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Abstract

The high costs of developing and maintaining software have become widely recognized as major

obstacles to the continued successful use of information technology. Unfortunately, against this backdrop
of high and rising costs stands only a hmited amount of research in measuring software development
productivity and m understanding the effect of software complexity on variations in productivity. The
current research is an in-depth study of a number of software development projects undertaken by an

aerospace defense contracting firm in the late 1980s. These data allow for the analysis of the impact

of software complexity and of varying levels of staff expertise on both new development and
maintenance.

In terms of the main research questions, the data support the notion that more complex
systems, as measured by size-adjusted McCabe cyclomatic complexity, require more effort to maintain.

For this data set, the Myers and Hansen variations were found to be essentially equivalent to the

original McCabe specification. Software engineers with more experience were more productive, but this

labor production input factor revealed declining marginal returns to experience. The average net

marginal impact of additional experience (minus its higher cost) was positive.

CR Categories and Subject Descriptors: D2.7 [Software Engineering]: Distribution and Maintenance;
D2.8 [Software Engineering]: Metrics; D^.9 [Software Engineering]: Management; F23 [Analysis of

Algorithms and Problem Complexity]: Tradeoffs among Complexity Measures; K.6.0 [Management of

Computing and Information Systems]: General - Economics; K.6.1 [Management of Computing and
Information Systems]: Project and People Management; K.63 [Management of Computing and
Information Systems]: Software Management

General Terms: Management, Measurement, Performance.

Additional Key Words and Phrases: Software Productivity, Software Maintenance, Software Complexity,

McCabe Metrics.
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1 INTRODUCTION

The high costs of developing and maintaining software have become widely recognized as major

obstacles to the continued successful use of information technology. For example, Barry Boehm has

estimated that $140 billion is spent annually worldwide on software [Boehm, 1987]. Therefore, even a small

increase in productivity would have significant cost reduction effects. However, despite the practical

importance of software productivity, there is only a hmited amount of research in measuring software

development productivity and in understanding the effect of software complexity on variations in

productivity.

The purpose of this paper is to add to the body of research knowledge in the areas of software

development productivity and software complexity. Traditionally, soft\vare development productivity has been

measiued as a simple output/input ratio, most typically source lines of code (SLOC) per work-month

[Boehm, 1981, Conte, et al., 1986, Jones, 1986]. While this metric has a long research history, and is widely

used by practitioners, criticisms of the metric have sparked new research questions. The numerator, SLOC,

is one measiu^e of output. However, in the case of software maintenance, it does not take into

consideration possible differences in the underlying complexity of the code being maintained. Since

researchers such as Fjeldstad and Hamlen have noted that approximately 50% of the effort in maintenance

may be in understanding the existing code, neglecting to account for initial code complexity may be a

serious omission [Fjeldstad/Hamlen, 1979].

In terms of the denominator, work-months (often called man-months), this too may be only a

rough measure of productivity. Numerous lab experiments and field observations have noted the wide

variations in productivity across individual systems developers [Chrysler, 1978, Sackman, et al., 1968, Curtis,

1981, Dickey, 1981]. The idea is that who charges those work-months could be as important as how many

work-months are charged. Yet, the usage of the aggregated work-months metric ignores this potential

source of productivity variations. Another concern with this metric is that it provides no information on

how those hours were spent, in terms of which actiNdties of the systems development life cycle were

supported. In particular, some previous research [McKeen, 1973] has suggested that greater time spent in

the design phase may result m better systems.

The current research is an in-depth study of a number of software development projects undertaken

by an aerospace defense contracting firm in the late 1980s. The data collection effort went beyond

collecting only aggregate SLOC/work-month data. In terms of the source code, data were collected on the

complexity of the code written, as measured by the McCabe Cyclomatic Complexity measure [1976], and
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the variations proposed by Myers [1977], and Hansen [1978|. For maintenance projects, these data were

also collected on the existing system code before the maintenance effort was begun. Code size and

complexity were measured on approximately lOOK non-comment Pascal and Fortran SLOC in 465 modules

of source code. These data allow for the analysis of the impact of complexity on both new development

and maintenance.

In terms of the work-month information, data were collected by person by week in terms of both

the number of hours and the activities upon which those hours were spent. This information was obtained

by collecting and processing approximately 1200 contemporaneously-written activity reports. Therefore,

analysis of the impact of varying levels of staff expertise and varying styles of project management is

possible.

The statistical results are reported in full in Section 4. In terms of the main research questions,

the data support the notion that more complex systems, as measured by cyclomatic complexity, require

more effort to maintain. The magnitude of this effect is that the productivity of maintaining the program

drops an estimated one SLOC/day for every extra path per 1000 lines of existing code. For this data set,

the Myers and Hansen variations were found to be essentially equivalent to the original McCabe

specification. In terms of productivity, the data support the notion that more time spent in the design

phases of the project is related to increased productivity, at a rate of over six SLOC/day for each

additional percentage point of design activity. Software engineers with more experience were more

productive, but there appeared to be declining marginal returns to experience. The average net marginal

impact of additional experience (minus its higher cost) was positive.

This paper is organized as follows. Section 2 describes the main research questions and compares

and contrasts the current work with previous research. Section 3 describes the data site and the data

collection methodology, and presents the data. Section 4 presents the analysis of the source code, and

Section 5 presents the results of the productivity and complexity analysis. Finally, Section 6 offers some

conclusions and suggestions for future research.

