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ABSTRACT

This paper studies the behavior of an optimizing driver

on a freeway and the equilibrium speed at which specified flows

of traffic move. It shows that both when passing is not allowed

(the standard car-following framework of the engineering litera-

ture) and when it is permitted, the equilibria exhibit speeds

which are below the Pareto Optimal speeds. The flat congestion

toll proposed by Oron, Pines and Sheshinski [1973] does not, by

itself, bring about Pareto Optimality.

I wish to thank Joseph Altonji, Paul Krugman, Daniel McFadden, Robert Pindyck,
Richard Ruback and Thomas Stoker for helpful comments and suggestions.

0743602





I. Introduction

This paper studies the behavior of a typical driver on a freeway. This

driver derives disutility both from long commutes and from unsafe ones. The

paper then studies the equilibrium at which specified flows of traffic move.

It shows that these speeds are generally inefficient and, in particular, are

lower than the Pareto optimal speeds. This inefficiency, which arises only when

traffic is congested, can be explained as follows. By making all drivers ahead

of a certain car move faster, one makes the driver of that car better off since

he now faces less congested conditions. Every driver's choices affect the welfare

of the drivers behind him. Therefore, a flat congestion toll on freeways like the

one proposed by Oron, Pines and Sheshinski [1973] does not insure Pareto Optimality.

A flat toll reduces the flow of traffic, but the speed of this reduced flow may

well be too low. Moreover, if cars that are left on their own go too slowly,

speed limits become hard to defend even if they do reduce accidents.

Two scenarios are studied. In one, passing is forbidden while in the other

it is allowed. In the former, the environment of a particular car is very similar

to the environment of the "car-following" model widely used in the engineering lit-

erature (e.g. Haberman [1977], Drew [1968], Institute of Transportation Engineers

[1976]). Each driver takes the speed of the car in front of him as given. He can

only control the distance between himself and the car he follows. Under these

circumstances, I derive the speed-density relationship which is assumed in the

engineering literature. This equation asserts simply that cars will keep larger

distances between each other the faster the traffic is moving. Both this speed-

density relationship and the inefficiency of equilibria are illustrated in models

in which the individual is assumed to keep his gap constant over time. While
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this constraint is common in the engineering literature (Drew [1968], Haberman

[1977]), Section II shows that it is not warranted when passing is not allowed

and the individuals solve their intertemporal problems correctly. However, the

resulting equilibria seem untractable. Therefore, Section III studies the

optimization problem of an individual who is not allowed to pass and who must

keep his gap constant. Section IV derives the equilibrium traffic patterns

for this case, while Section V discusses their welfare properties. Section VI

describes a stylized highway in which passing is allowed. Concluding remarks

are presented in Section VII.

II. The Representative Individual's Control Problem

Throughout the paper, all drivers are assumed to have the same preferen-

ces and vehicles. The representative individual is concerned both with the

amount of time he spends on the highway and with the number of accidents he

causes.— Long commutes and numerous accidents are both undesirable. To a

certain extent, it is possible to "buy" safety by taking more time. In this

section, I study these substitutions in an environment in which the individual

can only choose to vary the distance he keeps between himself and the car in

front of him. This environment describes road segments like bridges and tunnels

in which passing is not allowed. In the engineering literature (see for instance

Haberman [1977]), it is asserted that when passing is not allowed and the speed

of the surrounding vehicles is constant, individuals will eventually keep a con-

stant gap. While assumptions that guarantee this result will be made in the

next section, it will typically not be to the individual's advantage to keep

the gap constant over time when traffic is congested. Safety is achieved by

keeping a large gap for as long as possible while time is lost only if the
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gap is large at the end of the trip. Therefore, it is to the individual's ad-

vantage to maintain a large gap during the bulk of the trip and reduce the gap

near his destination.

