manner.

Take the commodity space to be (f',T^)- Assume that (if^,T^) is separable. There

are N securities which are available for trading any time in [0, 1]. Security n is denoted by its

eiccumulated dividend process i„ G S'^. Let 5„ denote the ex-dividend price process for security

n. Since securities are traded ex-dividends, we assume that Xn(0) = for all n and Sn(l) = 0;

that is, there is no accumulated dividend at time and the ex-dividend price of a security at

time 1 is zero. A trading strategy 6 is an A'^-dimensional process that prescribes the portfolio

strategy for the traded securities. Without getting into technical details, we shall only allow

agents to use simple trading strategies - strategies that are adapted, bounded, left-continuous,

and change their values at a finite number of non-random time points.^ shall say m E f '^ is

marketed if there is a strategy $ so that

m{t)-m{O) = 0{OyS{O)+ [ 9{sydS{s)+[ ^(s)^di(s),

where ^ denotes "transpose," x{t) — {xi{t),. . . ,Xf^{t))^ , and the integrals are defined path-

by-path; alternatively, we say that m is financed by 6. Let M denote the space of marketed

consumption patterns. It is clear that M is a linear subspace oi S'^. An element m G M
financed by ^ is a simple free lunch if ^(0)^5(0) < 0, m £ (f^, and m ^ 0. Barring simple free

lunches, each m E M has a unique price at time 0, m(0) + ^(0)^5(0), where 9 finances m, and

we can define a linear functional on M by 7r(m) = m(0) 4- 6[0)^m{0).

Now we shall show that the linear functional tt has a nice representation if the securities

market does not admit free lunches, a concept due to Kreps (1981). A free lunch is a sequence

{(m„, Xn) € M X <f *'; n = 1,2, . . .} and a bundle /: € f+ with k ^ such that

m„ - i„ e S^ Vn, ||x„ - k\\^ -> 0,

and

liminf„7r(m„) < 0.

To consider strategies more general than simple strategies, we will first need to discuss how general stochastic

intergals are defined, which we do not want to do here. Interested readers should consult Huang (1985b) for a

discussion in a context similar to our setup here.
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Suppose that there are no free lunches. Theorem A.l of Duffie and Huang (1986) shows that

there exists an extension of r to all oi S'^ , tp, that is strictly positive in that ip{x) > if x G £^

and X ^ 0.

Let (p satisfy conditions of Propositions 11, 12, or 13, then

V-Cx) = E [1^' 9{t)dx{t) ViGf-^,

for some strictly positive process g, which is the sum of a martingale and a process of absolutely

continuous sample paths. Let Sm{t) be the ex-dividend price at time t of m € M. It follows

from Proposition 5.1 of Huang (1985b) that

E [j^ 9{s)dm{s)\Tt] - !^9{s)dm{s)

'-^'^ = m ^''^

Note that the first term of the numerator of (22) is a martingale and thus the properties

of g translate into those of S^ in a natural way. For example, S^ must be continuous at

predictable optional times if m is also continuous there and, between discontinuities of m, Sm

can have discontinuities only at surprises. In particular, suppose that F is generated by a

Brownian motion and m is an absolutely continuous process. Since a martingale then can be

represented by an Ito integral and the second term in the numerator of (22) is an absolutely

continuous process, the numerator of (22) is an Ito process. The denominator is a martingale

plus a process of absolutely continuous paths and thus is an Ito process. Since g is strictly

positive, Ito's lemma implies that Sm is an Ito process. These are all economically appealing

properties of price processes for securities over time.

As for the existence of an Arrow-Debreu equilibrium in an economy with a commodity

space if^ equipped with the topology T^, however, we have little to offer. Since {£^,T^) has

an empty interior, existing general equilibrium theories offer two possibilities. First, if (f '^, Tp)

were a topological vector lattice, then an equilibrium is ensured if agents' preferences are uni-

formly proper, among other things; see Meis Colell (1986). Second, if, among other things, the

topological dual of {S'^, T^) were a sublattice of its order dual and if preferences are uniformly

proper, there exists an equilibrium; see Mas Colell and Richard (1987). Unfortunately, neither

(f'^jT^) is a topological vector lattice nor its dual is a sublattice of its order dual in general;

for the former recall Proposition 8; for the latter see Example 3 and 4. Whether there exists

an Arrow-Debreu equilibrium in our economy is an open question.