2 RESEARCH QUESTIONS AND PRIOR RESEARCH

A vast literature exists on software engineering metrics and modeling, and a comprehensive review

is clearly beyond the scope of this paper.' Rather, in this section the current research questions will be

^ The interested reader is referred to [Conte, et cd., 1986] and [Jones, 1986] for broad coverage of

a number of related topics. Also, an earlier, lengthier version of this section appears in [Gill, 1989].
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developed within the framework of specific prior research on the following topics: a) software output

metrics, b) new software development productivity, and c) software maintenance productivity.

2.1 Soft>vare Metrics

There are many possible ways to measure the productivity of software development. The most

widely used metric for size involves counting soiu-ce lines of code (SLOC) in some manner.^ The defmition

of a line of code adopted for this study is that proposed by Conte, Dimsmore and Shen [1986, p. 35]:

A line of code is any line of program text that is not a comment or blank line, regardless of the

number of statements or fragments of statements on the line. This specifically includes all hues
containing program headers, declarations, and executable and non-executable statements.

This set of rules has several major benefits. It is very simple to calculate and it is very easy to

translate for any computer language. Because of its simphcity, it has become the most popular SLOC

metric [Conte, et al. 1986, p. 35]. Through consistent use of this metric, results become comparable across

different studies.

One problem with almost all the counting rules for SLOC is that they ignore comments. While

comments are not executable, they do provide a useful function and are therefore properly regarded as

part of the output of the system development process. For this reason, comment lines were separately

counted in the current research. This issue is discussed more thoroughly in the methodology section.

The most widely accepted metric for complexity is that proposed by McCabe [1976]."^ He proposed

that a measure of the complexity is the number of possible paths through which the software could execute.

Since the number of paths in a program with a backward branch is infinite, he proposed that a reasonable

measure would be the number of independent paths. After defming the program graph for a given

program, the complexity calculation would be:

^ As Boehm [1987] has described, this method has many deficiencies. In particular, SLOC are

difficult to define consistently, as Jones [1986] has identified no fewer than eleven different algorithms for

counting code. Also, SLOC do not necessarily measure the "value" of the code (in terms of functionality

and quality). However, Boehm [1987] also points out that no other metric has a clear advantage over
SLOC. Furthermore, SLOC are easy to measure, conceptually familiar to software developers, and are used
in most productivity databases and cost estimation models. For these reasons, it was the metric adopted
by this research.

^ Another option would have been to use one of the Halstcad Software Science metrics in place of

the McCabe metric [Halstead, 1977]. However, previous research has shown no advantage for these metrics
over the McCabe metric [Curtis, et al., 1979; Lind and Vairavan, 1989], and more recent work has been
critical of Software Science metrics [Shen, Conte, and Dunsmore 1983; Card and Agresti, 1987]. For these

reasons, the McCabe metric was chosen.
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V(G) = e - n +2.

where V(G) = the cyclomatic complexity,

c = the number of edges,

n = the number of nodes.

Analytic;illy, V(G) is the number of predicates plus 1 for each connected single-entry single-e.xit graph or

subgraph.

Hansen [1978] gave four simple rules for calculating McCabe's Complexity:

1. Increment one for every IF, CASE or other alternate execution construct.

2. Increment one for every Iterative DO, DO-WHILE or other repetitive construct.

3. Add two less than the number of logical alternatives in a CASE.

4. Add one for each logical operator (AND, OR) in an IF.

Myers [1977] demonstrated what he beheved to be a flaw in McCabe's metric. Myers pointed out

that an IF statement with logical operators was in some sense less comphcated than two IF statements with

one imbedded in the other because there is the possibility of an extra ELSE clause in the second case.

For example:

IF ( A and B ) THEN

ELSE

is less complex than:

IF ( A ) THEN
IF ( B ) THEN

else""'

ELSE

Myers [1977] notes that, calculating V(G) by individual conditions (as McCabe suggests), V(G) is

identical for these two cases. To remedy this problem, Myers suggested using a tuple of

(CYCMID,CYCMAX) where CYCMAX is McCabe's measure, V(G), (all four rules are used) and

CYCMID uses only the fnst three. Using this complexity interval, Myers was able to resolve the anomahes

in the complexity measure.

Hansen [1978] raised a conceptual objection to Myers's improvement. Hansen felt that because

CYCMID and CYCMAX were so closely related, using a tuple to represent them was redundant and
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did not provide enough information to warrant the intrinsic difficulties of using a tuple. Instead he

proposed that what was really being measured by the second half of the tuple (CYCMAX) was really

the complexity of the expression, not the number of paths through the code. Furthermore, he felt that rule

#3 above also was just a measure of the complexity of the expressions. To provide a better metric, he

suggested that a tuple consisting of (CYCMIN, operation count) be used where CYCMIN is calculated

using just the first two rules for counting McCabe's complexity.

All of the above tuple measures have a problem in that, while providing ordering of the complexity

of programs, they do not provide a single number that can be used for quantitative comparisons. It is also

an open research question whether choosing one or the other of these metrics makes any practical

difference. While a number of authors have attempted validation of the CYCN4AX metric (e.g. Li and

Cheung, 1987; Lind and Vairavan, 1989) there does not appear to be any empirical validation of the

practical significance of the Myers or Hansen variations. Therefore, one question investigated in this

research is a vaUdation of the CYCMIN, CYCMID, and CYCMAX complexity metrics.

22 Productivity of New Software Development

While the issue of software development productivity is of practical significance and has generated

a considerable amount of research attention, what has often been lacking is detailed empirical data [Boehm,

1987]. Past research can generally be categorized into two broad areas. The first are termed "black bo.x"

or "macro" studies which collect data on gross inputs, gross outputs and limited descriptive data in order

to build software production models. Examples of this type of work would include the classic work of

Walston and FeUx [1977] and Boehm [1981] and more recent work by Jeffery and Lawrence [1985] and

Banker, et al. [1987].