Let the individual's utility at t be given by:

U = - (T - t) - A(t) (1)

where (T-t) is the length of time left on a trip conditional on not causing any

2/
accidents— and A(t) is a function of the probability of causing an accident

3/
during the remainder of the trip.— The inclusion of A(t) is reasonable if the

person who causes the accident bears the full social costs. This may or may

not correspond to the United States institutional environment. While this

assumption is critical for the welfare analysis of Sections V and VI, the equi-

libria discussed below would not be affected if one assumed, instead, that indi-

viduals bore costs from being hit while not being able to affect the probability

of being hit.

The individual is, at time t, distance D(t) away from his destination.

He finds himself in a stream of traffic moving at speed S(t) in which passing is

not permitted. He is separated from the vehcile in front of him by the gap g(t).

The instantaneous probability of causing an accident between T and x + dx, given

that no accident has been caused until x, is given by a[S(x) + g(x), g(x)], where

a dot represents a time derivative. Clearly these instantaneous probabilities

increase as the car moves faster and as the distance between cars gets smaller.

Moreover, I assume that the efficiency of increases in the gap as accident- preven-

ters decreases as the gap increases. Also, as people drive faster, an extra mile

per hour of speed tends to increase accidents more. Finally, an increase in the

speed makes an increase in the gap more effective. In other words:
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where the subscripts denote partial derivatives.

A standard formula (see Parzen [1973] , p. 168) establishes that the prob-

ability of having an accident between t and T, conditional on not having had an

accident at t, is given by p(t):

T

p(t) = 1 - exp { - / a[S(T) + g(T), g(T)] dx} (2)

t

Let the disutility from incurring the possibility of having an accident be

given by:

A(t) = - k In [1 - p(t)]

where k is an arbitrary constant. Then the objective function of the individual

at t can be rewritten as:

T

U^ = / { - 1 - ka [S(T) + g(T), g(T)]} dx (3)

This objective function is subject to the following constraints:

D(T) = and ^^^ = S(x) + g(x) (4)

which embody the notions that T is the time of arrival and that progress is made

at the rate S(x) + g(x). The individual has one control variable, namely g, which

he uses to optimally trade off safety for speed. The Hamiltonian for this problem

is given by:

H(x) = - 1 - ka {[S(x) + g(x), g(x)} + A(x)[S(x) + g(x)] + y(x)g(x)

where X and y are multipliers associated with the two states, the distance away

from the terminal position and the gap at x.
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The necessary conditions for an optimum are therefore:

dH
k a^ [S(T) + g (t), g(T)] + A(T) + y(T) = (5)

dg ^

f = = -X (X) (6)

T

^ = ka- [S (t') + g (T), g(T)] = -y (T) (7)

H(T) =0 (8)

y(T) = (8)

Even when S(t) is constant, the optimum gap is not typically constant.

Consider the implications of having g(l^) be equal to zero. By (5) this requires

y to be constant since A is constant by (6). Therefore, the marginal effect of a

change in the gap on accidents must be zero according to (7) . Furthermore, the

speed S(t) must be such that the marginal effect on accidents of an increase in

the speed is equal to -A where A is chosen to satisfy:

- 1 - ka (S, g) + AS =

which is implied by (8)

.

These implications of a constant gap can be summarized by saying that the

traffic must be moving at "free flow" in this case. That is, cars must be suffi-

ciently far apart and move quickly enough so that they do not notice each other.

Then, identical cars will indeed move at a constant speed and keep a constant

distance. It turns out, however, that these are precisely the conditions under
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the study of traffic flows is not very interesting. Instead, when the number of

cars on the road is large enough so that people can not help noticing each other,

congestion, with its implied direct effects on traffic and its indirect effects

on land rents (see Solow [1973], Arnott [1979] and Arnott and MacKinnon [1978]),

become important.

In general, the gap must satisfy the following differential equation which

is obtained by combining (5), (6) and (7).

^11 (•) (g + S) + a^2 (•) g -^2 (•) = (9)

The gap will change over time so that it is large during the bulk of the

trip thus providing safety, and is small at the end of the trip thus saving time.

The speed at which traffic moves in the equilibrium which arises when each

individual is following a path given by (9) and when the flow of cars is exogen-

ous, is beyond the scope of this paper. Instead, I examine the behavior of

slightly less rational individuals. These individuals pick only one value for

their gap and maintain that gap during their entire trip. This simplifies the

computational burden faced by individuals, and the equilibrium speed can be

characterized in more detail.

