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Abstract

We develop a new method for pricing American options. The main practical contribution

of this paper is a general algorithm for constructing upper and lower bounds on the true

price of the option using any approximation to the option price. We show that our

bounds are tight, so that if the initial approximation is close to the true price of the

option, the bounds are also guaranteed to be close. We also explicitly characterize the

worst-case performance of the pricing bounds. The computation of the lower bound

is straightforward and relies on simulating the suboptimal exercise strategy implied by

the approximate option price. The upper bound is also computed using Monte Carlo

simulation. This is made feasible by the representation of the American option price as a

solution of a properly defined dual minimization problem, which is the main theoretical

result of this paper. Our algorithm proves to be accurate on a set of sample problems

where we price call options on the maximum and the geometric mean of a collection

of stocks. These numerical results suggest that our pricing method can be successfully

applied to problems of practical interest.
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1 Introduction

Valuation and optimal exercise of American options remains one of the most challeng-

ing practical problems in option pricing theory. The computational cost of traditional

valuation methods, such as lattice and tree-based techniques, increases rapidly with the

number of underlying securities and other payoff-related variables. Due to this well-

known curse of dimensionality, practical applications of such methods are limited to

problems of low dimension.

In recent years, several methods have been proposed to address this curse of dimen-

sionality. Instead of using traditional deterministic approaches, these methods use Monte

Carlo simulation to estimate option prices. Tilley (1993) was the first to demonstrate

that American options could be priced using simulation techniques. Other important

work in this literature includes Barraquand and Martineau (1995), Carriere (1996), Ray-

mar and Zwecher (1997), Ibanez and Zapatero (1999) and Garcia (1999). Longstaff and

Schwartz (2001) and Tsitsiklis and Van Roy (1999, 2000) have proposed an approximate

dynamic programming approach that can compute good price estimates and is very fast

in practice. Tsitsiklis and Van Roy also provide theoretical results that help explain the

success of approximate dynamic programming methods. The price estimates these tech-

niques construct, however, typically only give rise to lower bounds on the true option

price. As a result, there is usually no formal method for evaluating the accuracy of the

price estimates.

In an important contribution to the literature, Broadie and Glasserman ( 1997a,b)

develop two stochastic mesh methods for American option pricing. One of the advan-

tages of their procedure over the previously proposed methods is that it allows them to

generate both lower and upper bounds on the option price that converge asymptotically

to the true option price. Their bounds are based on an application of Jensen's inequal-





ity and can be evaluated by Monte Carlo simulations. However, such bounds do not

necessarily generalize to other pricing methods. The complexity of their first method is

exponential in the number of exercise periods. The second approach does not suffer from

this drawback but nonetheless appears to be computationally demanding. In an effort

to address this drawback, Boyle, Kolkiewicz and Tan (2001) generalize the stochastic

mesh method of Broadie and Glasserman (1997b) using low discrepancy sequences to

improve the efficiency of the approach.

The main practical contribution of this paper is a general algorithm for constructing

upper and lower bounds on the true price of the option using any approximation to the

option price. We show that our bounds are tight, so that if the initial approximation

is close to the true price of the option, the bounds are also guaranteed to be close. In

addition, we exphcitly characterize the worst-case performance of the pricing bounds.

The computation of the lower bound is straightforward and relies on simulating the

suboptimal exercise strategy implied by the approximate option price. The upper bound

is obtained by simulating a different stochastic process that is determined by choosing an

appropriate supermartingale. We justify this procedure by representing the American

option price as a solution of a dual minimization problem, which is the main theoretical

result of this paper.

In order to determine the option price approximation underlying the estimation of

bounds, we also implement a fast and accurate valuation method based on approximate

dynamic programming (see Bertsekas and Tsitsiklis 1996) where we use non-linear re-

gression techniques to approximate the value function. Unlike most procedures that use

Monte Carlo simulation to estimate the continuation value of the option, our method is

deterministic and relies on low discrepancy sequences as an alternative to Monte Carlo

simulation. For the examples considered in this paper, we find that low discrepancy





sequences provide a significant computational improvement over simulation.

While the duality-based approach to portfolio optimization problems has proved

successful and is now widely used in finance, (see, for example, Karatzas and Shreve

1998), the dual approach to the American option pricing problem does not seem to have

been previously developed other than in recent independent work by Rogers (2001).

Rogers establishes a dual representation of American option prices similar to ours and

applies the new representation to compute upper bounds on several types of American

options using Monte Carlo simulation. However, he does not provide a formal systematic

approach for generating tight upper bounds and his computational approach is problem

specific.

Andersen and Broadie (2001) use the methodology developed in this paper to for-

malulate another computational algorithm based on Monte Carlo simulation. A dis-

tinguishing feature of their approach is the use of an approximate exercise policy, as

opposed to an approximate option price, to estimate the bounds on the true price of the

option. They also observe that a straightforward modification (taking the martingale

part of the supermartingale) of the stochastic process used to estimate the upper bound

leads to more accurate estimates. This observation also applies to the algorithm we use

in this paper where we begin with an initial approximation to the option price. This

led to a significant improvement in the computational results that were presented in an

earlier draft of this paper.

The algorithm of Andersen and Broadie is quadratic in the number of exercise pe-

riods, given knowledge of the approximate exercise policy, while our approach is linear

given knowledge of the approximate option price. While it is true that formal complexity

results are not currently available, it does seem to be the case that accurate approxi-

mations to the option price can be computed very quickly. (See, for example, Longstaff





and Schwartz 2001, Tsitsiklis and Van Roy 2000, and other approximate dynamic pro-

gramming methods such as the method used in this paper.) As a result, we beheve

that pricing methods based on an initial approximation to the option price, rather than

the exercise policy, will be more efficient in practice. This should hold in particular for

problems with many exercise problems. For a particular set of sample problems with 10

exercise dates, Andersen and Broadie compute pricing bounds that are similar to ours.

However, they do not report results for problems with more than 10 exercise periods and

so it is difficult to compare the practical tradeoffs between our alternative approaches.