A second type of research is so-called "glass box" or "micro" models in which the typical

methodology is a controlled experiment involving software developers doing a small task where data are

collected at a more detailed activity level, rather than the gross level of the "black box" models. Ejcamples

of this type of "process" research include Boehm, et al. [1984], and Harel and McLean [1984].

A possible criticism of the first type of research is that by examining high level data, many

potentially interesting research questions cannot be answered. For example, one concern is how best to

allocate staffing over the phases of the system development lifecycle. Data collected only at the project

summary level cannot be used to address this question.

On the other hand, the "micro" level research is sometimes criticized for being artificial. In order
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to meet the demands of experimental design and their practical constraints, the researchers are forced

either to use small samples or to abstract from reality (e.g. by using undergraduate students as subjects)

to such an extent as to bring the external validity of their results into question [Conte, ct al 1986].

The current research was designed to mitigate both of these potential shortcomings. The approach

taken is of the "macro" production modelling type, but data were collected at an in-deplh, detailed level.

Input (effort) data were collected by person by week and mapped to contemporaneously collected project

phase/task data. Output data included not only SLOC, but McCabe, Myers, and Hansen complexity

measures as well.

Therefore these data allow the research to address the following detailed research questions:

What are the productivity impacts of differing phase distributions of effort? Specifically,

does a greater percent of time spent in the design phase improve overaU productivity?

How much does the productivity improve with personnel experience? Are there dechning
marginal returns to additional experience, and if so, what is their magnitude?

These questions can be answered on the basis of empirical data from real world sites and therefore

this research avoids some of the potential external vaUdity concerns of the classic experimental approach."*

23 Soft^vare Maintenance Productivity

The definition of software maintenance adopted by this research is that of Parikh and Zvegintzov

[1983], namely "work done on a software system after it becomes operational." Lientz and Swanson [1980,

pp. 4-5] include three tasks in their definition of maintenance: "...(1) corrective -- dealing with failures in

processing, performance, or implementation, (2) adaptive -- responding to anticipated change in the data

or processing environments; (3) perfective — enhancing processing efficiency, performance, or system

maintainability." The projects described below as maintenance work pertain to all of the three Lientz and

Swanson types.

Software maintenance is an area of increasing practical significance. It is estimated that from 50-

80% of information systems resources are spent on software maintenance [Elshoff, 1976]. However,

according to Lientz and Swanson [1980] relatively httle research has been done in this area. Macro-type

studies have included Vessey and Weber [1983] and Banker, et al. [1987]. Micro-level studies have included

Rombach [1987] and Gibson and Senn [1989].

"Of course, the field study methodology is unable to provide many of the tight controls provided by
the experimental approach and therefore requires its own set of caveats. Some of these are discussed in

the conclusions section.
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One area that is of considerable interest for research is the effect of existing system complexity

on maintenance productivity. It is generally assumed that a) more complex systems are harder to maintain,

and b) that systems suffer from "entropy", and therefore become more chaotic and complex as time goes

on [Belady and Lehman, 1976). These assumptions raise a number of research questions, in particular, when

does software become sufficiently costly to maintain that it is more economic to replace (rewrite) it than

to repair (maintain) it? This is a question of some practical importance, as one type of tool in the

Computer Aided Software Engineering (CASE) marketplace is the so-called "restructurer", designed to

reduce existing system complexity by automatically modifying the existing source code [Parikh, 1986; US

GSA, 1987]. Knowledge that a metric such as CYCMAX accurately reflects the difficulty in maintaining

a set of source code would allow management to make rational choices in the repair/replace decision, as

well as aid in evaluating these CASE tools.

3 DATA COLLECTION AND ANALYSIS

3.1 Data Overview and Background of the Datasite

A prerequisite to addressing the research questions in this study was to collect detailed data

about a number of completed software projects, including data on individual personnel. All the projects

used in this study were undertaken in the period from 1984-1989, with most of the projects in the last

three years of that period. All the data originated in one organization, a defense industry contractor

hereafter referred to as Alpha Company. This approach meant that because all the projects were

imdertaken by one organization, neither inter-organizational differences nor industry differences should

confound the results. A possible drawback is that this concentration on one industry and one company may

somewhat limit the applicability of the results. However, two factors mitigate this drawback. First, because

the concepts studied here are widely apphcable across applications, there is no a priori reason to believe

that there will be significant differences in the trends across industries. Second, the defense industry is a

very important industry for software^ and the results will clearly be of interest to researchers in that field.

The projects at this site were small custom defense appUcations. The company considers the data

contained in this study proprietary and therefore requested that its name not be used and any identifying

data that could directly connect it with this study be withheld. The numeric data, however, have not been

altered in any way. The company employed an average of about 30 professionals in the software

^Fortune magazine reported in its September 25, 1989 issue that the Pentagon spends $30 billion

annually on software.
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department. The company produced statc-of-thc-art custom systems primarily for real-time defense-related

applications.

At the start of this study, 21 potential projects were identified for possible study. Two of the

projects were, however, eliminated as being non-representative of this sample. The first project was a

laboratory experiment in which the major task of the chief software engineer was mathematical analysis.

While a small amount of software was written for this project, there was no way to separate the analysis

effort from the software development effort. The other project was nearly an order of magnitude larger

than the next largest project and was believed to be unrepresentative of the Alpha population in its

technical design. This project was the only project to employ an array processor, and a substantial fraction

of the software developed on the project was micro-code, also non-representative of the Alpha environment.