However, provided that there exists an Arrow-Debreu equilibrium, one can implement the

Arrow-Debreu equilibrium by continuously trading a few long-lived securities as in DufTie (1986)

,
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DufiRe and Huang (1985), and Huang (1987) and thus establish the existence of a dynamic equi-

librium with dynamically complete markets. In Duffie (1986) and Huang (1987), the commodity

sp£ice is the space of consumption rates and the sense of closeness between two consumption

patterns is defined by the standard Z/ norm on consumption rates as functions of (w,t). Thus

consumption at nearly adjacent dates are perfect nonsubstitutes even at times of no surprise.

As a consequence, the properties of shadow prices for consumption over time in a pure ex-

change equilibrium depend crucially on the properties of the aggregate endowment process.

For example, in the case of a Browni2in motion filtration, the price process for a security with

absolutely continuous accumulated dividend process will not be an Ito process unless the aggre-

gate endowment process is. This does not conform with our intuition. In our setup, however,

since consumption at nearly adjacent dates are almost perfect substitutes at times of no sur-

prise, price processes of securities with absolutely continuous accumulated dividends will be Ito

processes independently of the properties of the aggregate endowment process.

8 Concluding remarks

In this paper we have advanced a family of topologies defining closeness between consumption

patterns over time under uncertainty that capture the intuitive idea that consumptions at nearly

adjacent dates are almost perfect substitutes if there are no surprises there. The intuitive idea

we have tried to formalize is certainly not new. Our contribution is topologizing this idea

and, more important, characterizing the topological dual spaces. We feel that our choice of

topologies is the natural one that conceptualizes the aforementioned idea for the following two

reaisons. First, in the degenerate ccise where the true state of nature is revealed at time 0, we

reach the conclusion that the shadow prices of consumption are absolutely continuous functions.

Hence, preferences continuous in our topologies give rise to equilibrium prices in which the price

of consumption at adjacent dates are almost equal and in which prices change smoothly in a

differentiable manner. We believe that this is an intuitively attractive result.

Second, in the nondegenerate case, the topological duals are the natural generalizations of

those under certainty. In this case, prices are processes that can be decomposed as the sum

of two components: a process of absolutely continuous sample path and a martingale. In the

case of uncertainty a new element, the pattern of information flow, affects the sample path

properties of equilibrium prices. This effect is captured in the martingale component of the

price process. It is known that a martingale can make discontinuous changes only at surprises.

Thus equilibrium prices for consumption are continuous except possibly at surprises. This is
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also an intuitively appealing result which holds independently of the nature of the endowment

process.

The proposed family of natural topologies, however, does not give rise to certain mathemat-

ical properties known to be sufficient for the existence of an Arrow-Debreu equilibrium. The

resolution of this issue should be of high priority.
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Appendix A Proofs

PROOF OF Proposition i:

Proof. Let i' > i. be elements of £*' and let / denote the order interval [i,,i*]. Assume
without loss of generality that i. = 0, since our topologies are linear. We will show that / is

totedly bounded and closed and therefore compact; see Schaefer (1980, p. 25).

To show that / is totally bounded it suffices to show that for any e > there exists a finite

number of elements of /, {i„; n = 1,2,..., A^(e)} such that

n=l

where O^ is a T^-neighborhood of i, with
||

•
||^ diameter less than e. Fix e > 0. From

Proposition 7, we know there exists N[€) > such that Pu{^,y) ^ 2;*(a;, 1)/A''(f) implies

ll^^
~ y||^ < f/2 for x,y G C^ . Construct N[e) processes with right-continuous, nonnegative,

and nondecreasing sample paths in the following fashion. For each state uj, begin first by

building a Prohorov sleeve around i'(w,-) with Prohorov distance x'{ijj,\)/N{e). Let ii(a;,-)

be the function prescribed by the lower boundary of that sleeve. Formally, let

ii(a;,( + i*(a;, 1)/A^(e)) = max{i*(a;,«) - i*(w, \)/N{e),Q} Vt G 5R,

where we have used the convention that x'(w, t) = if < < 0. Next we define !„ recursively as

follows:

i„+i(w,t + i*(w,l)/7V(e)) = max{i„(a;,0 - x'{uj,\)/N[t),0) Vt e 3t.