III. A Simplified Problem for the Individual

In this section, every driver has two options. He can either drive at

the same speed as the preceding car (S) , or he can drive slower. If he chooses

the former alternative, he must maintain a constant gap. This gap is picked at

a certain distance from his destination which is common to all drivers. His

utility at this point is given by:

^ G-G
U(S, G) = - [

i + -^ ] - A(S, G) (10)



and S is the speed measured in units away from the destination per hour. Note

that the probability of having an accident now depends on the gap both because

reductions in the gap and small gaps are dangerous. Once again I assume that:

^22' ^11

which were justified above.

A rational individual chooses a gap such that the marginal loss in utility

from a bigger gap in terms of time spent on the road just equals the marginal

gain from accident prevention. At the preferred gap G, the marginal utility of

4/

I
- A2(S, G) = (11)

Individuals change their gap when the speed of the car in front of them changes.

Totally differentiating (11) and rearranging, we get:

^ = T ~ > (12)
dS A22

An increase in speed leads to an increase in the gap between cars. This fact

forms the basis of much traffic flow theory even though, to my knowledge, it has

never been derived from the assumption of utility maximization.— Intuitively,

a reduction in the gap by one meter involves, as S goes up, lower time losses

and more effective accident prevention. For both reasons, an increase in G is

worthwhile when S rises.

Condition (10) is not sufficient to guarantee that a certain speed-gap

combination will be an equilibrium since people have the option of traveling at



a speed below S. Therefore, for a speed-gap combination to be an equilibrium,

it must be the case that no unilateral reduction in speed increases utility.

Such a reduction would be accompanied by ever increasing gaps. Therefore, it

would be safer than (and preferred to) the same reduction in speed combined

with an unchanging gap. Hence:

f = ^S = 7 - ^ -> ° (13)

Suppose the individual were free to choose both S and G. Then (11)

and (13) would hold with equality. Assume that this occurs as long as the speed

is the free-flow speed, S*, and the gap is bigger than or equal to G*. If cars

are sufficiently far apart, they will simply travel at a constant speed and will

not be affected by the presence of other cars. In Section II, such a situation

prevailed when a^ was equal to X while a„ was equal to zero.

A certain "monotonicity" condition is also required. This condition is

that points with S = S* and G > G* are the only critical points of the function

U. In other words, individuals are locally satisfied only when traffic is mov-

ing freely. When traffic is congested, the speed is less than S*, and MU„ is

strictly greater than zero. This last condition can be thought of as a defini-

tion of congestion since it states that the car ahead of the individual is

locally affecting the individual's welfare by going slowly.

The analysis of this section can be concluded by drawing, in Figure 1,

some indifference curves which satisfy the assimiptions I have made on individual

preferences. Indifference curve 2 corresponds to freely flowing traffic, and

utility declines as the individual moves from 2 to 1 to 0. This occurs as the

individual travels either faster (less safely) , slower, or at more dangerous

gaps than the free-flow speed and gaps.
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The slope of the indifference curves is ( —^ - A^)/(A„ + — ). They are

vertical at points at which the individual maximizes utility — like (S ,G ) and
o o

(S, ,G ). At these points an increase in the speed accompanied by an unchanging

gap makes the individual better off. The locus of the points which maximize

utility is given by the line GG together with the indifference curve 2. No

speed above S* is consistent with utility maximization.

IV. Nash Equilibrium Traffic Flow

Section III shows that for every speed the individual picks a gap. A

Nash equilibrium is a situation in which, given the other agent's choice of a

gap, the individual finds it optimal to pick the same gap.

Two things could be exogenous to this system. In the first place, the

flow of vehicles at all points along the highway could be assumed to be a con-

stant which simply reflects the number of people who commute on any given day.

This assumption is best suited to highway sections with no entrances, and will

be the main focus of the analysis below.

