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Abstract

In the new product or process development, most of the efforts are focused

on the identification of cause-effect relationships. Here, when engineers

do not have the sufficient knowledge of basic phenomena,
experimentation becomes the main track to obtain those linkages. Even if

industrial applications typically include this practice, because of the deep
statistics background required, experimentation is still ineffective and
sometimes biased by human behavior.

This paper illustrates a method to support the experimenter during the

analysis of effects, introducing a technique to set a priori the number of

causes to "p)Ool" in the residuals. This approach controls the experimental

sensitivity and the risks involved in the design decisions, making the

analysis more reliable and reducing, in this way, the arbitrary handling of

data.

Increasing the objectivity of the methodology, the approach eliminates, as

a consequence, some of the criticisms against the "pooling technique".
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1 Introduction

The needs of interpreting the physical phenomena plays a main role in all

development activities, particularly in the launch of new products and

processes where the engineers confront problems not yet investigated. The

typical approach followed in these stages are simulation and experimentation.

While the first approach is effective only if we already have knowledge of the

singular events composing the phenomenon and we are able to express them

in algorithms, the second is inevitable if we do not have any previous

information and then the only alternative is to observe the reality through

experimentation.

This form of investigation is well known in the industry and already has

many utilizations. However the complex statistical tools involved and the

recent introduction of different oriented techniques contribute to make their

correct application more confused and unclear.

Thus, the industrial needs encouraged factions of experimental design experts

to develop simpler and less expensive techniques, in this way, dividing the

studious into different confronting parts. One result of this new tendency is

the creation of additional room for subsequent improvement.

1.1 The Experimental Design in the New Product Development

Although the experimental activity has always had a place in the industry in

the Research and Development area, with the new approaches proposed by

Genichi Taguchi and others, it has had a renewed powerful boost. The

simplification and the shortcuts illustrated in these methodologies broke the

walls of the industries and found several applications. This scenario

obviously faces the inconvenience of an increased rude utilization of these

methods, which already have, in themselves, criticized parts [Pignatiello J.J.,

1992]. Furthermore, the quality of the experimental applications has to deal

with its greatest enemy, the human nature. The aim of the experiment is

purely definable as the attempt to better understand the real world through

the generation of new data, but in this broad view the experimenter does not

appear and his role is unraveled. The engineer or the team working on the

new product development can be tempted by the desire to:

- demonstrate the correctness of his/their intuition;



- push a new solution that will give him/them honors;

- study to many effects at same time;

- conclude rapidly and economically all phases.

We can face in the experiment design and conduction any of these wishes

consciously or not, and their strong biasing on the result is more than

evident.

This situation becomes even more critical in the complex new product

development, where the numerous constraints and the expensive activity of

prototype building impose a strict boundary on the number of experiments to

conduct.

Besides these different sources of influence, we can identify three basic

categories of behavior: the conservative approach in which we renounce the

consideration of a new solution if there is not strong evidence of its effect; the

revolutionary approach, where we face a greater propensity to consider the

new solutions, even if we are not very confident; and the neutral approach,

which is a more theoretical than practical concept, being very difficult to

reach.

A typical conservative approach is recognizable in the aeronautic industry

where, for example, the bonding assembly, even if demonstrated safe, is not

allowed in the structural parts and will be excluded until everything is

known about it. Differently in the consumer goods or in the electronic

industry any new design is rapidly pursued to feed the market need for

novelties.

1.2 Objectives of the proposed approach

This paper has as its aim the proposal of a technique to support the industrial

developer in reaching a greater effectiveness in design and analysis of

experiments when some constraints impose a small number of trials.

A method is illustrated to perform the "pooling" of residuals in the Anova

analysis, identifying the optimum level of degree of freedom to pool in the

error estimation. Thus, the pooling technique becomes less discretionary and

the argued point of arbitrary handling of data is attenuated.

In the proposed procedure, the guiding criterion is the maximization of

experiment sensitivity and the control of risks connected to the typical design

decision making.



2 Risks Related to the Experimental Design Decisions

In the decision making process regarding the design solution to adopt

between two alternatives, coherently with the ongoing reasoning, two

different kinds of risk can be faced: the first is the possibility to accept the new

design if it does not provide any improvement; the second is to refuse a new

design when it actually provides an improvement. The two related mistakes,

also known respectively as type I and type II errors (exhibit 1), are defined and

used in the statistics hypothesis' tests, and are referred to as the null (Hq) and

alternatives (Ha) hypothesis where:

Hq: The new design does not provide improvement.