Note better that the processes i„ constructed may not be adapted. By construction, p^^{xn,in+i] <

i*(w,l)/iV(e) and thus ||i„ - i„+i||^ < e/2 V n = 1,2,. ..,N{t) - 1.

Suppose for the time being that the processes i„ are adapted. Let

Ol„ = {zef^:||i-i„||^<e/2}.

It is then clear that
N(e)

n=l

and thus / is totally bounded. Now if i„ are not adapted, pick any element x„ £ 0\ and put

0',^^{xeEt:\\x-x^\\^<e),

we claim that 0% C 0\ . To see this, let i G Ol . Then

if.
11^ ~" ^"llv — II'''

~ ^nllv ' I!'''"
~ ^nllip '^ o 9 ^ ^'

by triangle inequality. We thus conclude that / is totally bounded.
Next we want to show that 7 is closed. Let x„ G I and ||in - x\\^ —» as n —> oo for some

X G f^. Then there exists a subsequence of (i„) that converges P x A-a.e. to x. The fact that

X G I follows from arguments similar to those in the proof of Proposition 1 of H(5iK. I
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Proof of Proposition 5:

Proof. First, we show that ^X[T,il ^ C^ for all optional time T and all Jt > 0. Note that

^ 'P{')kX\T,i]{t))dt <Y.\^[lk)\ <c»,

where the first inequality follows from the faict that ip is strictly increasing and the second
inequality follows from the hypothesis that (p is integrable.

Second, the fact that T + ^ is an optional time whenever T is can be seen by directly

checking the definition;

[uen-.T + - <t) = {ujen-.T <t- -)e 7._x c 7t>ite [0,1].
n n r^

Third, the hypothesis that f is integrable and Lebesgue convergence theorem imply that

lim E
n—•oo /^

'p{iKx[T.i]{t) - X[T+i,i](0))^ = E

= E
J^

^(7*Jim(xiT.il(0-X|T+i,il(0))<^' =0.

where the second and the third equalities follow from the fact that 'p{uj^ z) is continuous in z

and is zero at z = 0, respectively. Thus, by the continuity of >:, i„ >: y for all n implies x > y
and y > Xn for all n implies that y > x.

Fourth, suppose that {T„} is a sequence of optional times with Tn < T, and T^ < T and

Tn < Tn+i on the set {T > 0} and that fcx[T„,i] ~*
^X|T,il m This implies that

lim E
n—>oo I filHxiTAlit) - X[T„.l]{t)))dt oo

for all 7 > 0. This implies that kx[T„,l] ~* ^XfT.il in /* x A-measure, and hence there exists a

subsequence {T„^} such that

nji^oo^l^-.'^l^'^''^
~ X[T,i](<^,0 = P X A - a.e.,

which implies that Tn^ — T a.s. and thus T is predictable.

The proof for the last cissertion is just the reverse of the above paragraph. I

Proof of Proposition 6:

Proof. The proof of Proposition 3 essentially implies that the set of right-continuous, and
bounded processes that change their values at a finite number of optional times is dense in

(f'^.T^). It then suffices to show that one unit of consumption at an optional time can be

approximated arbitrarily closely by a sequence of absolutely consumption patterns. We will

show here that consumption at a predictable time can be approximated by consuming at "rate"

instants before. The rest of the proof is left for the reader.
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Let T be predictable and {T„} be its announcing sequence. Assume without loss of generality

that T > a.s. (On the set {T = 0}, we can shift consunnption to the right at rates.) Putting

5„^E[T|JrJ,

it can be verified that 5„ is an optional time by checking the definition. Since T > T„ a.s., we
know Sn > Tn a.s. Define

X{t) = X\T,l]{t)

t - Tn
^n{t) = ^X[T„,S„l(0+X(S„,l)(0-

'->n ~ -in

Note that !„ is an absolutely continuous consumption pattern. One can verify that i„ —> i in

Proof of Proposition 7:

Proof. Note again that ||i„ - i||^ —» 0, if and only if for any 7 >

E
I

<p['l\Xn{t)-x{t)\)dt + <p['l\Xn{l)-x{l)\)

see Musielak (1983, Theorem 1.6). Note that if e[/)(i„, x)] -> 0, then

P({p(i„,a:) > -}) ^0 as n ^ 00.

