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Abstract

The velocity of second sound as a function of pressure and temperature has been

measured to 0. 95 °K by a pulse method. The quantitative dependence of the rise in

velocity upon pressure is found to support the role of the phonons in contributing to the

normal fluid flow alone.
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PRESSURE DEPENDENCE OF SECOND-SOUND VELOCITY

IN LIQUID HELIUM II

Introduction

The properties of liquid helium II have been most satisfactorily explained by the

Itwo-fluid" concept advanced in the theories of Tisza (1) and Landau (2). Each theory

regarded liquid helium as composed of a "normal-fluid" fraction and a "superfluid"

fraction, although the origin of these two fluids was assigned to different molecular

mechanisms. In the temperature range just below the lambda point, Tisza, following

the suggestion of London, considered the transverse excitations to be similar to those

of a Bose-Einstein gas, appropriately modified by the liquid state. Experiments showing

no superfluidity in He3 have born out this view, as opposed to the roton model of Landau.

On the other hand, Landau considered the longitudinal excitations, the Debye phonons, as

a component of the normal fluid flow only, rather than as associated with the fluid as a

whole, which was Tisza's view. The phonons are masked by the Bose-Einstein excita-

tions at higher temperatures, but below about 1. 1K their effect is evident. The rise in

second-sound velocity (3, 5, 6) at low temperature and the sustained existence of the waves

without undue attenuation tends to bear out the hypothesis that the new type of excitation

predominant below 1K is associated with the normal fluid flow only, and not with the

superfluid. The present experiment takes advantage of the large pressure dependence

of first-sound velocity in liquid helium to investigate whether this low-temperature exci-

tation is indeed a phonon effect.

Experiment

Second sound is a type of wave motion most easily excited by the heating of liquid

helium. Pellam has developed a pulse method (4, 5) which was used by the authors to

measure the velocity to below 1 °K at vapor pressure (3). Peshkov has created standing

waves to determine the velocity at vapor pressure down to 1 (6) and at higher pressures

down to 1. 3 (7).

A pulse method of exciting second sound similar to that formerly used in this work

(3, 4) was employed again. The chief innovation was the installation of a delay line in the

timing mechanism. This permitted a view of the pulse on a faster, continuous sweep and

hence a more accurate determination of its leading edge. A DuMont 246 oscillograph was

used to trigger the pulse generator and to actuate the delay line. The pulse generator

excited the carbon resistor of the second-sound chamber. Another carbon resistor,

acting as a resistance thermometer, received the second-sound pulse, which was ampli-

fied and fed into the vertical deflection plates of a second 246D oscillograph. This last

oscillograph was triggered by the delay line. The movable marker of the receiver oscil-

lograph could be adjusted on the sweep so that it coincided with the edge of the pulse. By

reading the marker dial and by knowing the delay, one could obtain the transit time for

the pulse. The capacitative pickup within the Dewar from the transmitting pulse could
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be easily amplified to give a sharp leading edge when viewed on the final oscillograph.

In doing this, we could not detect any instrumental delay caused by the timing system.

The second-sound chamber itself was sealed with solder for immersion in a liquid

helium bath. Inside the chamber a thin sleeve separated the carbon resistors and deter-

mined the fixed path of 4. 23 centimeters. Four capillaries with an inner diameter of

0. 020 inch led to the chamber. Two of these acted as electrical shields for the wires

while the other two were pressure lines-- one to condense in helium gas from a tank and

the other to observe pressure equilibrium with a check gauge. Liquid helium exists

under a temperature gradient in the capillaries so that the heat leak from the X-tempera-

ture to the chamber is limited only by the inner diameter. The size of these pressure

capillaries was a compromise between this heat leak and the persistent clogging of the

line by frozen materials. The pressure values of the experiment were determined on

the input side by an Ashcroft Laboratory Test Gauge. A Distillation Products MB200

diffusion pump with three Kinney VSD forepumps was used to remove vapor from the

liquid helium bath.

Temperature measurements were made with a McLeod gauge through a tube in the

pumping line above the Dewar arrangement as described formerly (3). The equivalence

of temperatures obtained from the McLeod gauge and those inside the chamber was

established by constructing a dummy chamber of the same dimensions as the real one

but filled with iron ammonium alum. Liquid helium under pressure was supplied to this

chamber. A mutual inductance bridge was used to measure the relative paramagnetic
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Fig. 1

Plot of the mutual inductance of the
salt in the dummy chamber vs. the
reciprocal of the temperature as
obtained from McLeod gauge readings.
Values were taken with the liquid
helium in the chamber at two different
pressures. The extrapolated broken
line gives the true temperature in
terms of that obtained from McLeod
gauge readings.

370 450 20U 610 690

MUTUAL INDUCTANCE-

susceptibility of the salt at different McLeod gauge values and at two different chamber

pressures. The susceptibility of the salt, and hence the mutual inductance, varies as

1/T. Figure 1 shows that the mutual inductance gives a straight line, except at low

temperatures, when plotted against this variable obtained from the McLeod values. The

deviation below 1 is attributed to the pumping pressure drop from the bath as observed

previously (3) and is not due to any radical change in heat conductivity of the helium in

the capillaries. The data below 1 were corrected from this curve.
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Results and Conclusions

The data for second-sound velocity as a function of temperature and pressure are

shown in Fig. 2. They agree, to within experimental error, with the measurements

down to 1. 3 K by Peshkov (7). The velocity of second sound along the vapor-pressure

line as previously reported (3) was remeasured with the present apparatus and is also

shown. The maximum deviation of the points is + 1 percent from the curves drawn

through them.
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Fig. 2 The velocity of second sound as a function of temperature and pressure.
Experimental points for the vapor pressure curve are not shown.