Ha: The new design provides improvement.

so the decision turns in to accept or reject the null hypothesis (Hq).

Exhibit 1. Types of error occurring in the decision making.

Accept

New Design

g
IT.

u
^ Refuse

New Design

REALITY

Improvement No Improvement

OK
(!-«)



These risks are identified by the probability of their occurrence which are

commonly called a and (i: P(reject H<, I H<, is true)=a and P(accept H<, I Ho is

false)=p.

All these expressions change if we consider the situation where the decision

must be made among more than two design alternatives in the same

experiment, which means more factors levels. If we have k levels, and then k

null hypotheses, we should differentiate between the probability of

erroneously rejecting the null hypothesis (the already defined type I error)

and the probability of erroneously rejecting at least one null hypothesis,

which is called experimentalwise error [Mason R.L., 1989]. In fact, in this case

the null HyfKJthesis can be written as:

Hq: T| = X2= ='fic=0;

the probability of occurrence of this error (E) is greater than the probability of

type I, the relationship between them is expressed by:

E = l-(l-a) k-l

which makes clear that, if only the type I error is controlled, the

experimentalwise can be much larger in presence of several factor levels. For

k=5, even fixing strictly a (0.05) we have E=0.2.

2.1 The Experimental Strategy

The acceptable levels of the experimental risks are the keys to defining the

outline of the strategy and the approach to follow. A conservative approach

will require a low level of the a/E-error and a high level of the P-error; and

vice versa for a revolutionary approach. A neutral tendency can be followed

equally setting the two errors, but we should be aware that setting both errors

at a low level conduces to a very unproductive experiment, while setting

them at a high level could imply a very sophisticated and expensive plan.

Working in an environment with many constraints, like that which

industrial engineers usually face, requires a more flexible, even if less precise,

technique to perform experiments with a useful outcome. This explains the



broad diffusion that the fractional factorial design and the Taguchi method

have so far obtained.

In fact, avoiding the case of unlimited resources, and therefore the

willingness to perform expensive experiment, fitting the strategy and the

constraints, often complicates greatly the design, making a too sophisticated

pattern of the experiment necessary.

Traditionally, the industrial experimenter overcomes these difficulties by not

controlling the P-error, taking risks that, tending to refuse new design

solutions, penalize mostly the customers and consequently the long term

firm quality.

2.2 Main Elements of the Experimental Design

The outcome of the experiment is entirely settled, even if not known yet,

once the framework of the product and the pattern of the experiment are

defined [de Falco M., 1994]. Without describing all steps in planning the

experimental phase, we can identify some of the main elements, strongly

interrelated, that influence the validity of the results. These are: the

probabilities of the errors previously introduced (a/E, P), the sample size of

each average to investigate (n), the knowledge of an initial error estimation

(de) and the precision of the experiment (5). The precision is defined as the

capacity to detect a change in the response of the experiment at the least of the

size 5, and is usually joined with the error standard deviation in the

parameter <1)=5/Ge. In this way the relationship among these parameters

(appendix A) can be written, in an implicit form, as:

/(a. p, <D, n) =

It is also possible to visualize part of this relationship in the exhibit 2, where

the comparison of two normal populations with the same sample size are

shown, and the area under the tails respectively at the left and at the right of

the experimental observation {[La) represent the risk a and p; the sample size

affects the curves shrinking or enlarging their shape and the precision

considered 5=<I>Ge translating the curves. This shows clearly that in trying to

improve the level of one parameter the others became harder to manage. For

example, also illustrated in the exhibit, as imposing a greater precision (5'<5,



^'«t>), without changing the other parameters, the risk P automatically

increases (P'>P).

Exhibit 2. ReUtionships amon^ the main experimental design elements

Thus, the total number of trials to run (N) is linked with the total number of

levels of the factors to study (k), and the obtained sample size (n). In fact, the

total number of trials comes from the product between these two parameters

N = n» k. The number obtained must be compared with the number of factors

and interactions of interest in the experiment, verifying that the necessary

resolution is reached, and must be approximate to the next orthogonal array if

we want to use a fractional factorial design. For experiments with different

factor levels the biggest number of levels inlcuded should be used.