For any integer m, let N{m) be such that P(lp{xn,x) > ^ [) < ^, for all n > N{m).

Next write:

E '1 + '2 'j ^{l\x4t) - x{t)\) dt + v?(7|i„(l) - i(l)l)

for n > N{m), where

^"'" =
L, .

^\f\{tMt)-x{t)\)dt + p{'iMi)-x{i)\)
•'{p(»n,l)>^}L-'0

^ ^ ^ \

7^" = /
,

\ f\Uxn{t) - x{t)\) dt + J-rMi) - x{l)\)

We will show that both integrals converge to zero, as m (and hence n) —> 00.

First consider /J"'". Since

^ <p{l\xn{t) - x(f)i) dt< j <p{i{x„{l) + x{t))) dt < <p{l{x„{l) + 1(1))) Vw e n,

P{du;),

P{dco).
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we have

I
<p[i\x„{t)-x{t)\)dt + <p['j\x„{l)-x{l)\) < 2^(7(i„(l) + i(l)))

< 2<p{i{K + 2x{l)))

But since E[^(A')] < oo and x G f^, it then follows that /["'" — eis m,n — oo, by
Lebesgue dominated convergence theorem.

Now consider /^'". Note first that for w G {Pui{xn,x) < ^}, we have

|i„(l)-x(l)|<- or <p(i\x„{l)-x{\)\)<J^).

Thus

/ ^(7|x„(l)-i(l)|)p(cfo.)<E[^(^)'

Next consider the integral part. For any w G {p(in,i) < — }, we can bound the inside

integral by:

— ^<P\'^\^^'^{^{^-,—)^^n{^-,—)') - min{i(a;, ),in(w, )}) .m rrj \ ^ mm m m '
j

But since for precisely those sample functions p(a;„,i) < — we have

and

max{i(a;,(),i„(u;,()} < i(ai,t H ) Hm m

min{i(a;,f),i„(u;,t)} > a:(<^,f )
,m m

so the summation above is bounded by:

m^^ \\ m )
- <^.

{k-2)

m )-!))

Finally, as y? is convex, equal to zero at zero and increasing, this in turn is bounded by:

— <p\l2_^ \x{uj,—-—)-x{uj,
{k-2)

^

2

m m j
< ^v^(7(3x(w,l) + 2)).

Therefore,

f [':p(iMt)-x{t)\)dtP{duj)<-E v^(7(3i(l) + 2))

C'" < -E
m

¥p(7(3i{l) + 2)) +E ^(^)

and /^'" — as m,n —
» oo, proving our result. I
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Proof of Proposition 9:

Proof. For any ui E Q, and for any 7 > 0, using the same arguments as in the proof of

Proposition 7, we get:

/ ^(w,7|a:n(w,t) - y„(a;,t)|) dt + v?(<^,7|x„(a;, l) - ya(<^, 1)1)
Jo
IT

< -^<p{uj,i{Sxn{u;, 1) + 2)) + 2<p{<jj, 7|x„(w, 1) - y„(a;, 1)|).
n

The second term on the right-side of the inequality vanishes for any 7, since

ir

|a:n('^, 1) - yn(w,l)| < Pu,{Xn,yn) < —^•
n

It then follows from Lebesgue convergence theorem, continuity of 92(0;, 2) in z, ^[^,0) = 0, and

the hypothesis that E[v?(if )] < 00 that

E 2y.(7|x„(l)-y„(l)|) as n — 00.

The first term vanishes since,

i„(u;,l)/M(a;,n) ^0 thus 7(3i„(w, 1) + 2)//i{a;, n) -> 0.

Hence, for any 6 however small, there is A'^^, such that:

WnyNs: i{ix„{uj,l) + 2) < 8^i{u,n).