Second, one could assume that the density of vehicles on a road is exog-

enous. This describes situations with many entrance points in which people

simply decide to get on the road. The equilibrium speed can simply be read

off the line GG in Figure 2 which corresponds to line GG' and indifference

curve 2 in Figure 1. The density of cars is simply equal to the inverse of

the gap plus the length of each car. Unless the cars move at the speed given

by GG, individual cars will not find it optimal to choose the gap which supports

the given density of automobiles.

When the flow F is given exogenous, S and G must obey:
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where L is the length of the typical car. Here, F is measured in cars per hour,

S in units of distance from the destination per hour, while G and L are measured in

units of distance from the destination per car. This identity is intuitive since

an increase in the speed, keeping the gap constant, increases the number of cars

per hour that go through a point, while the reverse occurs if the speed is con-

stant and the gap increases.

For any particular flow, say F, one can draw the speed-gap combinations

which are consistent with it. The locus, FF, represents such combinations in

Figure 2. Points like E and E^ represent Nash equilibria for a given flow.

At these points, (11) and (14) hold simultaneously. The gap chosen by each

individual is such that the speed from (14) renders that gap optimal for each

individual. This Nash equilibrium involves an externality. When an individual

changes his gap, this affects the speed of the cars behind him through (14) —

a fact ignored by the drivers concerned only with their own time and safety.

Points with slightly higher speed and gap for all drivers than an equilib-

rium are always feasible, i.e. they involve the same flow. Moreover, at any equilib-

rium, changes in the gap do not affect the driver's welfare, while increases in

the speed make them strictly happier unless the speed is S*. Therefore, unless the

flow of cars is so small that people drive at the free-flow speed, people drive too

slowly. The Pareto optimal speed is discussed in Section V.

Figure 1 indicates that equilibria with high speeds are preferable to

equilibria with lower speeds. The question then becomes whether the most de-

sirable equilibrium consistent with a given flow is, in any sense, the most

likely to prevail. A complete answer to this question is impossible without a

dynamic analysis of the form used in Section II. However, it is possible to

look at the stability of equilibria by assuming that they result from a tatonnement

process. Suppose the auctioneer sets the gap for each individual. Then, equation
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(14) determines the speed at which the traffic flows. The auctioneer

observes people on the FF line but not necessarily on the GG line. He might be

given the following rule: attempt to lower the gap by increasing everyone's

speed when MU < 0, lower everyone's speed when MU > 0, and maintain the status

GG curve is steeper than the FF curve are stable.— If there is a vertical in-

difference curve that represents blissful free flow, high speed equilibria tend

to be stable. However, low speed equilibria are unstable and this instability

may be the root of Stop-Go traffic.

As usual, the issue of stability is linked to quest;ions of comparative

statics. it is widely assumed (see Solow [1973]; Oron, Pines and Sheshinsky

[1973]; Arnott and MacKinnon [1978]; Arnott [1979]) that increases in the flow

have a negative effect on speed and hence on welfare. This turns out to be true

if the equilibrium is stable. Stability also insures that a reduction in the size

of the cars leads to an increase in the speed.— These facts are easily established

algebraically. Differentiating (14), one obtains:

(G + L)dF + FdL + FdG = dS (15)

which coupled with (12) leads to:

dS = (G + L)dF + FdL

1 - kF

where

k = (l/S^ - A^2) / A22
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Speed and welfare decrease in response to an increase in either F or L only

when kF is larger than one, or, in other words, when the GG curve is steeper

than 1/F. As mentioned above, this condition is likely to be met at high

speeds.

V. Social Optima

The social optimum is computed by maximizing the utility of the represen-

tative driver subject to the constraint that the flow be equal to the exogenously

given F. This computation relies on the assumption that individuals pay the

social costs of their accidents. If they did not, accidents would be more

Important in the social welfare function than in the utility function.

Using (14) to substitute for S in (10) , the first order condition for

this maximum is:

dU = F_ - i - A =0
dG 2 ^^1 S 2 "^

(16)

The marginal utility of increasing each driver's gap must be equal to the loss

in utility that results from the required increase in speed.