The data set therefore consists of the remaining 19 software projects. These projects represented 20,134

hours (or roughly 11.2 work-years) of software engineering effort, and were selected because of the

availabihty of detailed information provided by the engineers' weekly activity reports.

Table 3.1.1 is a summary of some of the gross statistics on the projects. NCSLOC is the number

of non-comment source hnes of code; CSLOC includes comments; DURATION is the number of weeks

over which the project was undertaken; TOTALHRS is the total number of labor hours expended by

soft\vare department personnel; NCPROD is the number of non-comment lines of code divided by the total

number of labor hours.

Median Mean Std. Dev.

NCSLOC
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questionnaire describing the project.

5. Engineer Profile Data Collection Forms — A survey on the education and experience of

every engineer who worked on one ot the projects.

The first data source was the source code generated in each project. Of the code developed for

the projects, 74.4% was written in Pascal, and the other 25.6% in a variety of other third generation

languages. Following Boehm [1981), only deliverable code was included in this study, with deUverable

defined as any code which was placed under a configuration management system. This definition eUminated

any purely temporary code, but retained code which might not have been part of the delivered system, but

was considered valuable enough to be saved and controlled. (Such code included progrjuns for generating

test data, procedures to recompile the entire system, utility routines, etc.)

The number of hours worked on the project and the person charging the project were obtained

from the database. Because the hourly charges were used to bill the project customer and were subject

to United States Government Department of Defense (DOD) audit, the engineers and managers used

extreme care to insure proper allocation of charges. For this reason, these data are believed to be accurate

representations of the actual effort expended on each project.

At Alpha Company, software engineers wrote a summary called an activity report of the work

they had done on each project every week. The standard length of these descriptions was one or two

pages to describe all the projects. If an engineer worked on only one project, the description of the work

for that project would occupy the entire page. If several projects were charged, the length of the

descriptions tended to be roughly proportional to the amount of time worked, with the entire report fitting

on a page. An example of an activity report appears in Appendix A.

Project data collection forms developed for this research provided background data on each

project. The surveys requested descriptions of the project, qualitative ranking of various characteristics of

the development process (number of interruptions, number of changes in specifications, etc), and ratings

of the quality of the software developed. Unlike the data above, these data are subjective, and results based

on it are interpreted cautiously. It is useful, however, to have some measure of these qualitative variables

in order to obtain some feel for how the results may be affected. A copy of the survey form used to

collect these is included in Appendix B.

The engineer profile forms obtained data on each engineer's educational background, work

experience and Alpha company level. If the employee in question was still with the company (24 out of

the 34 engineers in the sample), he or she was asked to fill the form out personally. If the employee no
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longer worked for the company, personnel records were consulted. A copy of the engineer profile survey

is included in Appendix C.

33 Categorization of Development Activities

Although unusual for this type of research, this study had access to the wcek-by-week description

of what work was done by each engineer on each project. These descriptions were filled out by the

individual engineers every week to inform their managers of the content of their work and also to provide

documentation of the work charges in case of a DOD audit. Because these documents were written

contemporaneously by everyone who was working on a project, they are believed to present an accurate

picture of what happened diu-ing the software development process. Approximately 1200 reports were

examined for this research.

These activity reports provided a large descriptive database; however, in order to test the hypothesis

relating to productivity a key problem was to determine a way to quantify these data. The method used

was to categorize the work done each week by each engineer into one of nine standard systems

development lifecycle phases employed by Alpha. One advantage of this approach is that these categories

corresponded quite closely to the "local vocabulary", i.e., the engineers at Alpha Company tended to

organize their work in terms of the above categories. This cotmection proved very helpful when the activity

reports were read, and the work categorized. The nine categories that were used are described in Appendix

D.

To categorize a project's activity reports, the researcher selected an engineer and then read

through all the engineer's activity reports sequentially. The work done on the project each week was

categorized into one or more of the project phases. For the large majority of reports only one phase was

charged per report; however, for a fraction of the activity reports the effort was split into two phases.®

To obtain consistency across projects and people, and because access to the data was limited to

on-site inspection, only one researcher was used to do the categorization task for all the reports. Because

the researcher read the activity reports in a sequential manner, he was able to follow the logic of the work,

as well as getting the "snapshot" that any one report would represent. Finally, in two cases where the

reports were imclear, the engineers were shown their own reports and asked to clarify what was actually

done.'

® On a few reports (less than 5%) a maximum of three phases were charged.

' Of course a possible limitation of this single rater approach is an inability to check for a possible

methods bias. Although a conscious research design, it does introduce a possible source of error.
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In some cases, all of the activity reports were not available, typically because the report had been

forgotten or lost. In addition, the reports had only been kept for the past three years so that they were

generally not available prior to that time.^ For four of the nineteen projects studied, 25% or more of

these data were missing, and no attempt was made to reduce the activity reports for those projects. To

obtain the best breakdown of phases for the unassigned time on the remaining 15 projects, such time was

categorized in proportion to the categorization of the rest of the project. The median amount of time

categorized as unassigned was 9.9% (see Table 3.3.1).

OBS. TOTAL PERCENT
HOURS UNASSIGNED

1
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Scientists:

Level 1: Principal Scientist. Requires peer review to be promoted to this level.

Level 2: Staff Scientist. Requires peer review to be promoted to this level.

Entjineers:

Level 3: Senior Engineer. Entry level lor Ph.D's. No peer review required.

Level 4: Engineer. Entry level for Master's degree engineers. No peer review required.

Level 5: Junior Engineer. Entry level for bachelor's degree engineers.