The rest of the paper is organized as follows. In Section 2 we formulate the problem.

In Section 3, we derive the new duality result for American options and use it to derive

an upper bound on the option price. In Section 4 we describe the implementation of the

algorithm. We report numerical results in Section 5 and we conclude in Section 6.

2 Problem Formulation

In this section we formulate the American option pricing problem.

Information Set. We consider an economy with a set of dynamically complete financial

markets, described by the underlying probability space, il, the sigma algebra T, and the

risk-neutral valuation measure Q. It is well known (see Harrison and Kreps 1979) that

if financial markets are dynamically complete, then under mild regularity assumptions

there exists a unique risk-neutral measure, allowing one to compute prices of all state-

contingent claims as the expected value of their discounted cash flows. The information

structure in this economy is represented by the augmented filtration {Tt ' t € [0.7"]}.

More specifically, we assume that Tt is generated by Z(, a d-dimensional standard Brow-

nian motion, and the state of the economy is represented by an .F(-adapted Markovian

process {Xt e ^ -.t € [0,r]}.





Option Payoff. Let /i, = /j(A',) be a nonnegative adapted process representing the

payoff of the option, so that the holder of the option receives /i, if the option is exercised

at time t. We also define a riskless account process Bt = exp ( j^ /-^c/s- j, where r^

denotes the instantaneously risk-free rate of return. We assume that the discounted

payoff processes satisfies the following integrability condition

max
(=0,1,. ..,T

(1)

where E, [] denotes the expected value under the risk-neutral probability measure, con-

ditional on the time t information, JF,.

Exercise Dates. The American feature of the option allows its holder to exercise it

at any of the pre-specified exercise dates in T = {0, 1, . .
.

, T}, equally spaced between

and T. Equal spacing of the exercise dates is assumed to simplify the notation and is

not restrictive. Moreover, a unit time increment within the model can be mapped into

any period of calendar time.

Option Price. The value process of the American option, Vt, is the price process of

the option conditional on it not having been exercised before t. It satisfies

Vt = sup Et
Bthr

Br
(2)

where r is any stopping time with values in the set Tn[t,T]. This is a well-known

characterization of American options (see, for example, Bensoussan 1984, Karatzas 1988

and Pliska 1997).

3 Theory

Our approach to the American option pricing problem consists of the following steps.

Step 1. Compute an approximation to the market price of the option as a function of the





time and state. Specifically, we use an approximate dynamic programming algorithm to

determine the continuation value of the option, i.e., the value of the option conditional

on not exercising it at the current time period.

Step 2. Estimate the lower bound on the option price by simulating the approximate

exercise strategy based on the option price approximation from Step 1.

Step 3. Based on the option price approximation, define a martingale process and use

it to estimate the upper bound by Monte Carlo simulation. This last step is based on

the new dual representation of the option price presented below.

We begin this section with our main theoretical result on the dual representation

of the American option price. We then show how to use this price characterization to

compute bounds on the option price, and study the properties of these bounds.

3.1 The Dual Problem

The problem of pricing an American option, the primal problem, is that of computing

Vo = sup Eo
rer

For an arbitrary adapted supermartingale, iTt, we define the dual function F{t, it) as

+t7r (3)
Fit.^)._^^

Bt
max I

— ^TT

se{\t,T]nT} \Bs

Then the dual problem is to minimize the dual function at time over all supermartin-

gales, TTj. Let Uq denote the optimal value of the dual problem, so that

Uo = inf F(0, tt) = inf Eq max —— TT, +^ (D)

The following theorem shows that the optimal values of the dual and primal problems

coincide.





Theorem 1 (Duality Relation) The optimal values of the primal problem (P) and

the dual problem (D) are equal, i.e., Vq = f/o- Moreover, an optimal solution of the dual

problem is given by tTj* = Vt/Bt, where Vt is the value process for the American option,

'hrB,'
Vt = sup Et

re{[t,T]nT} Br

Proof For any supermartingale tt;,

Vq = sup Eo
T&T

sup Eo
r6T

hr
< sup Eo 4-(yr

<En max —— (TT

teT \Bt
+(yr (4)

where the first inequahty follows from the optional sampling theorem for supermartin-

gales (see Billingsley 1995) and condition (1). Taking the infimum over all supermartin-

gales, TTf, on the right hand side of (4) implies Vq < f/o. On the other hand, the process

Vt/Bt is a supermartingale, which implies

Uo<Eo max {ht/Bt -Vt/Bt) +Vo.
teT

Since Vt > ht for all t, we conclude that Uq < Vq. Therefore, Vq = Uo, and equality is

attained when tt^* = V/Bt.

Theorem 1 shows that an upper bound on the price of the American option can be

constructed simply by evaluating the dual function over an arbitrary supermartingale

TTt- In particular, if such a supermartingale satisfies nt > ht/Bt, the option price Vq is

bounded above by tto. Theorem 1 therefore implies the following well-known character-

ization of the American option price (see, for example, Phska 1997).

Proposition 1 (Option Price Characterization) The discounted option price pro-

cess Vt/Bt is the smallest supermartingale that dominates the discounted payoff of the





option at all exercise periods.

The reverse is also true, i.e., one can use Proposition 1 to prove Theorem 1. Note

that since both processes on the right-hand side of (3) are supermartingales, so is the

discounted dual function F{t,n)/Bt. Clearly F(i, tt) > ht/Bt for any t, implying that

-^(0, tt) > Vo by Proposition 1. When tt^ is chosen to be the discounted option price, the

reverse inequality holds, implying that the values of the primal and the dual problems

coincide. Theorem 1 therefore expresses the well-known result of Proposition 1 in a new

constructive form, which we use to evaluate the upper bound on the option price.

The pricing problem is closely related to the problem of dynamic replication of the

American option, which is equally important in practice. While various methods for

approximating American option prices have been suggested in the literature, computing

reliable replication strategies has remained a challenging problem. The result of Theorem

1 suggests a method for super-replicating the American option.