When the technical and economical constraints impose an upperbound for

the number N, and so that the maximum number of degree of freedom

available in the experiment is settled, this relationship shows how a greater

number of factors/ interaction implies a reduction in the resolution with the

consequent confounding of the effects.



3 The proposed approach

The initial question is, how many and which factors should we include in the

experiment? The answer necessarily lies on the a priori knowledge and

hypotheses. In industrial application, the phenomenon under study is

usually product performance, observed through a response factor, which

depends on a subset of factors /interactions, included in a potential broader set

of factors (exhibit 3). Here the known factors have been separated into

uncontrollable and controllable, these last inlcude the "control factors" of the

experiment and two remaining categories: the steady factors, which are fixed

during the experiment and the variable factors, which do not have any kind

of restriction.

The dependence between response and known factors is a priori representable

with a cause-effect diagram, in which we delineate the relationships to test in

terms of significance and relevance.

Exhibit 3. Categorization of the factors influencing the phenomenon.

Known Domain

^
rVneiiti\nii\Aik-'/ Controllable

Variably

VjACTORy
EzTor

noise factors

The raw knowledge in the first stage of the experimental design is the natural

cause of inefficiencies. In fact, the number of factors and interactions

included in the analysis could be revealed to be greater or smaller than the

correct one. If the number is smaller, and there are not many way to realize

that, the significance of the experiment is saved by fixing or minimizing the

factors not included in it (steady factors), even if this implies an obvious

tendency to neglect possible improvements of the product.



In more frequent cases, when more effects have been included in the model,

we face, coherently with the observations of the previous paragraph, a less

effective use of the exj:)erimental analysis. Here, we could ask if there is a way

and, if it is correct, to intervene after the experiment to reduce this

inefficiency of the initial model? This is an argued point. The traditional

scientists are skeptical about any form of handling the models after the data

collection, even if they do not keep always a rigid position and tolerate some

forms of manipulation [Dunn O.J., 1987; Paull A.E., 1950].

The new tendency developed among the sustainers of the modern simplified

industrial application of experimental design [Taguchi, Ross, Phadke, etc] do

not leave doubt about this possibility and advocate, to reduce the inefficiency

of the model, the use of the "Pooling Technique".

This technique relies on the principle that if a factor or interaction does not

have the relevant effect initially supposed {(})(C)}, its variation estimation is

nothing more than another estimation of the casual variation, and in this

sense another estimation of the experimental error (exhibit 4). Therefore, it

is possible to improve the power of the test, pooling in the error the degree of

freedom of this factor/ interaction.

Exhibit 4. PcKiling



freedom for the denominator increases and the F-distribution provides lower

critical values.

3.1 Underlying Principles

A rule to enforce the validity of this technique can be the a priori definition of

if and how to pool the factors/interactions, reducing, in this way, the form of

biasing and the arbitrary handling of the data. To pursue this track we need a

criterion to decide if we can pool, and a criterion to follow in deciding how

and how many factors to pool.

For example, Paull suggested the rule proceed pooling if the F value obtained

in a preliminary test is less than the critical value determined by 2»F[o.5,vi,v2]

[Paull A.E., 1950].

3.2 Pooling methodology

The criterion proposed here for the pooling technique is based on finding the

optimum level for the error degree of freedom which reduces the probability

of a type n mistake.

This is obtained by observing that, analogously to the reasoning made in

paragraph 2.3 on the relationship between the precision (5 = ^'Oe) ar*d the

probability P, the type II error is always linked to the capacity of the

experiment to detect the change in the averages and this, if we accept the

initial assumptions, becomes a function of the estimated error standard

deviation.

The detection capacity will be called a posteriori "sensitivity" of the

experiment and defined using the Fisher's Least Significance Difference

(LSD):

SEN=±t[a/2,v] (2/n)l/2 Se

here the LSD is relative to two samples of same size, and t,
]
is the t-

distribution with an upper-tail of probability a/2; v = degree of freedom of

error; n = size of each sample compared; Se = error standard deviation. With

more samples, to control the experimentalwise error, the Bonferroni method

can be adopted in the formula to assess the probability of the type I error as

a/2k, with k equal to the number of samples compared in the experiment.



Then the relationship between the P probability and the sensitivity can be

obtained simply with the function /[a, P, <l>(Se), N] = 0, available in table

form (appendix A). This linkage allows us to draw completely the course of

these parameters once the behavior of the error standard deviation is known.