A sixth level was defined to include support staff (secretary, etc), part time college students in

computer science, and other non-full time professionals. Because many of the projects .studied had rather

few people, six levels of detail were not required. For this reason, the aggregate levels of scientist (levels

1 and 2), engineer (levels 3, 4, and 5) and support (other) were used. This simple division is also used

at Alpha, in that to be promoted to scientist level, a peer review is required. Non-engineering staff were

kept in their own group (support staff) because they were only para-professional staff.^ Table 3.4.1 shows

the number of people in each of the levels with each of their highest educational degree levels. All the

engineers in this department had technical degrees (most in computer science) so that no attempt was

made to separate the different fields.

< Bachelors Bachelors Graduate Total

Scientist 2 8 10

Engineer 1 14 5 20

Support 4 4

Table 3.4.1 Educational Degrees Categorized by Level

It is clear that the company levels are related to the highest level of education reached. The level

is also closely related to the number of years of experience as shown in Table 3.4.2.

Average Number of Years Average Number of Years

of Company Experience of Total Industry Experience

Scientist 15^6 200
Engineer 5.1 5.8

Table 3.42: Average Years of Experience for Company Levels

Use of these levels had many advantages. The first was that it provided a reasonable way to

combine degree and length of work experience into a single measure, as these levels are good indicators

of both experience and educational level. The engineer's compensation is also highly dependent on his or

° Only 5.4% of the total labor hours for the projects in the dataset were charged by these para-

professionals.
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her company level, and therefore project cost is directly related to the use of staff of different levels.'"

Finally, use of the "level" concept was the common practice at Alpha Company, and therefore provided

a natural way to discuss the research with the participants.

3.5 Statistics on Source Code

One of the advantages of this data site to the research was that the actual source code was

available, thus all statistics of interest about the code could be calculated. In addition to NCSLOC (non-

comment, non-blank lines of source code), a second statistic called CSLOC was also collected. CSLOC is

NCSLOC plus the number of lines of comment (still excluding blank lines)." A potential problem with

all SLOC statistics is that they do not take into account the complexity of the code. As discussed earlier,

the most popular measure of complexity was developed by McCabe and both Myers and Hansen have

offered e.xtensions to McCabe's measure. All of these complexity measures were collected at the module

level in order to provide empirical evidence for the relationship among the three measures. The code

studied was contained in a total of 465 modules of which 435 were written in Pascal and 30 in FORTRAN.

Collecting these data required metrics programs for each language. Comple.xity results were

collected for the vast majority of code which was in Pascal or FORTRAN. No complexity statistics were

generated for two projects (one written in C, the other in ADA). Table 3.5.1 shows the percent of code

of each project for which the cyclomatic complexity metrics were generated. They were generated for 17

of 19 projects and, of those, 100% of the code was analyzed for 13 of the 17. In the remaining four

projects, an average of 98.3% of the code was analyzed.'^

'° There is Uttle variation in the salaries of engineers at a given level. Because proposals for projects

are costed using a standard cost for each level, but billed using actual costs, large deviations tend to cause

client dissatisfaction and are avoided by Alpha Company.

" If a comment appeared on the same line as an executable line of code both the comment and
the line of code incremented CSLOC. If this method were not used, comments would be significantly

undercounted. In particular, the measurement of comment density would be distorted.

'^ To adjust for the fact that complexity figures were not available for the utility routines for four

of the seventeen projects, an average complexity ratio (cyclomatic complexity/NCSLOC) was defined for

each project. By assuming that the complexity densities remained constant for the project, the total

complexity (including non-Pascal or FORTRAN code) was calculated by multiplying the average complexity

density by the total NCSLOC. This adjustment was done on only four of the projects, and for less than

2% of the code on average on those four projects. Therefore, this is not believed to be a major source

of error.
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project; NCPROD is NCSLOC/TOTALHRS or the productivity for non-comment lines of code. Not all

the data used in the study were available for all the projects. The cyclomatic complexity data are missing

from two of the projects and the phase data from four of the projects. However, for most analyses only

a single statistic was required, and, in order to conserve degrees of freedom, all projects with valid data

in that subset were used. For example, if the analysis required complexity data, but not phase data, the

statistics were generated on the seventeen projects with valid complexity data (including the projects without

phase data). It is not believed that this approach introduced any systematic bias.

4 SOURCE CODE ANALYSIS

4.1 Comparison of Metrics

For this portion of the analysis it was possible to analyze the data at the module level, since no

work-hours data were required. Table 4.1.1 is a summary of some of the basic statistics for all the

modules.

Variable MEAN STD DEV

NCSLOC
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TOTALHRS, can be assumed to be different with a high degree of confidence. Because all of these

variables are directly related to the size of the project, this difference simply indicates that, on average,

the maintenance projects were smaller than new development projects. However, no significant difference

in productivity was found. While the average productivity for maintenance projects is less than for

development projects, the fact that this difference is not statistically significant means that we were unable

to reject the null hypothesis that maintenance productivity is the same as that for development projects.

In addition, because the line count ignored changed lines and actually subtracted for deleted lines, the

productivity of maintenance projects may be understated. Therefore, the new development projects and the

maintenance projects are combined in later productivity analyses, excluding maintenance specific analysis

that requires e-xisting code.

5 RESULTS

Four major productivity effects were investigated of which two applied to all of the projects. They

were: (a) Are more experienced programmers more productive, and, if so, by how much? and (b) How

does the proportion of time spent in the design phase affect the productivity?

The other two effects studied were appropriate for maintenance projects only. As cited earlier,

much has been written under the assumption that characteristics of the code have an effect upon

maintenance productivity. One of the reasons that McCabe developed his cyclomatic complexity was to

attempt to quantify the complexity of code in order to determine the appropriate length of subroutines so

that the code would not be too complex to maintain. This study has examined this effect using the

complexity density metric defined earlier. The second maintenance productivity issue analyzed was the

impact of documentation in the form of comments.