Since the discounted dual function F{t, 7r)/Bt is a supermartingale and financial

markets in our model are dynamically complete, there exists a self-financing trading

strategy with an initial cost F(0, n) which almost surely dominates F{t, tt) (see Duffie

1996, Section 2.1). Such a trading strategy super-replicates the payoff of the American

option, since F{t, n) dominates the price of the option and hence its payoff at exercise.

Using an approximation to the option price, we can define tt, and F(^7r) explicitly, so

that super-replicating the option can be a relatively straightforward task. In particular,

Boyle et al. (1997) and Garcia et al. (2000) describe Monte Carlo methods for estimating

the portfolio strategies replicating the present value process of a state contingent claim.

This claim could correspond to a derivative security or some consumption process. Their

results are directly applicable to (3).





3.2 The Upper Bound on the Option Price

When the supermartingale ni in (3) coincides with the discounted option value process,

Vt/Bt, the upper bound F(0, tt) equals the true price of the American option. This

suggests that a tight upper bound can be obtained from an accurate approximation, Vt,

by defining TTf in such a way that when the approximate option price, V,, coincides with

the exact price, V(, tt^ equals the discounted option price, Vt/ Bt- It seems natural then

to use either of the following two definitions of ttj:

(5)

(6)

(7)

where (x)"*" := max(x,0). By construction, E^ [ttj+i — (Tt
]
< for either definition of

TT,, implying tt^ is an adapted supermartingale for any approximation, Vj. Also, when

Vt = Vf, Tit = Vt/Bt, because the latter process is a supermartingale and the positive

part of expectations in (5,6) and (5,7) equals zero. While we cannot claim a priori that

the upper bound corresponding to (5,6) is superior to the bound determined by (5,7),

the properties of the bound under the first definition are considerably easier to analyze.

Note also that the upper bound can be tightened further by omitting the positive

part in the definition of tt;. The resulting process is a martingale (the martingale part

of TTf) and therefore a supermartingale, so that it too can be used to construct an upper

bound. It coincides with nt at t = and is always greater than or equal to nt for t > 0.

It therefore leads to a lower value of the upper bound defined by (3). (In an earlier draft

of this paper, we used the formulation (5,6) to compute upper bounds on the option

Tfo = Vo





price. Andersen and Broadie (2001) point out, however, that in general tighter upper

bounds can be obtained by using the martingale component of the supermartingale, tt^.

In our framework, the martingale component is obtained by simply omitting the positive

in (5,6)).

For the remainder of the paper we will therefore take ttj to be defined by

TTo = Vo

V„
T^t+ l

= TT, + -5- - E(
•D(+l -Df

Vt+i Vt

Bt+i Bt

(8)

(9)

Let V'o denote the upper bound corresponding to (8) and (9). Then it is easy to see that

the upper bound is explicitly given by

Fn = Vn + En max ( -;:; -^ + y tjj.
t€T \Bt Bt Bj Bj_i

(10)

The following theorem relates the worst-case performance of the upper bound deter-

mined by (8) and (9) to the accuracy of the original approximation, Vf.

Theorem 2 (Tightness of the Upper Bound) Consider any approximation to the

American option price, Vt, satisfying Vt > hf. Then

Ko < K) + 2 Eo
Bt

;ii)

Proof See Appendix A.l.

Theorem 2 suggests two possible reasons for why the upper bound may be limited

in practice. First, it suggests that the bound may deteriorate linearly in the number of

exercise periods. However, this is a worst case bound. Indeed, the quantity of interest

Eo max \

—— TIT + 2_] Ej-
Tif' \ Bt Bt

10

V VJ-1
5, Bj-i

(12)





and while we would expect it to increase with the number of exercise periods, it is not

clear that it should increase linearly. This is particularly true for pricing American

options when we typically want to keep the horizon, T, fixed, while we let the number

of exercise times in [0, T] increase.

The second reason is due to the approximation error, \Vt — Vt\/Bt. Tsitsiklis and

Van Roy (2000) have shown that under certain conditions, and for certain approximate

dynamic programming algorithms, this error can be bounded above by a constant, in-

dependent of the number of exercise periods. This result, however, is only applicable

to perpetual options since it assumes that T -^ oo while the interval between exercise

times remains constant. As mentioned in the previous paragraph, however, we are typ-

ically interested in problems where T is fixed and the interval between exercise periods

decreases. In this case, Tsitsiklis and Van Roy show that the approximation error is

bounded above by a constant times \/N, where A'' is the number of exercise periods.

These two observations suggest that the quality of the upper bound should deteriorate

with A^, but not in a linear fashion. In Section 5 we shall see evidence to support this

when we successfully price options with as many as 100 exercise periods.

3.3 The Lower Bound on the Option Price

To construct a lower bound on the true option price, we define the Q-value function to

be

"
Bt

Qt(Xt) := Et R Vt+AXt+i)
Dt+l

(13)

The Q-value at time t is simply the expected value of the option, conditional on it not

being exercised at time t. Suppose that an approximation to the Q-value, Qt{Xt), is

available, iov t = 1, ... ,T — 1. Then, to compute the lower bound on the option price,

we simulate a number of sample paths originating at A'q. For each sample path, we find

11





the first exercise period t, if it exists, in which h(Xt) > Qt{Xt). The option is then

exercised at this time and the discounted payoff' of the path is given by h{Xt)/ Bt- Since

this is a feasible Tt - adapted exercise poHcy, it is clear that the expected discounted

payoff from following this policy defines a lower bound, Vq, on the true option price, Vq.

Formally, f = min{f E T : Qt < ht} and

The following theorem characterizes the worst-case performance of the lower bound.

Theorem 3 (Tightness of the Lower Bound) The lower bound on the option price

satisfies

Vo > Vo - Eo
y- \Qt- '

(14)

Proof See Appendix A. 2.