Landau's proposal that the phonons contribute to the normal fluid flow implies that at

the absolute zero of temperature the second-sound velocity must approach the value

cl/F3, where cl is the velocity of ordinary (first) sound (2). The value of cl at the vapor

pressure is about 250 meters per second, which is an order of magnitude larger than the

velocity of second sound. The second-sound velocity must therefore rise rapidly as the

temperature is lowered. The first-sound velocity increases with pressure, so that the

second-sound curves at various pressures must cross somewhere in the temperature

region blow 0. 95 0 K if they are to arrive at Landau's value of velocity.

It has been found, however, that a computation based on a linear superposition of the

terms giving the entropy and normal fluid fraction for the Bose-Einstein and phonon con-

tributions to the excitations does not agree quantitatively with the observed velocity. The

experimental curve shows no indication of the phonon term down to 1. 20 K, but is rising

rapidly at 1. 0°. A phonon term simply added to the Bose-Einstein term extrapolated

from higher temperature does not show an appreciable rise until about 0. 6 ° . Landau gets

the rise at 1 by using a roton expression which decreases more rapidly (exponentially
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instead of algebraically), but the phonon term is then too large in comparison to be

absent at 1. 2 ° as observed. The suddenness of the onset of the phonon contribution

below 1. 2 ° suggests the possibility that an interaction between the Bose-Einstein excita-

tions and the phonons is removing the former rapidly as the latter becomes sufficiently

large in comparison.

Nevertheless, the temperature at which this rise must begin corresponds to the

point where the entropy of the phonons begins to be of the same order of magnitude as

the entropy of the Bose-Einstein excitations as the temperature is lowered. The pressure

dependence of this temperature may be computed from the known pressure dependence of

the first-sound velocity, and compared with the observed pressure dependence. The

phonon nature of the low-temperature contribution to the second-sound curve may be

checked by this comparison. To remove the possibility of phonon Bose-Einstein inter-

action from affecting the result, this pressure dependence will be obtained in the limit of

small phonon contribution.

An empirical value of the Bose-Einstein entropy may be obtained by extrapolation

from measurements between 1. 2 and the lambda point, and is given to sufficient

accuracy for the present purpose by

BE = S ()T 5.5

where S is the entropy at the lambda point, and TX is the lambda temperature. The

entropy of the phonons is given by Debye' s expression

16 5 k4T 3

ph - E' r 3 3
h c 1p

where k is Boltzmann's constant, h is Planck's constant, and p is the density. The

temperature at which deviation from the extrapolated second-sound velocity curve occurs

may then be given approximately by

Sph = const x SBE

where the value of the constant determines the amount of deviation. This expression can

be expected to hold only for small deviations. Solving for temperature

5. 5
2.5 Tk

Td5 = const x

l1 PSX

where the new constant is a combination of the previous constant and Boltzmann's and

Planck's constants, and Td is the temperature at which the observed second-sound

velocity deviates a certain amount from the value extrapolated from high temperature.

Rather than passing to the small phonon contribution limit, the constant may be elimi-

nated by use of the logarithmic derivative

1 d d 1 dTI 1 d 1 1 dp= 2. 2 -0.4 d 1. 2 dc d0.4
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The first two terms arise from the Bose-Einstein contribution to the entropy, and their

sum has the numerical value of -0. 008. The second two terms arise from the phonon

entropy, and their sum has the numerical value of -0. 029. The total pressure depend-

ence of Td is therefore

dTd
T1 adT- = -0. 037 deg/atm-deg

d

of which about 80 percent comes from the phonon term in the entropy. This large

fraction is due to the large pressure dependence of first-sound velocity in liquid helium.

The observed pressure dependence of Td may be obtained from the curves of Fig. 3.

If the phonon term were not present in the expression for second-sound velocity, the

velocity would go to zero with the square root of the temperature (1, 2). The ratio

c2/JT therefore exhibits a horizontal straight line at higher temperature, but somewhat

below the lambda point, which may be easily extrapolated to low temperature. The

deviation from the extrapolated line is then taken from the rising part of the curve at low

temperature. Lines of constant deviation are shown for various values of the deviation.

The corresponding values of dTd/dP are plotted against the amount of deviation in Fig. 4.

The values of dTd/dP and (/Td) dTd/dP are nearly the same because Td is near 1K.

The extrapolated value at zero deviation is in good agreement with the value computed

above.
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Fig. 3

Plot of c 2 /T-vs. T for various pressures. The high temperature portions
of the curves extrapolate to low temperatures as horizontal lines. Lines
of constant deviation from the extrapolated horizontal line, (c /T), are
shown for various values of the deviation. The temperatures of constant
deviation, Td, are given by the intersections of the P = const. and A (c 2 /T)
= const. curves.
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Fig. 4

Pressure derivative of the temperature of constant
deviation, (dTd/dP), as a function of the amount of
deviation, A (cz2 /T), taken from Fig. 3. The value
expected from the phonon contribution to the normal
fluid flow at small deviations is about 0. 037.
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This agreement supports the hypothesis that the phonons contribute to the normal

fraction of fluid only, and are responsible for the rise of second-sound velocity at low

temperature. The phonons do not, however, combine linearly with the Bose-Einstein

excitations, unless the Bose-Einstein spectrum is greatly different from what has been

assumed heretofore.
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