5.1 Experience

It has long been thought and several studies have shown that the experience of the programmers

is an important factor in productivity. Verifying this phenomenon is not always easy, in part because

engineers with different levels of experience do different tasks. As described above, there were essentially

three different categories of technical personnel. The highest category (scientist) included the top two

company levels. The employees in this category were primarily project managers. The second category

contained the remaining three professional levels and the engineers in this category were primarily

responsible for developing the software. The lowest level provided support. Because the scientists and the
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support stalf were by and large not directly involved in the writing of the software, their effect on

productivity is only indirect. Therefore, the research effort focused on the engineer (levels 3, 4, and 5) staff.

To test the hypothesis that the higher level (more education and more experience) engineers are more

productive, the following model was created:

Y = Bo + (B, * P3) + (B^ * PJ + (B3 * ?,)

where,

Y = NCPROD

P3 = the percentage of the total development hours spent by level 03 engineers.

P4 = the percentage of the total development hours spent by level 04 engineers.

P5 = the percentage of the total development hoiu-s spent by level 05 engineers.

Development hours are only those hours worked on specifications, design, coding, or debugging.

The results of this regression were:

NCPROD = -15.75 + 27.88*P3 + 25.97*P, + 18.93*P5

(-2.03) (2.89) (2.91) (1.89)

R^ = 0.45 Adjusted R^ = 0.30

F-Value = 3.04 n = 15

The interpretation of these results is that adding an additional one percent more time by level 3

engineers working on direct software tasks results in an increase of approximately 2.2 additional

NCSLOC/day, ceteris paribus. The result for levels 4 and 5 are 2.1 and 1.5 respectively. These results are

exactly as expected in that more experienced engineers are more productive. (The t-statistics for the level

3 and 4 engineers are significant at the alpha = .01 level, and at the .10 level for the level 5 engineers.)

By examining the data at this level of detail it is also possible to draw conclusions about the

marginal productivity of additional experience, and its value to the firm. In particular, the data show a

37.19% increase in productivity between levels 4 and 5, and a 47.28% increase between levels 3 and 5.

What is interesting to note is that the differences in mean salaries for each level is only 15%. Starting

at an index salary of 1 for level 1 scientists, this means that the average salary index for a level 3 engineer

is .7225 (.85 squared), a level 4 is .6141, and level 5, .5220. Therefore, the net benefit in using a level

3 engineer over a level 5 is approximately 9% (.4728-(l-(.7225/.5220))), and the net benefit of employing



Page 21

uo

O

Marginal Productivity
vs Average Years Experience

"T

2,5 3 3.5 4 4.5 5 5.5 6 6.5 1

Avg Years Experience Cfounded to .5 yr^

7,5 B 8.5

Figure 5.1: Marginal Productivity versus Experience

a level 4 engineer over a level 5 is approximately 20%. This illustrates two points of potential importance

to software managers. The first is that more productive staff do not seem to be compensated at a level

commensurate with their increased productivity. The intuitive recommendation that follows from this

relationship is that managers should seek out higher ability staff, since their marginal benefit exceeds their

increased marginal cost. A second result from these data is that there seem to be declining marginal

returns to experience (see Figure 5.1). This is consistent with some previous research [Jeffery and

Lawrence, 1985]. However, tliis result may be confounded by a difference in task complexity, i.e., more

senior staff may be given more difficult aspects of the system. Further study, perhaps in the form of a lab

experiment controlling for task complexity, seems indicated.

5.2 Design Phase Impact

Because of the availability of phase data, it was possible to test the hypothesis developed by

McKeen [1983] and Gaffney [1982] that by spending more time in design, the overall productivity of a
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project can be improved. Specifically, the more lime that is spent analyzing and designing the software, the

better and more detailed the design will be. This good design would be expected to lead to a faster and

easier overall development process. To test this hypothesis ANALFRAC was defined as the number of

hours spent in the specification and design phases divided by the total number of project hours (see

Appendix D). The results are plotted in Figure 5.2.

Productivity vs Analysis Percentage

8

5

Spec, and Design Fttg

Figure 52: Productivity versus Fraction of Time Spent in Analysis

The result for a linear regression model of these data is:

NCPROD = 3.97 + 21.48 * ANALFRAC

(1.56) (1.14)

R^ = 0.09 Adjusted R^ = 0.02

F-Value = 1.30 n = 15

Therefore, these data do not provide support for the notion that more time in the specification
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and design phases has a measurable impact on source lines of code productivity. Of course the limited

number of data points reduce the power of this test.

53 Complexity

Complexity density (CYCMAX/NCSLOC) is the appropriate metric for evaluating the effects of

code complexity because McCabe's complexity is so closely related to program length. If McCabe's

complexity were left unnormalized, the results would be dominated by the length effect, i.e., the tested

hypothesis would actually be that maintenance productivity is related to program length. While this is a

possible hypothesis, there are two reasons why it is less interesting than the impact of complexity. The first

is that managers typically do not have a great deal of control over the size of a program (which is

intimately connected to the size of the problem). However, by measuring and adopting complexity standards,

and/or by using CASE restructuring tools, they can manage complexity. The second reason is that there

are valid intuitive reasons why the length of the code may not have a large effect on maintenance

productivity. When an engineer maintains a program, each change will tend to be localized to a fairly small

number of modules. He will, therefore, only need detailed knowledge of a small fraction of the code. The

size of this fraction is probably unrelated to the total size of the program. Thus the length of the entire

code is less relevant.'''