While this theorem suggests that the performance of the lower bound may deteriorate

linearly in the number of exercise periods, numerical experiments indicate that this is

not the case. Theorem 3 describes the worst case performance of the bound. However,

in order for the exercise strategy that defines the lower bound to achieve the worst case

performance, it is necessary that at each exercise period the option is mistakenly left un-

exercised, i.e., the condition Qt{Xt) < h{Xt) < Qt{Xt) is satisfied. For this to happen,

it must be the case that at each exercise period, the underlying state variables are close

to the optimal exercise boundary. In addition, Qt must systematically overestimate the

true value Qt so that the option is not exercised while it is optimal to do so. In practice,

the variability of the underlying state variables, Xt, might suggest that Xt spends little

time near the optimal exercise boundary. This suggests that as long as Qt is a good

approximation to Qt near the optimal exercise frontier, the lower bound should be a

12





good estimate of the true price, regardless of the number of exercise periods.

4 Implementation

In this section we describe in some detail approximate Q-value iteration, the algorithm

that we use for obtaining the initial approximation to the value function, Vj. Algorithms

of this kind are now standard in the approximate dynamic programming literature (see

for example, Bertsekas and Tsitsiklis, 1996). An interesting feature of the particular

algorithm we describe is that, in contrast to most approximate dynamic programming

algorithms, it is deterministic. This deterministic property is achieved through the

use of low discrepancy sequences. While such sequences are used in the same spirit as

independent and identically distributed sequences of random numbers, we found that

their application significantly improved the computational efficiency of the algorithm.

They are described in further detail in Appendix B.

4.1 Q-Value Iteration

As before, the problem is to compute

Vo = sup Eo
T6T

In theory this problem is easily solved using value iteration where we solve for the value

functions, Vt, recursively so that

Vt = HXt) (15)

Vt = max h{X,),E (16)

The price of the option is then given by V'o(Xo) where Xq is the initial state of the

economy. In practice, however, if d is large so that Xt is high dimensional, then the

13





'curse of dimensionality' implies that value iteration is not practical.

As an alternative to value iteration consider again the Q-value function, which was

defined earlier to be the continuation value of the option

QtiXt) = E,
Bt+i

Vt+i{Xt+,]

The value of the option at time t + 1 is then

(17)

Vt+i{Xt+,) = miix{h(Xt+i).Qt+AXt+,)) (18)

so that we can also write

QtiXt
Bt

Bt+i
msLx{h{Xt+i),Qt+i{Xt+i)) (19)

Equation (19) clearly gives a natural extension of value iteration to Q-value iteration.

The algorithm we use in this section consists of performing an approximate Q-value

iteration.

There are a number of reasons for why it is preferable to concentrate on approximat-

ing Qt rather than approximating Vt directly. Letting Qt and Vt denote our estimates

of Qt and Vt respectively, we can write the defining equations for approximate Q-value

and value iteration as follows:

QtiXt) = E,
Bt

max{hiXt+,),Qt+i{Xt+:,

Vt{Xt) = nmx{h(X,),E
Bt

Bt+i
Vt+dXt^i]

(20)

(21)

The functional forms of (20) and (21) suggest that Qt is smoother than 14, and therefore

more easily approximated.

More importantly, however, Qt is the unknown quantity of interest, and the decision

to exercise or continue at a particular point will require a comparison of Qt{Xt) and

14





h{Xt). If we only have Vt available to us then such a comparison will often be very

difficult to make. For example, if Vt{Xi) > h{Xt) then we do not exercise the option.

However, if Vt{Xt) is only marginally greater than h{Xt), then it may be the case that

h{Xt) > Qt{Xt) and Vt{Xi) is actually attempting to approximate h{Xt). In this situ-

ation, we misinterpret Vi{Xt) and assume that it is optimal to continue when in fact it

is optimal to exercise. This problem can be quite severe when there are relatively few

exercise periods because in this case, there is often a significant difference between the

value of exercising now and the continuation value. When we have a direct estimate of

Qt{Xt) available, this problem does not arise.

4.2 Approximate Q-Value Iteration

The first step in approximate Q-value iteration is to select an approximation architecture,

\ Qt{-', Pt) : /3t e 5R^ [, which is a class of functions from which we select Qt. This class

is parametrized by the vector Pt £ 5?^ so that the problem of determining Qt is reduced

to the problem of selecting Pt where pt is chosen to minimize some approximation error.

The choice of architecture does not seem to be particularly important as long as it is

sufficiently 'rich' to accurately approximate the true value value.

Possible architectures are the linearly parametrized architectures of Longstaff and

Schwartz (2000) and Tsitsiklis and Van Roy (2000), or non-linearly parametrized archi-

tectures such as neural networks or support vector machines (see Vapnik 1999). In this

paper we use a multi-layered perceptron with a single hidden layer, a particular class

of neural networks. Multi-layered perceptrons with a single hidden layer are known

to possess the universal approximation property so that they are able to approximate

any continuous function over a compact set arbitrarily well, provided that a sufficient

number of neurons are used (see Hornick, Stinchcombe and White 1989).

15





The second step in the procedure is to select for each t = I, . .
.

, K — I, a set

Sr.= {Pl.--.Ph,}

of training points where P,[ G JR*^ for n = 1, . .
.

, A^j. It makes sense to choose the sets

St in such a way that they are representative of the probabihty distribution of Xt- We

do this using low discrepancy sequences so that if Nt is the desired number of training

points, then we simply take Nt points from a particular low discrepancy sequence. Using

the technique described in Appendix B, it is then straightforward to convert these points

into training points that represent the distribution of Xt- Of course, it is also possible to

select the training points by simply simulating from the distribution of the state vector,

A'(. Our Umited experience shows that both simulation and low discrepancy sequences

work very well in practice. The performace of the low discrepancy sequences, however,

appeared to be marginally superior when applied to the problems we consider in this

paper.

The third step is to perform a training point evaluation. Defining Qt = 0, we begin

with t = K — 1 and for n = 1, . . . ,Nt, we use Qt{Pn) to estimate Qt{Pi) where

Qt{Pl) = Et
_Bt

- max (h{Xt+i), Qt+i{Xt+i)
1

^
(22)

The operator E[ . ] in (22) is intended to approximate the expectation operator, E[ . ].