Error behavior

The error variation is necessarily an expression of the system designed for the

experiment, which is to say that the error variation depends on the external

noise and the experimental factors (exhibit 5). This sources of variation in

the fractional design can also be confounded with high order interactions

considered negligible.

Exhibit 5.

Measured Error

Exp«nnwnUl Error

EEl = Erroneous parameters setting

EE2 = Erroneous response measurament

EE3 = Erroneous c»ntrol of steady

factors

External Noise

ENl = Variation due to variable factors

EN2 = Variation due to uncontrollable

factors

EN3 = Variation due to unknown factors

When a control factor of an experiment or an interaction under study reveals

a variation lower than then error variation, pooling them together gives a

smaller error variation, and vice versa. In physical interpretation, this shows

how increasing the number of small casual sources of variation in the error

allows us to smooth its estimation and to approach the normal distribution,

while adding greater source of variation corresponds to including well

identified sources in the error and thus the error estimation increases. This

does not alterate the concept of "error", since any variation is always due to a

cause, and by definition the error is the sum of the causes that we do not

control. When they are many, small and not distinguishable, they give to the

error the normal distribution behavior necessary for the analysis of variance.

10



Finding the optimum level

Observing that an increase of error degree of freedom influences both the

sensitivity of the experiment and the power of the F-test, we can draw the

conceptual courses of these parameters in exhibit 6.

Exhibit 6. Experimental parameter courses.



by the wishes initially discussed, and also represents a solution to the possible

problems showed in the pooling Up and Pooling Down strategies [Ross P.J.,

1988].

The first strategy tests the smallest effect against the next larger; if the ratio is

not significant these are pooled to test the next one. In the Pooling Down
strategy all but the larger effect are pooled; then, if the test is significant the

next larger is removed from the pool and is tested with the previous effect

against the remaining. In exhibit 6 we see that, in addition to the subjectivity

m defining the level of significance each time, the two strategies are subject to

different tendencies:

Aup= tendency to consider more significant factors;

Adn= tendency to consider less significant factors.

These strategies both affect the type I and II mistakes, and the two tendencies

constitute different kinds of effectiveness lost in the experiment. In

particular, the pooling up strategy (most preferred) does not really control the

related risks, because considering more significant factors, without a

sustainable a level, obviously reduces the tendency to make the type II

mistakes but dos not give effectiveness to the experiment.

4 The Powered Fruit Juicer application

The profX)sed approach will be illustrated with an application made with two

Powered Fruit Juicers (PFJ). The familiarity of the reader with classic design

of experiment and the anova analysis is assumed, so as to focus the attention

on the subsequent steps:

i) Product Description;

ii) Sample size determination;

iii) Experiment conduction;

iv) Pooling Technique.

Product Description

The PFJs are typical consumer product diffuse in any home, mostly used for

oranges, they simply work with the principle of the head rotation moved by

an electric engine. The performance observed is the juice yield by the

machine, in terms of the ratio between the juice produced and the juice

12



remaining in the fruit. Exhibit 7 synthesizes the phenomenon categorizing

the factors related to the performance, this is coherent with the factor

grouping made in paragraph 3, in which the control factors are indicated as

"selected factors". This differentiation of the factors is also useful to

understand how the error variation and the controlled variation are

generated.

This product causes additional difficulties due to the presence of the power

factor nested in the design factor (head shape), impeding, in this way, the

evaluation of the interaction between them.

Exhibit 7. Factor categorization and selection.

KNOWN DOMAIN UNKNOWN
I

Controllable

Selected Unselected

Uncontrollable

Architecture

• Head shape
• Power (Engine)

• Rotation technique

Setting

• Vertical pressure

• Squeezing time

• Axis slope

Steady

• Lateral pressure

• Head dimension
• Operator

Variable

• Rotation speed
• Material

• Flash control

• Filter shape

Minimized

• Oranges dimension
• Experimental time

Uncontrolled

• Orange shape
• Envir. temperature
• Envir. umidity

Experimental Error External Noise 1
Architecture foctor = factor embodied in the prototypes;

Steady factor = factor settled for all the experiment;

Minimized factor = factor with reduced variability;

Setting factor = factor varied in the experiment;

Variable factor = factor not controlled;

Uncontrolled factor = factor uncontrollable.