Logically, the initial complexity density should only affect those phases that are directly related

to writing the code. User support, system operation, and management functions should not be directly

affected by the complexity of the code. For this reason, a new partial productivity measure was defmed:

ALLDPROD: The total number of lines divided by the time spent in all non-overhead activities:

specifying, designing, documenting, coding or testing and debugging.

To perform this analysis both the phase data and the cyclomatic complexity data for the

maintenance projects were needed. Because all the data were required, only seven data samples were

available. A regression of ALLDPROD was performed with the complexity density of the initial code

(INITCOMP):

'"In fact, the correlation of productivity with initial code length was not significant (Pearson coefficient,

-0.21; alpha = 0.61).
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ALLDPROD = 28.7 - 0.134 * INITCQMP

(3.53) (-2.69)

R2 = 0.59 Adjusted R^ = 0.51

F-Value = 7.22 n = 7

8

o>
c

(n

is

8

This model suggests that productivity decUnes with increasing complexity density (see Figure 5.3).

Complexity vs Maintenance Productivity

0.00

Actua I va I ues
New SLOC/ work- hour

Linear Prediction

Figure 53: Maintenance Productivity versus Complexity Density

While it would be speculative to ascribe too much importance to the results, which are based on only seven

data points, the results do seem sufficiently strong and the implications sufficiently important that further

'^ A possible concern with this model might be multicollinearity between the independent regressor

and the intercept term. To test for this, the Belsley-Kuh-Welsch test was run, and no significant

multicollinearity was detected [Belsley, et al. 1980].
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study is indicated.'^ If these results continue to hold on a larger independent sample, then such results

would provide strong support for the use of the complexity density measure as a quantitative method for

analyzing software to determine its maintainability. It might also be used as an objective measure of this

aspect of software quality.

5.4 Source Code Comments

The number of comments in the code has also been suggested to affect the maintainability of the

code [Tcnny, 1988]. A regression of ALLDPROD as a fimction of the percentage of the lines of code that

were comments (PERCOMM) was also performed. (These data are plotted in Figure 5.4.)

ALLDPROD = 4.96 + 0.05 * PERCOMM

(L04) (0.36)

R2 = 0.02 Adjusted R^ = -0.14

F-Value = 0.13 n = 8

The results indicate that the density of comments does not seem to be related to the maintainability

of the code. Because more difficult code may be commented more heavily, it is not clear whether heavily

commented code will be easier to maintain. Therefore, another question is whether the programmers adjust

their programming styles to the complexity of the code which is being written. For example, one would

expect programmers to comment complex code more heavily and to break complex code into more

subroutines. If this were the case, the density of comments should increase with the complexity density. In

fact, the Pearson correlation coefficient between those two metrics is -0.30 (alpha = 0.0001, n = 465). The

interpretation of this negative correlation is that more difficult code get commented less heavily, suggesting

that comment density may be simply a function of the time available, rather than being a function of the

need for comments.

'^ Programming style may also affect productivity. For example, one would expect that by increasing

the complexity density (CYCMAX/NCSLOC) of newly written code a programmer would require more time

to write these more complex hues of code. The correlation of the complexity density with the productivity

is -0.43 (alpha = 0.09), suggesting that productivity does decrease with increasing complexity density.
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Figure 5.4: Maintenance Productivity versus Comment Density

6 CONCLUSIONS

Through the availability of detailed data about the software projects developed and maintained

at this data-site this paper has been able to test a number of relationships between software complexity

and other factors affecting development and maintenance productivity. In particular, increased software

complexity, as measured by the McCabe cyclomatic complexity density metric, is associated with reduced

maintenance productivity. Greater emphasis on the design phase is associated with increased productivity.

And, systems developers with greater experience were found to be more productive, although at a declining

marginal rate.

How can software development and maintenance managers make best use of these results? To

begin with, the measurement of these effects was made possible only through the collection of metrics

related to software development inputs and outputs. In particular, use of these data argue for the
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collection of detailed data beyond mere SLOC and work-hour measures. Based on these data, softwcire

productivity can be improved through employment of higher experience staff and reduction in the cyclomatic

complexity of existing code. Staff with higher experience were shown to be more productive, at an

average rate greater than their increased cost. Finally, cost effective reduction in the cyclomatic complexity

of existing code should be attempted. One approach may be by measuring complexity of code as it is

written, and requiring that it adhere to an existing standard estabhshed through on-site data collection.

A second approach may be through existing restructuring products, although, of course, the cost

effectiveness of this latter solution is contingent upon the costs of acquiring and operating the restructurer,

as well as the size of the existing software inventory. An additional caveat related to this solution is that

these restructurers may impose one time additional maintenance costs in terms of initially reducing the

maintainers' familiarity with the existing code structure. This lilcely effect must also be taken into accoimt.

In terms of future research, the software development and maintenance community would benefit

from validation of these results on data from other firms particularly from other industries. Also, the

effects of complexity on maintenance need to be rephcatcd on a larger sample before accepting these

results as guides for standard practice. Beyond these validation-type studies, further work could be devoted

to the experience issue, in terms of attempting to determine the causes of the apparent declining marginal

returns to experience shown by these data. Research on complexity impacts could examine the actual

longitudinal impacts of the use of commercial restructurers. In general, more empirical studies involving

detailed data collection will help to provide the insights necessary to help software development progress

further towards the goal of software engineering.
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Appendix A: Example of an Activity Report

Junior Software Engineer's Name Weekly Report 4-1-1987

Project #1 35 hrs. Spent the whole time working with [Staff Scientist] and [Principal Scientist) trying

to find the cause of the difference betsveen [Basebne Runs] and [New Instrument

Runs). After a lot of head scratching it turns out that both were correct. We just

had to play with the format of the data and units to get the two data sets to

match to within [xxx] RMS. This is still above the [yyy] RMS limit, but the

[baseline runs) and [new instrument runs) started off being [zzz) RMS apart. So,

until the [new instrument) can be improved, my software can do no better than

it is doing now.