This is necessary as it is usually not possible to compute the expectation exactly on

account of the high dimensionality of the state space. For example, E[ . ], could corre-

spond to Monte Carlo simulation where we simulate from the distribution oi Xt+i given

that Xt = PI Then E[ .
]

is defined by

M
Bt

Bt+\
m&x(^h{Xt+i),Qt+i{Xt+i)) :=^^^|^5]max(M:i--(),4+i(-i^()) (23)

16





where M xis are drawn randomly from the conditional distribution of Xt+\- The prob-

lem with this method is that the rate of convergence to the true expectation is 0(-^)

which can be too slow for our purposes. Instead, we use a low discrepancy sequence to

generate the x;'s, with M chosen in advance. For the 5-dimensional problems of Section

5, M was set equal to 1000. For the 10-dimensional problems, we set M equal to 2000.

Had we used Monte Carlo sinuilation, then in order to achieve a comparable level of

accuracy, a substantially larger value of M would have been required.

Finally, we estimate Qt with Qt{, \t3t) where

Q,(x; A) = Y.r,{j)e U(j) + J2 (^'O'-O^IO)
)

(24)

and

K _ 2

^ = &vgmmY,[Qt{K)-Q>{Pn-,Pt)) (25)

n = l

The parameters fe((j), rt{j) and r,(j, /) in (24) constitute the parameter vector Pt, while

9{.) denotes the logistic function so that

e{x) = —^ .

K refers to the number of 'neurons', and d is the dimensionality of the input vector, x.

While the input vector x may simply correspond to a sample state vector, it is common

to augment x with certain features, that is, easily computed functions of the current

state vector. From an informational point of view, features add no new information to

the neural network. However, they often make it easier for the neural network (or other

approximation architecture) to approximate the true value function.

In practice, we usually minimize a variant of the quantity in (25) in order to avoid the

difficulties associated with overfitting. This is done using cross validation, an approach
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that requires the training points to be divided into three sets, namely training, vahdation

and test sets. Initially, only the training and validation sets are used in the minimization

so that the quantity

Y,{Qt{P!)-Qt{P!;Pt)y' (26)

is minimized where the sum in (26) is taken over points in the training set. The minimiza-

tion is performed using the Levenberg Marquardt method for least squares optimization

(see Bertsekas and Tsitsiklis 1996). At each iteration of the minimization, the error in

the validation set is also computed and as long as overfitting is not taking place, then

the validation error should decrease along with the training set error. However, if the

validation error starts increasing at any point then it is likely that overfitting is taking

place. The algorithm then terminates if the validation error increases for a prespecified

number of iterations, and pt is then set equal to the value of pt in the last iteration of

the minimization before the validation error began to increase.

There is one further difficulty with the neural network architecture that needs to be

addressed. The neural network will typically have many local minima and it is often the

case that the algorithm will terminate at a local minimum that is far from the global

minimum. In this case, it is necessary to repeat the minimization again, this time using

a different starting value for pt. This may be repeated until a satisfactory local minimum

has been found, where 'satisfactory' refers to performance on the test set.

We use this training algorithm for finding Qt-\- For the remaining Q- value functions,

however, the problem is now somewhat simplified since it is usually the case that Qt ~

Qt-\- We can therefore use pt as the initial solution for training the time t — 1 neural

network. In practice, this means that the other neural networks can be trained very

quickly and that we only need to perform the minimization once. It also means that we
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can dispense with the need for having a test set for all but the terminal neural network.

Once Qt has been found, we then iterate in the manner of value iteration until we

have found Qq. We could then use

Vo{Xo) = max{h{Xo),Qo{X, (27)

to estimate the value of the option. While such an estimate may be quite accurate, it is

of limited value since we can say very little about the estimation error. In addition, we

do not have at hand an exercise strategy that has expected value equal to V'o(Xo) nor

do we know if such a strategy even exists. Finally, it provides little information with

regards to hedging the option.

4.3 Computing the Upper and Lower Bounds

In Section 3.1 we showed that an upper bound for the price of the American option

is given by (10). However, in (10) we can alternatively set Vq = Vq, where V^ is the

estimated lower bound. (Since Vq > ho, this new definition satisfies % > ht for all t,

and so Theorem 2 continues to hold.) In this case, the upper bound is given by

Vn = Vn + En max
I 7^ - 1^ + > cjj-

ter \Bt Bt ^ '

K- Kj-i
B, Bj-i

(28)

This then gives a natural decomposition of the upper bound into a sum of two compo-

nents. The first component is the estimated lower bound, while the second component

in some sense measures the extent to which the discounted approximate value function

fails to be a supermartingale.

We estimate Vq by simulating sample paths of the state variables, evaluating

Vt V-max I -;::: T^ + 2_^ ^J"
ter I Bt Bt

j=i
Bj Bj-i

(29)
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along each path and taking the average over all paths. Evaluating (29) numerically is

time consuming since at each point, {t,Xt), on the path, we need to compute

-j-i

V, V,j-i
(30)

Bj Bj-i

Any unbiased noisy estimate of the expectation in (30), however, will result in an upwards

biased estimate of the upper bound, due to the application of the maximum operator.

It is therefore important that accurate estimates of the expectation in (30) can be

computed. As before, we again use low discrepancy sequences to estimate these high-

dimensional integrals. Since we wish to compute an accurate estimate of the upper

bound, it is important to use a good stopping criterion to determine the number of

points that will be used to estimate the expectation in (30).

Let E(A^) denote the estimate of (30) when A^ low discrepancy points are used. For

some fixed value of M, we then examine E{Mi) for i = 1, . .
.

, L and terminate either

when

|E(Af(z + l))-E(Mz)| <e (31)

or when i = L, if the condition in (31) is not satsified for any i < L.

In the numerical results of Section 5, we set M equal to 2000 and 4000 for the 5

and 10-dimensional problems, respectively. For all problems, we set e = .2 cents and

L — 48000. These values typically result in estimates of the upper bound that appear to

be very accurate for practical purposes. This observation is based upon further numerical

experiments where M and e were increased and decreased respectively. The results of

these experiments invariably resulted in estimates of the upper bound that were within

1 or 2 cents of, and often considerably closer to, the original estimate.