When the equilibrium involves the free flow of traffic, then MU^ - MU„ =
G S

the equilibrium and the optimum clearly coincide. However, when congestion be-
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comes important, MU > at the equilibrium. Therefore, welfare increases along

the FF curve to the right. To insure that a bounded local maximum of welfare

exists at a speed higher than the equilibrium, one more assumption is needed:

as long as the gap exceeds some upper bound, G , and the speed exceeds some upper

bound, S , the MU^ is nonpositive and the MU„ is negative. When the car in front

is beyond the horizon, only the speed should affect the welfare of a driver, and,

if this speed is sufficiently large, decreases in the speed should increase

welfare.

This assumption ensures that for speed-gap conditions far to the right of

the equilibrium but consistent with the exogenous flow, FMU. + MU„ < 0. At an
S Cj

equilibrium, with S < S*, then FMU„ + MU_ > 0. Therefore, by the continuity of
b It

the first derivatives of (10) , a maximum of utility exists which has a higher

speed than the equilibrium.

Figure 3 illustrates these points graphically. At point E, there is an

equilibrium whose speed is below S*. The individual would like to go faster.

From society's point of view, it is possible to make all individuals go faster

as long as the gap increases. Since, locally, changes in the gap have no effect

on utility, the movement towards point increases welfare. At point 0, natur-

ally, the indifference curves are tangent to the society's constraint which is

given by the FF locus.

VI. Multilane Highways

So far, only one lane roads were considered. This is in the spirit of

the car-following models studied in the engineering literature. However, the
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policy relevance of my conclusions would be somewhat limited if they only applied

to bridges and tunnels. In this section, a very stylized model in which passing

is permitted is presented. Once again, I conclude that unless the equilibrium

speed coincides with S*, people drive too slowly.

The analysis proceeds in two stages. First, I show that under some reason-

able assumptions on the technology of passing, equilibria exist in which overtaking

will not take place even though it is allowed. At these equilibria, individuals

have the option of slowing down and being passed. As long as the effects of being

passed are not too large, one can infer that individuals would prefer to go faster

at the equilibrium gap from the fact that they refuse to go slower and be overtaken.

Hence, society would be better off if people drove faster!

Individuals are in traffic which moves at the speed S, and they choose a

gap at the beginning of the trip. However, the individual can overtake the car

in front of him at any point.

Overtaking a car is a discrete choice. The benefits from passing increase

as the distance between cars gets larger. This is so mainly because it makes pass-

ing safer. It also may increase the speed at which passing can take place. For

each speed S, the benefits from passing, which will be denoted by B, are positively

related to the gap of the "followed" car. Therefore, passing will take place as

long as B(S, G^) > 0, Ba > 0, where G is the gap maintained by the followed car,

and B is assumed to be continuously differentiable. B(S,0) must be negative and

B(S,<») must be positive if S < S*. Therefore, as long as B(') is continuous,

there exists for each speed below S*, a gap that is just small enough to deter

passing. Denote this gap by G(S). It is such that:

B[S, G(S)] =
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where I assume, for simplicity, that when cars are Indifferent between passing

and not passing they do not pass.

Denote the equilibrium gaps when overtaking is impossible, by G'(S). If

G' (S) < G(S), then the equilibria studied in Section IV will persist when passing

is allowed. That is, if the gap that makes passing just desirable is larger

than the gap which people want when they are assured that no passing will take

place, then passing will not take place.

Suppose instead that G(S) < G* (S) . Then, G' (S) is not an equilibrium

since all drivers want to pass each other. There is a new incentive for drivers

to keep near each other. By doing so, they avoid being passed. Being overtaken

is costly because the passed car must slow down to reestablish the original gap.

Under fairly weak assumptions on the passing technology, G(S) is an equilibrium

when G(S) < G' (S) . Then, MU_ is larger than zero since A„2 is positive. Since

the gap is smaller than in the no-passing equilibrium, no car wants to reduce

his gap at G(S). The question is whether any car wants to increase his gap and

be passed. A sufficient condition for this not to occur is that the loss from allow-

ing oneself to be passed is larger than the gain to a single person who passes.