Applying <p{u), •) to both sides of the above relation, and using the shape of <p, for all 5 < 1, we
conclude that:

K K K
-^¥'c.(7{3xn(w,l) + 2) < ^^'p^[8^i[uj,n)) < -^6<p^{^[oj,n)) < K^8
n n n

for all n > Ns-
Noting that by Jensen's inequality, y?(E[ii']) < E[v7(^)] < 00 and since E[v2(ii^)] < 00, we

conclude that ||i„ — yn|L ~* 0, by Lebesgue convergence theorem. I

Proof for Proposition ii:

Proof. Integration by parts path-by-path gives

fP{x) =E
= E

= E

= E

'lo'-9{t)dx{t)]

'Jlf{t)dx{t) + Jlm{t)dx{t)]

'f{l)x{l)-j^x{t)f'it)dt + m{l)x{l]]

'-J^x{t)f'{t)dt-x{l)f'{!)],

(23)
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where /' denotes the derivative of / and we have used the fact that

E[ /' m{t)dx{t)] = E[ f m{l)dx{t)] = E[m(l)i(l)]
Jo- Jo-

(24)

in the third equality (see Dellacherie and Meyer (1982, VI. 57)).

Musielak (1983, Corollary 13.14, p. 87) shows that (23) is a linear functional continuous in

T^ if f € L'^ . This is the sufficiency part.

Now consider the necessity part. Let xp :
£'*' he a, T^o-continuous linear functional. By the

Hahn-Banach theorem, t/* can be extended to be a continuous linear functional on the whole of

E'^, of which we recall the definition from (6). Let * denote this extension. We first show that

* : E'^ —* 5R can be represented in the form:

^{x) = Ey\{t)y{t)dt + x{l)y{l) ^xeE^ (25)

for some y E L"^ . For this, we first consider the notion of modular convergence: A sequence

{i„} G L^ is said to converge in modular to x, if

E
/^

<p{lMt) - x(t)l) dt + y?(7|x„(l) - i(l)l) for some 7 > 0.

The sequence {in} € L^ converges in norm to x, if and only if

E
1^

<p{lMt) - X{t)\) dt + ^(7|ln(l) - 1(1)1) for all 7 > 0;

see Musielak (1983, Theorem 1.6, p. 3). Norm convergence of x„ clearly implies modular con-
vergence.

Musielak (1983, Theorem 13.17, p. 88) shows that (25) is true under the additional restriction

on (p that

<p{u), x)
Vio > there exists c > such that > c for i > iq Vcli G n.

Musielak (1983, Theorem 13.15, p. 87), however, shows that this restriction is required to guar-

antee that a norm continuous linear functional on L'^ is also modular continuous. In our
formulation, we do not need this restriction, since we do not deal with the generalized Orlicz

space L^. We only consider the subspace E'^, and on this subspace norm convergence and
modular convergence are equivalent; Musielak (1983, 5.2.B, p. 18). We therefore conclude that

restricting our attention to £"^ allows us to relax the above described condition. The interested

reader can eaisily verify this by consulting Musielak (1983, Theorems 13.15 and 13.17).

Now define

f{u,t) = - f y{uj,s)ds Vte{0,l]ujeQ,
Jo

which is clearly adapted and path-wise absolutely continuous. Denoting the derivative of f{u), t)

with respect to t by f'{uj,t), it is clear that f'{t) = —y{t). Reversing the arguments in deriving

(23), we prove the necessity part. I
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Proof of Proposition 13:

Proof. Let p be integrably asymptotically linear. We will first show that if i is an element
of £ , then it is also an element of t'^. Note the following:

IkL = nj^ ¥'(ix(OI)X{|x(e)|<A-}dt + V5(|x(l)|)x{x(i)<K}]

+ E[|^ ¥'(|x(OI)X{|i(0|>A-}dt + ¥'(|a:(l)|)X{x(i)>iC}]

< 2E [<p{K)\ + oE f |i(t)|dt+|i(l)| +2e
Jo

< oo.

Hence i is an element of f ^.

Since T is weaker than T^, we only need to show that convergence in T implies convergence

in T,p. Consider a sequence of elements {in} that converges to i in T. This implies that {xn}
converges in the product measure generated by P and Lebesgue measure to x. Consider now

E[
'0
[j <P{\Xn{t) - x{t)\)X{\x„{t)-z{t)\<K} dt + <p{\Xn{l) - l(l) |)X{x„(l)-x(l)<if }]

+ E[y <p{\Xr,{t) - x{t)\)x{\z„{t)-x{t)\>K} dt + <P{\X„{1) - l(l)|)X{x„(l)-x(l)>/f}]

< E[^ filxnit) - x{t)\)x{\x4t)-z[t)\<K} dt + <p{\xn{l) - a:(l)|)X{x„(i)-x(i)<A-}]

+ aE
I

y \xr,{t) - x{t)\dt + \xn{l) - x{l)\ + 2e.