One possible concern about the use of low discrepancy sequences for estimating
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the upper bound is that even a small bias in the estimate of the expectation in (30)

might result in a considerable bias in the estimate of the upper bound when there are

many exercise periods. This is not a problem, however, for reasons mentioned before.

In particular, as the number of exercise periods increases, the time interval between

exercise periods decreases which means that the variability of the value function in the

next period also decreases. As a result, the conditional expectation in (30) can be

estimated more accurately for fixed values of M and e.

4.4 An Automated Pricing Algorithm

Perhaps the obvious way to compute the lower and upper bounds is in a sequential

fashion so that after estimating the Q-value functions, we simulate a number of sample

paths to compute the lower bound, and simulate another set to compute the upper

bound. One difficulty with this strategy, however, is that the difference between V^ and

Vq might be significant so that there is a large duality gap.

When this occurs, we are forced to re-estimate the Q/s, possibly using more train-

ing points or a more flexible approximation architecture. This process may need to

be repeated a number of times before we obtain a sufficiently small duality gap. For

American options that need to be priced regularly, this is unlikely to be a problem since

experience should allow us to determine in advance the appropriate parameter settings.

However, for pricing more exotic American options, we might need to use such an

ad hoc approach. This might be very inefficient in practice, so we now briefly outline a

method to address this problem.

We have already mentioned that while the upper bound should work very well in

practice, the lower bound should still be superior. This observation is borne out in

Section 5 when we price call options on the geometric mean of a number of stocks. For

these problems, where it is actually possible to compute option prices exactly, we see
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that the lower bound is closer than the upper bound to the true price.

This then suggests that when there is a large duality gap it is usually because the

upper bound is not sufficiently close to Vq. The expression for the upper bound, as

given in (28), suggests that if E(_i V(/5(— 14-i/5(-i tends to be large, then the

upper bound will not be very tight. Based on this observation, we propose the following

modification to the approximate Q-value iteration.

After Qt has been computed, we do not proceed directly to computing Qt-\- Instead,

we simulate a number of points from the distribution of Xt and for each point, we

compute E( Vt+\/ Bt+\ — V't/Bt . If the average value of these quantities is below some

threshold, e^, then believing that we have a good estimate of l^, we proceed to estimate

Qt-i- Otherwise we re-estimate Qt, either by increasing the number of time t training

points or by refining the approximation architecture, depending on the remedy that

seems more appropriate. We then repeat the process until the average is less than e(.

The resulting estimates of the Q-value functions should lead to tight lower and upper

bounds.

A further advantage of this proposal is that it allows us to determine how much

computational effort is required to obtain a good solution. In particular, we can now de-

termine online how many training points are needed or how complex the approximation

architecture needs to be in order to obtain good estimates of the option price.

5 Numerical Results

In this section we illustrate our methodology by pricing call options on the maximum

of 5 and 10 stocks respectively, and the geometric mean of 5 stocks. We do not present

results for call options on the geometric mean of 10 stocks since this problem is in fact

easier to solve than the 5 stock case. While somewhat counterintuitive, this is explained
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by noting that the volatility of the geometric mean decreases as the number of stocks

increases.

In the problems that follow, we assume that the market has A'^ traded securities with

price processes given by

dSl = Sl[{r - 5,)dt +,a dZl\ (32)

where Z[ is a standard Brownian motion and the instantaneous correlation of Z] and

Z/ is pij. Each security pays dividends at a continuous rate of (5j. We assume that

the option expires at time T and that there are n equally spaced exercise dates in the

interval [0,T]. The first date occurs at i = which we call the P' exercise period and

the n"' exercise date occurs at i = T. We use k to denote the strike price of the option

and let r be the annual continuously compounded interest rate. It is assumed that r is

constant though this assumption is easily relaxed.

In order to generate the initial approximation to the option price, certain problem

specific information was also used. For example, we have already mentioned feature

extraction, where functions of the current state vector are used as inputs for the neural

network. In all the problems of this section, we found it advantageous to order the

stock prices before using them as inputs to the neural network. In addition, we used

the current intrinsic value of the option as a feature for options on the maximum, while

for options on the geometric mean, the corresponding European option value was used.

Though it is true in general that the exact European value of a high-dimensional option

will not be available, this is not important since it is known (see Hutchinson et al (1994)

that European options prices can be quickly and accurately approximated using learning

networks . (This observation also suggests another way of implementing the approximate

dynamic programming algorithm. Instead of using the approximation architecture to
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estimate the Q-value, we could use it to estimate the early exercise premium, conditional

on not exercising the option at the current exercise period. This conditional early exercise

premium plus the estimated European option price might give a more accurate estimate

of the Q-value function.)

Another method by which problem specific information was used is policy fixing (see

Broadie and Glasserman 1997). We know, for example, that the American option price

is greater than or equal to the price of the corresponding European option. Such infor-

mation can easily be incorporated to the approximate dynamic programming algorithm.

We do this by simply redefining the estimated Q-value to be the maximum of the es-

timated value function one time period ahead, and a European option that is a lower

bound on the Q-value. For options on the geometric mean, we again use the corre-

sponding European option value to bound the Q-value from below. For options on the

maximum, we use the European option on the stock that is most 'in the money'.

The initial approximation to the option price was obtained using 2000 and 2500

training points per period for the 5 and 10-dimensional problems, respectively. We also

assigned 65%, 25% and 10% of the training points for the time T - I neural network to

the training, validation and test sets in turn. This network was trained a maximum of

5 times and stopped as soon as the mean-squared error on the test set was less than 1

cent. The remainder of the neural networks were trained only once, using the solution

of the time t + 1 network as the starting point for training the time t network. For

these networks, 70% of the training points were assigned to the training set with the

remainder assigned to the validation set.

The lower bound was obtained by simulating the approximate exercise strategy along

8 million sample paths. The upper bound was computed using 1,000 sample paths to

estimate the expectation in (28).
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5.1 Call on the Maximum of 5 Assets

We assume that there are 5 assets, r = 0.05, T = 3 years and k = 100. We let 5, = 0.1,

(7, = 0.2 and p,j = for i ^ j. All stocks are assumed to have the same initial price Sq.