This is intuitively appealing since the gain from passing one car is a small re-

duction in trip length accompanied by a larger probability of causing an

accident. On the other hand, the loss from having a gap larger than G(S) involves

being passed many times (and therefore considerably lengthening the trip) in ex-

change for only slightly more safety.

Let G be any gap larger than G(S) where G is the average gap of the passed

car. Let S[S, G(S)] be the average speed that the car which is passed can maintain

% a.

when the traffic moves at S and keeps a gap of size G. S„ is negative. A person

who keeps a larger gap will be passed more often. Then, the following assumption
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guarantees that G(S) will be an equilibrium:

V S < S*, V G < G(S) : U[S,G(S)] - U[S(S,G(S) ,G(S) ] > B(S,G) (17)

That is, the loss from being passed repeatedly by keeping a gap G is no smaller

than the gain to a passing car.

Consider a situation in which all cars ahead of a particular car are going

at speed S and keeping a gap G(S). Then, if (17) holds, the particular car will

not want to keep a gap larger than G(S) since for such a gap B(S,G) would be

larger than zero. Therefore, G(S) will indeed be an equilibrium.

Graphically, the possibility of passing lowers the GG curve at certain

speeds (those for which G(S) < G'(S)). This is shown in Figure 4. It is just

as if people drove more recklessly. While such a change in driving patterns

tends to increase the speed of the stable equilibria, it has no obvious effect

on the number of accidents. Peltzman [1975] allows drivers to choose the amount

of time a trip will take and makes the probability of accidents depend on that

time. Then, more reckless driving (in response to automobile safety regulations

for instance) reduces the time spent on each trip and increases the likelihood

of accidents. When traffic is congested, however, my paper emphasizes that it

is incorrect to think that people can pick directly the time their trip will

take.

Under certain conditions, people drive too slowly even when passing is

allowed. The key assumption is that it is possible to increase the gap slightly

from G(S) and thereby reduce the speed only slightly by being passed by a few

cars. Since people do not take advantage of this opportunity to slow down even

though increases in the gap are not undesirable, they would prefer to drive

faster. This is, of course, socially possible as was discussed in the pre-

vious section.
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I therefore make the following assumption:

V S < S* 3 G > G(S) : MU U [G - G(S)] + MUJ [S(S,G) - S]
G ^ S

has the same sign as:

U[G,Ef(^)] - U[G(S),S]
(18)

In other words, a first order Taylor approximation of (18) at [G(S),S] has

the same sign as (18) . This condition will be met as long as there exist

feasible combinations [S(S,G), G] which are not too far from [S,G(S)],

If G' (S) < G(S), then the equilibrium with passing is equivalent to the

equilibrium without passing. For this case, the analysis in Section IV established

that FMU + MU is greater than zero at the equilibrium, and that people drive

too slowly. If, instead, G' (S) > G(S) then, at G(S), MU is strictly positive.

Since U(G,S(G)) - U(G(S),S) is nonpositive at an equilibrium, (18) implies that

MU evaluated at (G(S),S) is positive.

Since being passed involves no gain in utility in spite of increasing

the gap which is desirable, it must be the case that the reduction in speed is

welfare decreasing. Therefore:

and a simulataneous increase in the gap and the speed along the FF curve in-

creases welfare.

VII. Conclusions

The results of this paper have a variety of policy implications. First

and foremost, they point to the folly of speed limits. A speed limit that
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reduces the speed from its equilibrium value decreases the gap if it is to

be consistent with the exogenously given flow. Therefore, a speed limit

reduces welfare since individuals opt, at an equilibrium, not to decrease

their speeds even when they think this leads to an increase in their gap.

Furthermore, from a theoretical viewpoint, speed limits are not necessarily

effective at reducing accidents since they lead to lower gaps.

Instead, this paper indicates the advantages of minimum speed laws

since it proves that under reasonable conditions people drive too slowly.

For enforcement purposes, it would probably be necessary to impose minimum

gaps as well. This is so because it would be difficult to blame an individual

for going too slowly when traffic is very dense. These minimum speeds and gaps

should depend on the flow of traffic on the highway and should therefore vary

over time. In particular, when cars are sufficiently dispersed and traveling

at the speed they would use in the absence of any other cars, government in-

tervention is unnecessary.