The first term on the right-hand side of the inequality converges to zero by Lebesgue convergence
theorem. The second term goes to zero as n —» oo by hypothesis. Since e is arbitrarily small,

\\xn — x\\^ —» as n — OO. I

Proof of Proposition 15:

Proof. Suppose that u is not linear. Then there exists two scalars r,f and t € [O, l] such that

u{{r + f)/2,t) i^ u(r,0/2 + u(f,«)/2. Without loss of generality, assume that u((r + f)/2>0 >
u(r, t)/2 + u(f,t)/2. By joint continuity, there exists e > and some interval / containing ( such

that ui^r + r)/2, s) - e > u(r, s)/2 + u(f , s)/2 for all s € /. Consider a sequence of nonrandom
absolutely continuous consumption patterns constructed cis follows: Off of /, consume at rate

1 in each !„. On /, subdivide / into 2n equal sized intervals, and consume at rate r on the
even subintervals and f on the odd. This sequence of consumption patterns converges in the

Prohorov metric to the consumption pattern x that has x\s) = 1 off / and x\s) = (r + f)/2

on /. By Proposition 7, i„ —» i in T^. But U[x) > C/(i„) + eA(/), where A(/) is the Lebesgue
measure of /. Thus U is not continuous in T^. I
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Proof of Proposition 17:

Proof. Fix a topology T^. Let i„ be a sequence of consumption plans that converge to x in

T^. Assume, without loss of generality, that sup„ ||vV„|| < oo. We will first show that u{xn,i]

converge to ti(i,t) in the product measure i/ = P x A, where P is the probability measure on
(n,7), and A is the Lebesgue measure on the Borel sigma-field on [0,1].

First observe that if i„ —» i in T^, then i„ —» i in T. Hence,

jjm^Eiy |i„(0-i(OI'i« + |2:n(l)-i(l)|] = 0. (26)

This implies that i„ converge to i in the product measure v, and that /q linCO ~ ^(01 ^^ con-

verges to zero in P-measure. Therefore, for any m, we can find A'^(tti) such that I'fKw, t): |z„(w,t)-

^KOI > k}) < i, and P[l^ |x„(0 - x{t)\dt > ^] < ^, for all n > N{m).

Now consider i„(w, t) - x{uj,t) = /q 0{uj,s) dxri{u>,t - s) - dx{u, t — s). Integrating by parts,

and using the assumption that 9[ijo,k) vanishes, we get:

Xn{oJ, t) - x{u, t) = - (i„(o>;, t) - i(u;, t)) 0{u,O) - j (i„(a;, t - s) - x{uj, t - s)) 9,{u, s) ds, (27)

where 6,[u),s) denotes the partial derivative of 6[uj,s) with respect to s. But since both 6

and its derivative are uniformly bounded over uj, the left-hand side in (27) is bounded by

Mi\xn{uj,t) - x{uj,t)\ + Milfg \x„{<jj,t) — x{<jj,t)\dt], where Mi and M2 are two constants.

From this , we can easily conclude that

i^({{oj,ty.\xr.{uj,t)-x{uj,t)\> -{Mi + Mi)}) <- Vn>Ar(m). (28)
> m ' m

Hence f„ converge in ^-measure to x. Now consider the convergence of u(xn). First, assume
that u is uniformly continuous in x. Since the felicity function u is state-independent, and
uniformly continuous in i, it then follows that if |i„ — i| < ci then |u(in) ~ "(i)l < ck^i,

where a is independent of w, and x. We use this assumption of uniform continuity, together

with (28) to conclude that u{x„) converges in iz-measure to u{x). By Jensen's inequality, we

have sup„E[/q u{xn)dt] < sup„u(E[/q Xndt]) < 00. It then follows by Lebesgue dominated

convergence theorem that U{x„) converge to U{x).