Project #2 1 hrs. I had very Uttle time to work on this, but I did manage to start to finish the

modify adhoc target routine.

Project #3 9 hrs The automatic height input for the calibration routine is up and running. I also

made some more modifications so that they can return to the old method if the

IEEE board fails.

Project #4 2 hrs [Staff Scientist] and I spent the two hours trying to get the microVAX up after

we installed the [Special Boards). We ended up having to pull the boards back
out to reboot the machine. The boards were eventually installed, but there still

seems to be something wrong.

Total = 45.0 hours
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Appendix B: Project Data Collection Form

Project Profile Survey

Project Name:

Project Number;

Applicable Phase(s)

Brief Description of the Project;

Target System:
Mainframe:
VAX:
HP mini:
PC:
Other: (please specify).

Can you think of any reasons that would make this software
development exceptional (please specify estimate of net effect as
well )

:
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Application Characteristics

:

Was the code primarily generated from scratch for this particular
project (Development Type) or did this project modify or extend an
existing program (Maintenance Type):

Development Maintenance

Choose the best description of the application:

Real Time: The primary goal of this system was to
control hardware in real time.

Diagnostic: The system was primarily designed to
diagnose an independent hardware system.
The software was not an integral part of
the working system.

Analysis: The software performed physical analysis
on data

.

Utility: The software performed utility functions
(for example in configuration management
and general plotting programs )

.

Software Quality:

Choose the number that best describes the quality of the
software resulting from this project compared to the average
project ( l=Poor, 3-Average, 5=Excellent ) on the following three
dimensions

.

Correctness: When the program ran without error, this
dimension measures the whether the results
matched the desired results.

Reliability: The likelihood of the program running
without error.

Maintainability: The ease with which modifications and
extensions can be made to the software.

Poor Excellent
Correctness: 12 3 4 5

Reliability: 12 3 4 5

Maintainability: 12 3 4 5
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Management: Characteristics

;

How the project was managed in comparison with similar projects in
terms of the following dimensions:

Time Pressure;

Cost Pressure;

Interruptions

:

Change in Specs:

Relative Priority:

How much pressure there was to finish the
project in a particular calendar period.

How much pressure there was to keep the
total software development costs down.

How much work on the project was subject
to interruptions from external sources
(other projects, vacations, sickness,
etc

.
)

.

How often the specifications of the
software were altered as the project
progressed.

Priority that the project was given by
management relative to other projects.

Time Pressure:
Cost Pressure:
Interruptions

:

Change in Specs:

Low
1

1

1

1

Relative Priority: 1

2

2

2

2

2

Average
3

3

3

3

3

4

4

4

4

4

High
5

5

5

5
5

Environment

:

Languages

:

Pascal
FORTRAN
PL/

1

ADA
Assembly

Was hardware being developed simultaneously?

Very
Stable

Average
Stability

Very
Unstable

Hardware Stability
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Appendix C: Engineer Profile Form

Engineer Profile Survey

Name;

Identification Nvunber;

Months of Industry Experience:

Months of Alpha Company Experience;

Highest Degree Received:

Field:

Year:

Current Alpha Company Level ( 01 , 02 , 03 , 04 , 05 ,Co-op,etc )

;

If promoted within the last four years, give
the approximate date of the last promotion:
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Appendix D: Lifecytie Phases

Specifications - included any work involved in the understanding or writing of software specifications and
requirements. If the engineer reported that he or she was working on writing software specifications, his

or her hours were included in this category. Furthermore, this phase also included hours in which an

engineer reported having in depth discussions with the customer or other engineers about the software

requirements.

Design -- included any time spent determining how to solve a pre-specified problem as well as time spent

in writing up the design of a software module was placed in this category. This phase included not only

the writing up of a formal design, but also informal designs and discussions with other engineers about how
the program should be written.

Coding — included time spent actually writing software code. This category also included time spent in

preliminary debugging prior to the point where a module was determined to be ready to test. (Debugging
tasks such as eliminating compile time errors were included in this category). As soon as testing started

on a module, the debug phase was charged.

Debug — included testing and debug time done after a module was determined to be ready for testing

and/or integration.

User Support — included time spent by software engineers helping users to run the program. Because many
of the software development projects were part of an embedded system, and because many of the

maintenance projects involved updating a system, software engineers were often required to help the users

run the system. This phase was charged when this support did not involve any of the "traditional" software

development tasks.

Documentation — included all the time that was spent actually writing software documentation such as

users' manuals and software maintenance manuals with the exception of software specifications and designs.

Management -- included management meetings, cost estimates, and other such management tasks.

Computer System Maintenance — included ail the charges to support tasks needed to keep the computer
systems running properly. In many of the projects, dedicated computer systems were purchased for the

projects. When this was the case, time spent backing up the disks or repairing the systems was charged
to the project. (Note; on projects that used Alpha Company's general purpose computers, this work was
charged to an overhead account and did not appear on the projects' charges.)

Training — included work done solely in a training mode, i.e., if there was no attempt to produce useable
output, this phase was charged. On a few of the projects, engineers were required to spend substantial time
learning some aspect of the system (a new computer language, system maintenance documentation). For
example, this phase was charged in one project when an engineer spent 20 hours learning Turbo Pascal
(TM) by reading the manual and writing small programs unrelated to the project.
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