The results are given in Table 1 for problems where there are 10, 25, 50 and 100 time

periods.

It can be seen that the estimated lower and upper bounds are typically very close,

thereby providing very accurate estimates of the true price. While it is true that the

duality gap widens with the number of exercise periods it does so quite gradually so that

even for the problems with 100 exercise periods, we can still obtain very good estimates.

As we argued before, this widening of the duality gap is typically due to the gradual

deterioration of the upper bound as the number of exercise periods increases. We will

see further evidence to support this when we examine options on the geometric mean.

In Table 1 we also report the prices of the corresponding European options which

allow us to compute the early exercise premia of the American options. We see that

the duality gap is approximately 1% of the early exercise premium for options with 25

exercise periods or less. For problems with as many as 50 or 100 exercise periods, the

duality gap is between 1% and 3%. Using the midpoint of the lower and upper bounds

should therefore enable us to price the early exercise premium of these options to within

1% or 2%. Even more accurate price estimates could be obtained by noting that the

lower bound is usually closer to the true price than the upper bound.

5.2 Call on the Geometric Mean of 5 Assets

We assume that there are 5 assets, r = 0.03, T = 1 years and k = 100. We let J, = 0.05,

a, = 0.4 and pij = for i ^ j. All stocks are again assumed to have the same initial

price So- The results are given in Table 1 for problems where there are 10, 25, 50 and
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100 time periods.

For tlie American call option on the geometric mean of a collection of stocks the true

price of the option can be computed using a standard binomial tree, since the stochastic

process that describes the evolution of the geometric mean is itself a geometric Brownian

motion. We therefore report the true price of the American options on the geometric

mean together with our niunerical results in Table 2.

The results are similar to those in Table 1, though the duality gap, measured as a

percentage of the early exercise premium, now tends to be somewhat wider than before

for the options that start out of the money. Again, this duality gap increases with the

number of exercise periods though at a very gradual pace.

5.3 Call on the Mciximuni of 10 Assets

We make the same assumptions for the call option on the maximum of 10 assets as we

did for the 5 asset case except now T = I year. The results are displayed in Table

3. Measured in absolute terms, the duality gap is again very small for these problems.

However, measured as a percentage of the early exercise premium, the duality gap,

though still quite small, can be as large as 20%. This could be due to a number of

reasons.

First, the early exercise premium now represents a much smaller component of the

overall option vahie than before, so that using the duality gap (measured as a percentage

of the early exercise premium) to measure performance is likely to accentuate pricing

errors. This problem could possibly be overcome by approximating the early exercise

premium rather than the continuation value of the option, as mentioned earlier.

The more likely reason for the wider duality gap is that an insufficient number of

training points or neurons were used. Indeed, while we doubled the dimensionality of

the state space, we made only a moderate increase in the number of training points
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and did not increase at all the number of neurons. As a result, we expect performance

to suffer. Consider, for example, the 50 exercise period problem with So = $90. The

estimated lower bound for this problem, $15,181, is greater than the estimated lower

bound, $15,178, for the corresponding 100 period problem. Since we know that the true

option price for the 100 period problem is greater than the true option price for the

corresponding 50 period problem, it is clear that the initial option price approximation

for the 100 period problem is inferior. Since the upper bound is quite sensitive to the

initial approximation, we are not surprised to see that the duality gap for the 100 period

problem is considerably wider than the duality gap for the 50 period problem.

When we resolved the 100 period problem using 4,000 training points per period

and 25 neurons, the estimated lower bound increased to $15,196, while the upper bound

decreased to $15,228. The resulting duality gap is only 3 cents which, for all practical

purposes, is very tight.

6 Conclusions

In this paper we have developed a new method for pricing and exercising American

options. Our approach is based on approximate dynamic programming using nonlinear

regression to approximate the option price. Our main theoretical result is a representa-

tion of the American option price as a solution of a dual minimization problem. Based

on this dual characterization of the price function, we use Monte Carlo simulation to

construct tight upper and lower bounds on the option price. These bounds do not rely on

a specific approximation algorithm and can be used in conjunction with other methods

for pricing American options. We characterize the theoretical worst-case performance of

the pricing bounds and show that they are very accurate on a set of sample problems

where we price call options on the maximum and the geometric mean of a collection
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of stocks. These numerical results suggest that our pricing method can be successfully

applied to problems of practical interest.
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A Proofs

A.l Proof of Theorem 2

Simplifying (8) and (9), and using Theorem 1, we obtain

Vo = V'o + Eo max
I
^;— -^ + > Ej-

teT \Bt Bt
j=i

(Al)

as an upper bound on tlie price of the American option. We then have

Vo = K) + Eo

< V^o + Eo

max
ter

EEj-.

E
j=i

-j-i

B, B, B, 5,_i B,_i S,_,

V,

5j -^J 5j-l -^J-l

< K)+|Vb-K)|+EoJ](E,_i
j=i

5. 5, Bj-i Bt-.,

where the second inequaUty is due to the supermartingale property of the discounted

option price process, Vf, and the last step follows from the triangle inequality. The result

of Theorem 2 then follows.

A. 2 Proof of Theorem 3

At time t, the following six mutually exclusive events are possible: (i) Qt <Qt < ht,

(ii) Qt<Qt< ht, (iii) Qt < ht < Qt. (iv) Qt < ht < Qt, (v) ht < Qt < Qt, (vi) Ih < Qt < Qt-

We define f, = min{s € [f, T] n T :Q~, < /ij and

Vt = BtEt

For each of the six scenarios above, we establish a relation between the lower bound and

the true option price.

(i),(ii) The algorithm for estimating the lower bound correctly prescribes immediate
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exercise of the option so that Vt— y^ = 0.

(ill) In this case the option is exercised incorrectly. ]4 = ht and Vt = Qt implying

Vt-V< \Qt-Qt\.