When the flow is higher, cars become more bunched together and the

equilibrium speed falls. Congestion creates an externality; the presence of

one more car on the road affects the tradeoff between accidents and length

of the trip faced by all other drivers. This paper emphasizes that there

is a further externality which results from the actual choice of gap the

typical driver makes. The larger the gap, the faster a given flow must move.

When traffic is congested, it is possible to take advantage of this second

externality by forcing the traffic to move faster and mitigate the negative

effect on welfare of congestion. Note that when there is a congestion exter-

nality, or, in other words, when the addition of one agent to an environment

affects the other agents, there often is a further externality: the behavior
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of any agent in the congested state affects the welfare of others. In a con-

gested museum, the proximity of any person to a work of art reduces the con-

sumption opportunities of the other people. Therefore, Pareto optimality can

typically not be achieved by taxing only congestion per se. Instead, the

behavior of people in the congested state must be optimally regulated. It

is not enough to tax vehicles which enter New York City one must also levy

fines on those which cause gridlock. In the context of this paper, Pareto

optimality can be achieved as follows: for each flow of traffic, minimum

speeds and gaps must be imposed so that traffic patterns correspond to those

derived in Section V. Then, a change in the flow still affects the welfare

of drivers. Therefore, congestion tolls of the form of those proposed by Oron,

Pines and Sheshinski [1973] must be levied so that each individual pays the

social costs of his commute.

Highways are often designed to ensure a certain level of "capacity".

In the engineering literature (Institute of Transportation Engineers [1976]),

capacity is defined as the maximum flow that a highway can accommodate. This

actually refers to the maximum flow consistent with equilibrium on a given

o /

highway.— Methods of regulating the number of cars that enter a highway so

as to keep the flow near the capacity have been proposed by Wattleworth (cited

in Drew [1968], p. 429, and in Gazis [1974], p. 231). The analysis of this

paper casts some doubts on the usefulness of the capacity measures. First,

when the traffic flow is equal to the capacity, the typical individual may be

worse off than if he had to wait in line to enter a highway which allowed him

to drive at the speed corresponding to free flow. Second, in the presence of

minimum speed limits which are effective, there are many flows which are higher

than the "capacity" that are feasible. Furthermore, these higher flows may
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well be the most effective way to transport people to and from work.

The results of this paper seem to depend heavily on the assumption that

individuals must pick a gap at the beginning of their trip and maintain it for-

ever. This assumption was made because the equilibrium in which people change

their gap over time, according to the analysis of Section II, would be des-

cribed by a complicated differential equation. However, I think that the

conclusion that people drive too slowly would still emerge from a model in

which people changed their gaps optimally. In such a model, people would

still never drive at speeds such that lower speeds, accompanied with the same

gap, were utility increasing since safer alternatives would be available to

the individual driver. Therefore, small increases in the speed could never

reduce welfare.
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V The monetary costs of this trip are assumed to be independent of his

actions during the trip.

Ij It must be noted that putting (T-t) in the utility function is equivalent

to putting T in since there is nothing the individual can do to affect the

time that has already elapsed. This utility function is linear in time.

In this context, it is not clear whether it should be concave to reflect

a declining marginal utility of leisure, or convex since, in the presence

of discounting, arriving earlier makes leisure more valuable.

ZJ The utility function in (1) is very similar to the utility function con-

sidered in Peltzman [1973].

A_/ For this condition to reflect a maximum of utility, it must be true that

-A-„ is negative. This holds by assumption.

V Drew [1978] simply assumes that individuals adjust their gap towards a

"safe headway" which is postulated in such a way as to ensure this result.

If, instead, when MU < the auctioneer lowers the gap and the speed, then

these equilibria are unstable. However, it seems reasonable to think that

when the gap is "too small", the cars accelerate and the speed increases.

IJ Honda commercials imply that this is always true.

8^/ This flow is given by FF^^ in Figure 2.

6/
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