Sample Size Determination

This step is worth mentioning because all risks and the experimental

precision are defined in this phase, any subsequent intervention has as its

target only the full use of the feature defined here but not its increment. The

total number of trials was calculated using tables available in literature

[Davies D.L., 1956], which express the relationship f(a, p, O, n)=0 (appendix

A), where as already introduced O = 5/Oe is the ratio between the precision of

the experiment and the error standard deviation, n is the sample size of each

13



group compared in the experiment (equal, for two level factorial design, to

half of the total number of trials).

In the design of experiment of PFJ, because of the total lack of knowledge, a

preliminary test was conducted to estimate CTp [Davies O.L., 1978], which came

out to be approximately 0.0277. The risks a and (3 were both fixed at 0.05. In

table Al of appendix A, with 0=1.45 (=0.04/0.0277), we find n=14, the closest

orthogonal array is n=16=N/2 and then the total number of trials will be

N=32.

Experiment Conduction

The pattern of the experiment views a full factorial for the architectural

factors and a half factorial for the setting factors, thus we obtained a resolution

V for the architectural factors and a resolution III for the setting factors plus a

resolution IV for the interactions between the factors of the two different

categories, and the confounding imposed by the nested structure. The pattern

is recognizable in exhibit 8 thanks to the positioning of the architectural factor

on the top of the matrix, where the full factorial implies the presence of the

combination of all the factors. On the side we have the setting factors where

the half fractional design implies the presence of only half of the data, but the

orthogonality of the design guaranties the possibility of comparing any factor

at each of its two levels (Appendix C).

Exhibit 8. Matrix of experiment for the PF] case with the results.

O

B

S

E

R

V

A

T.



the sequence of the runs was random [Montgomery D.C., 1984]. The

randomization of the trials is an argued point, because, against the common

perception, randomization is very exper\sive and the tendency to conduct the

group)ed runs often compromises the quality of the experiment [Pignatiello

J-Jv 1992].

The Pooling Technique

The analysis was started assuming negligible three factor interactions and this

is already a form of effects pooling even if it does not appear in the initial

Anova tables. In table 1 the initial model is shown with all second order

interaction but those being relative to the nested factor, and also the p-Value

is provided, which gives the smallest significance level at which the null

hypothesis can be rejected. The last column supplies the percentual

contribution of the effect variation with respect to the total variation and is

helpful in understanding the behavior and the impact of each factor and

interaction (Appendix B).

Table 1. Initial Anova table



(residual) all effects with an F-ratio less then 1, as illustrated before, the error

degree of freedom became 22 and we obtained table 2. Here the parameters of

the experiments are: Sen2=ww, MSe2= 005 and P2=ss.

Table 2.

S<iurre



the last column gives the F ratio between the actual and preliminary error

mean squares (MSe/MSgp).

Table 4. Experimental Parameters in the PFJ case.

STEP
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Appendix A

Table Al. Sample size requirements for tests on difference of two means from independent

normal population, equal population standard deviations.



Appendix B

Percent Contribution Calculation

The variance calculated in the fixed levels experiment for a factor or

interaction, listed in Anova Table, contains some amount of variation due to

the error [Phadke M.S, 1983; Ross P. J., 1988]. The generic factor variance

observed (Vx ) can be written as:

Vx = V*x + Ve

where V*x is the variance due solely to the factor x and Ve is the variance of

the error. The pure variation of factor x can be isolated as:

V*x = Vx - Ve

and since in the Anova Table the variance is expressed as the ratio of the sum

of squares and degree of freedom of factor (Vx=SSx/Vx) we have:

SSVVx = SSx/Vx-Ve

Solving for SS*x we obtain:

SS*x = SSx - Ve X Vx

then the percent contribution of the factor x (Fix) with respect to the total

variation expressed in terms of the sum of squares can be calculated as:

Ox = SS*x / SSiot X 100

The contribution of error (residual) is then calculated replacing all variation

removed by the factors and interactions:

He = (SSx + dof F.I. X Ve) / SSjot x 100

where dof f.i. is the total number of degree of freedom available for factors and

interactions.

This correction is necessary to avoid overestimating the contribution of the

effects, and it is the cause of the presence of the negative numbers in the

initial Anova table.
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Appendix C

Orthogonal matrix of the experiment

Table CI. Random stH]uence of the trials and results of the PFJ experiment.

Trial
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