Next consider the ceise when u is merely continuous in x. For every integer m, define

Um(^) = "(^)X(J-<i<ml- ^°^ a fixed m, the function u^ is uniformly continuous in x, and hence

the arguments in the previous paragraph show that [/„(!„) converge to Um{x), where Ujn{x) is

defined exactly as U{x), except that u is substituted by u^- But Um(i) converge monotonically

to u[x) as m —
» 00. Applying the monotone convergence theorem, we conclude that

lim U(xn) = lim Um{xn) = Hm Um.{x) = U(x).
n—»oo m,n—oo tn—^oo

This shows that the utility definition given by (20) gives preferences continuous in T^. I
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Proof of proposition 18:

Proof. Suppose not. By joint continuity, there exists two scalars r,f and t G [0, 1] such that

v((r + r)/2, z, i) ^ t;(r, z, i)/2 + u{f, z, t)/2 for all values of z. Without loss of generality, assume
that v{{r + f)/2,z,i) > v[r,z,t)l2 + v(f,z,t)/2. By joint continuity again, there exists e >
and some interval / containing t such that v((r + f)/2,z,s) - e > v{r,z,s)/2 + v{f,z,s)/2

for all s E I. Consider a sequence of nonrandom absolutely continuous consumption patterns
constructed as follows: Off of /, consume at rate 1 in each in- On /, subdivide / into 2n equal
sized intervals, and consume at rate r on the even subintervals and f on the odd. This sequence
of consumption patterns converges in the Prohorov metric to the consumption pattern x that

has x'{s) = 1 oflf / and x'{s) = (r + f)/2 on /. By Proposition 7, i„ —» i in Tp. Proposition 17

shows that lim„_oo /o v{x',Xn,t) dt = /q v{x',x,t) dt. But for any i„, we have:

/ v{x',x„,t)dt> f v{x'„,Xr„t)dt + eX{I).
Jo Jo

Taking limits of both sides as n —> oo, we get:

/ v(x',x,t)dt= lim / v(x',Xn,t)dt> lim / v(x',Xn,t)dt + €X(I).
Jo "-'°°Jo "^°oJo

Hence V(i) > lim„_oo y{xn) + (^^{I)i where A(/) is the Lebesgue measure of /. Thus V is not

continuous in To. I

Appendix B Example of a 7^ continuous preference that

violates (11)

We first show that any linear preferences with the marginal utility being the optional projection

of a continuous and uniformly bounded process are continuous in all of T^ for all tp G ^.

Proposition 19 Let f-.Q x [0,1] — 5R 6e an J x B{^) -measurable process, not necessarily

adapted, with the the properties that

f{u>,.)EC[0,l] and esssup^ max/(u;,t) < oo,

where C[0, l] denotes the space of continuous functions on [0,1]. Define the optional projection

of f , denoted f by:

/•(a;,0 = E[/(t)|7/.

Note that by construction, the process f is adapted. Preference relations which are represented
by:

x>y if E C r{t)dx{t) >E f r{t)dy[t)
Jo Jo

, Vi.yef^^

are continuous in TL,
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Proof. Given Tn.i e f^, and /* as in the hypothesis, we show that if:

lim E
n—»oo

f |i„(t)-i(0|(it + |i„(l)-i(l]
Jo

then

lim £
n—'oo

C r{t)dxr,[t)~ f r{t)dx{t)
Jo Jo

= 0,

0.

(29)

(30)

Then > is continuous in T and thus in 7^ for all v? € $ since, by Corollciry 1, T is weaker than
any T^. To prove this, we will use the fact that since /' is the optional projection of / then

f f[t)dx^[t)
Jo

Vi„ G f ^iE f r{t) dXr.it)
Jo

Dellacherie and Meyer (1982, Theorem VI.57). Now (29) implies that:

Jim pf
I [f^

|x„(0 - x{t)\ dt + |x„(i) - i(i)|] >
;J;|)

= (

Therefore, for any m > 0, choose N{m) such that for all n > N[m):

P{[ [[ |xn(0 - x{t)\ dt + |x„(l) - :r(l)|] > 1
1
j
< 1.

Write (30) as:

r fit) diXr.it) -X{t))
Jo

1 + '2 >

where

C" = / [' fi<^,t)diXr.iu,,t)-xiu,t))Pidu)

/-" =
[

r fiu,t)diXr.iuJ,t)-xiuj,t))Pidu),
Jn'r-"Jo

and where

n;"'"

n;

< -\,n>Nim),m
L G n: \j' |i„(0 - i(0| df + |i„(l) - i(l)

n:
I

|x„(f)-x(t)|d< + li„(l)-i(l)| >M.n>^(H= <w e

(3i:

We now show that both /["'" and /^'" converge to zero bls m (and hence n) — oo.