(iv) In this case the option is not exercised though it is optimal to do so. Therefore

Bt
Vt = -^Et \VtJ

while

Bt
Vt = ht<Qt+ {Qt- Qt) = -^Et [Vt+,] +[Qt-Q

This implies

Vt-V<\Qt-Qt\ +^E, \Vt+x - Vt+i]

.

(v),(vi) In this case the option is correctly left unexercised so that

Vt-Vt = -^Et \Vt+i - Vt+i] .

Therefore by considering the four possible scenarios, we find that

Vt-Vt< \Qt - Qt\ +^Ef \Vt+i - Vt+x] .

Iterating and using the fact that Vr= Vt implies the result.
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B Low Discrepancy Sequences

A low discrepancy sequence is a deterministic sequence of points that is evenly dispersed

in some fixed domain. Often, and without loss of generality, we take this domain to be the

unit cube [0, 1]''. Because the points in a low discrepancy sequence are evenly dispersed,

they are often used to numerically integrate some function /(.) over [0, Ij'^so that

/ f{x)dx^^^^l^ (Bl)

where {y, :i = 1, . .
.

, A^}, is a set of A^ consecutive terms from the low discrepancy se-

quence. An important property that low discrepancy sequences possess is that as new

terms are added, the sequence remains evenly dispersed. This property implies that,

in contrast to other numerical integration schemes, the term A'^ in (Bl) need not be

determined in advance and can therefore be chosen according to some termination cri-

terion. Because these sequences are evenly dispersed, their use in numerical integration

often results in a rate of convergence that is much faster than Monte Carlo simulation

where the convergence rate is 0(-^). For the technical definition of a low discrepancy

sequence and a more detailed introduction to their properties and financial applications,

see Boyle, Broadie and Glasserman (1997). See Birge (1994), Joy, Boyle and Tan (1996)

and Paskov and Traub (1995) for some of these applications.

In this paper we use low discrepancy sequences for training point selection and train-

ing point evaluation. The low discrepancy sequences are of particular value for training

point evaluation since a good estimate of

E,
_Bt

B
^max(M.Yt+i),Q,4-i(A-,+i))

can usually be computed much faster by using a low discrepancy sequence in place of

Monte Carlo simulation.
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Even though a low discrepancy point y G [0, 1]"^ is deterministic it can be useful to

interpret it as being sampled from a uniform distribution in [0, 1]''. With this in mind,

it is then straightforward to convert y into a point, x, that is representative of a random

variable Z with cumulative distribution function F(.). For example, suppose Z is a

d-dimensional standard normal random variable with correlation matrix equal to the

identity. We can then construct a point 2 6 5R'^ that is representative of Z by setting

z = F-\y) (B2)

where the operation F~^ is taken componentwise in (B2). If instead we wish to 'simulate'

a multivariate normal random variable, X with covariance matrix E, then we simply

premultiply z by the Cholesky decomposition of S.

In financial applications random variables are often assumed to be lognormally dis-

tributed. Since transforming a normal random variable into a lognormal random vari-

able is easy, however, we can do likewise with z. We can therefore easily convert a

d-dimensional low discrepancy sequence into a sequence of points that is representative

of a d-dimensional multivariate log-normal distribution. The low discrepancy sequences

we use in this paper are Sobol sequences.
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Table 1: Call on the mciximum of 5 assets

Table 1 contains estimates of the price of an American call option on the maximum of 5 assets.

We use the following set of parameter values: r = 0.05, T — 3, k — 100, 6^ — 0.1, a^ — 0.2

and pij = for i,j = 1, ...,5. All stocks are assumed to have the same initial price Sq. The

columns "Lower Bound" and "Upper Bound" contain estimates of the lower and upper bounds,

respectively. The standard errors of these estimates are given in brackets. Results are displayed

for problems with 10, 25, 50 and 100 time periods. We report estimated options prices in $'s

and their standard errors in cents.

So Lower Bound Upper Bound European Price

90

100

110

90

100

no

90

100

no

90

100

no

10 exercise periods

16.640





Table 2: Call on the geometric mean of 5 assets

Table 2 contains estimates of the price of an American call option on the geometric mean of

5 assets. We use the following set of parameter values: r — 0.03, T = 1, k = 100, 6i — 0.05,

CT( = 0.4 and pij — for i,j — 1, ..., 5. All stocks are assumed to have the same initial price Sq.

The columns "Lower Bound" and "Upper Bound" contain estimates of the lower and upper

bounds, respectively. The standard errors of these estimates are given in brackets. Results

are displayed for problems with 10, 25, 50 and 100 time periods. We report estimated options

prices in $'s and their standard errors in cents.

Sq Lower Boundd Upper Bound True Price European Price

10 exercise periods

90





Table 3: Call on the maximum of 10 assets

Table 3 contains estimates of the price of an American call option on the maximum of 10

assets. We use the following set of parameter values: r = 0.05, T = I, k — 100, Sj, = 0.1,

ai = 0.2 and pij = for i, j = 1, ..., 5. All stocks are assumed to have the same initial price So-

The columns "Lower Bound" and "Upper Bound" contain estimates of the lower and upper

bounds, respectively. The standard errors of these estimates are given in brackets. Results

ai'e displayed for problems with 10, 25, 50 and 100 time periods. We report estimated options

prices in $'s and their standard errors in cents.

5o Luwer Bound Upper Bound European Price

10 exercise periods

90 15.082 15.092 14.747

(0.40) (0.37)

100 26.860 26.863 26.403

(0.46) 0.60)

110 39.076 39.076 38.522

(0.51) (0.48)

25 exercise periods

90 15.158 15.172 14.747

(0.39) (0.51)

100 26.960 26.970 26.403

(0.45) (0.74)

110 39.182 39.193 38.522

(0.50) (0.64)

50 exercise periods

90 15.181 15.216 14.747

(0.38) (0.79)

100 26.978 27.092 26.403

(0.45) (3.46)

110 39.225 39.261 38.522

(0.49) (0.96)

100 exercise periods

90 15.178 15.283 14.747

(0.39) (1.36)

100 26.996 27.070 26.403

(0.45) (1.17)

110 39.223 39.306 38.522

15.178
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