First consider /|"'". Assume to begin with that /(w, .) G C^[0, l], the space of continuously

differentiable functions on [0,l]. This implies that fticjj,t) < K^ < oo for t G [0,1] for some
J-measurable function K, where we use /( to denote dfi(jj,t)/dt.
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For einy a; G D^'", consider /q /(w, t) <i(i„(a;, t) - x{uj,t)). Integration by parts gives

/ f{uj,t)d{xn{'^,t)-x{u;,t))
Jo

= (i„(a;, 1) - x{u, 1)) /(a;, 1) - (i„(a;, 0) - x{oj, 0)) /(a;, 0) - ^ [i„(a;, t) - x{u, t)]ft{oj,t) dt

Hence

/ f{uj,t)d{x„{uj,t)-x{uj,t))
Jo

< -/(a;,l) +m I

(x„(0)-i(0))/(a;,0) +
K^

By the right continuity of the sample functions of {in} and x and the fact that in(0) and x[0)

are constants, we have

lim
m.n—'oo

0.In(0) - l{0)
Tri,r(—'u^j

Thus, as m —
» oo, we get

lim r fit)d{xr.{t)-x{t)) = o Vo/efl U n^'".
ni.n—*oo J r\ ' ' ^^^ m n>N{m)

But if

lim r f{u;,t)d{xr,{u,t)-x{uj,t))^0 V/(a;, .) e C^O, l] Vo; G f] (J
Q^'",

" m n>N(m)

jim r/(a;,0d(2:„(u;,0-^{'^,0) = V/(a;, .) £ C[0, l] Va; G Q U "^"1
»" n>Af(ml

see Billingsley (1968, Theorem 7.1, p. 42).

In addition, since for all w G fij"'" we have:

j f{u;,t)d{xr,{u,t)-x{u;,t))<A[j d{{xr,{t) - x{t))] < A{Xr.{l) - x{l)),

where
A = sup sup \f{(^,t)\,

wentelo.i)

and since from (29) we have that

I^n(l)-X(l)| as n —> oo,

it then follows from Strook (1987, Exercise III. 3. 19) that 7^'" — as n —+ oo.

Now consider T^*'"- Since P(n^'") —> from (31), and since

[' fit)d{x„{t)-x{t))<A{x4l)-x{l))
Jo

therefore /j ' —» as n, m —> oo by Lebesgue convergence theorem. I
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Proposition 20 There exist preferences > on f^ continuous in 6^, that do not satisfy (11).

Proof. It suffices to provide an example. Let ^ = ip~^ and let i* € C^ be such that x-\-x' >- x

for all I € £!^ . Define the continuous function:

/(w,() = QyJl/tx{l/t) + 1 where a > a' = E^f f [t) dx' (t) .

Let

/•(a;,0 = E a^l//i(l/0+l

and define preferences on f^ by

x>y if E /'/•di >E f'f'dy
Jo Jo

By construction and by Proposition 19, >: is continuous in T^. Next consider the two
sequences

It is clear that both sequences satisfy the requirements of Proposition 9. However, for every n
and w:

and

Cr.(w,0 = E y/m(")]xo, and y„(a;, <) = E y'^(n) Xi/n-

nces satisfy the requirements of Proposition

e[I^ fit) d{x„[t) + x'{t))] = a* + e[^/^'

J
f{uj,t)dy„{u;,t)= [l + ayJl/n{uj,n))B[y/^)].

B[iy'{t)dy„] = e[\/^] +aE[y^]E[-yi/M(n)]

> Q + E[y^],

where we have used Jensen's Inequality and the fact that

Hence

E r f'{t)dx^{t)
Jo

= E / f{t)dx^{t) Vi„ G f ^;

Dellacherie and Meyer (1982, Theorem VI. 57). Hence for any n:

r f'{t)d{x4t)+x'{t)) <E rr{t)dy4t)
Jo Jo

and therefore:

lim In - I* ^ lim y^,n—•oo n—»oo

which proves that >: violates (11). I

h^k'I U59
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