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A Portfolio Approach to Risk Reduction in

Discretely Rebalanced Option Hedges

Abstract

This paper analyzes the accumulated hedging errors generated by discretely

rebalanced option hedges. We show that simple-minded generalizations of the

prior research can underestimate the variance of the accumulated hedging

errors significantly and that even with daily rebalancing, these accumulated

hedging errors can introduce substantial risk in arbitrage strategies

suggested by the Black-Scholes model. We show that the correlation between

accumulated hedging errors for different options can be quite high so that

the risk of arbitrage due to hedging errors can be substantially reduced by

optimally combining options into portfolios. The results also suggest that

tests of market pricing of traded options which are based on employing a

portfolio approach are likely to be much better specified than the standard

tests that focus on individual options.
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The premise of the Black- Scholes option pricing model is that an

option's payoff can be perfectly replicated by combining trading in the

option's underlying security with borrowing or lending, and continually

rebalancing this position. However, non-continuous trading in the

underlying securities and transactions costs make the continuously

rebalanced hedges that are assumed in the Black- Scholes model not possible.

In reality, option hedges can, therefore, only be rebalanced discretely.

This makes them no longer riskless and Figlewski (1989), through

simulations, documents that discrete rebalancing exposes standard option

arbitrage to large risks.

This paper deals with the risks due to hedging errors generated by

discretely rebalanced option hedges over multiple rebalancing intervals.

Boyle and Emanuel (1980) and Leland (1985) derive expressions for the

variance of the hedging error over one instantaneous rebalancing interval

for an option's delta hedge. However, most delta hedges are run for more

than one rebalancing period. Hedging errors accumulated over the entire

holding period are thus of importance. For example, an investment bank

which has issued equity warrants, may have to delta hedge them over their

entire life. Or, an arbitrageur, contemplating taking a position in an

option and putting on a hedge, should be concerned with the future

accumulated hedging errors up to maturity since the mispricing may not

disappear till then. Moreover, to predict the variance of hedging error

over an interval, one needs to assxime that at the end of the rebalancing

period, the option is priced in accordance with the Black-Scholes model.

This is often not the case for any instant before the maturity date. To be

able to deal with these situations, we derive expressions for the moments of

the distribution of the accumulated hedging errors and show that in many



2

cases, especially for out- of- the money options, simple generalizations of

the Leland and Boyle and Emanuel single-period results can significantly

underestimate the variance of the errors for the hedge portfolio.

The major contribution of this paper is to show how this hedging error

induced risk over multiple rebalancing intervals can substantially be

reduced by suitably combining options into portfolios. When options with

several different exercise prices are traded on the same underlying asset,

intuition suggests that the hedging errors across these individual options

would be correlated. We derive expressions governing the moments of the

joint distribution of the accumulated hedging errors across different

options and indeed find evidence of substantial correlation in these

accumulated hedging errors. This suggests that option arbitrage can be made

less risky if mispriced options are appropriately combined with other

options. Consider, for example, an arbitrage trade employing an at-the-

money index option with one month to maturity. For this hedge with daily

rebalancing, the standard deviation of the accumulated hedging errors up to

maturity is approximately 13% of the option's price. For a trader, this is

a considerable amount. This standard deviation can be reduced by about 70%

if the option is combined with another near -the -money option. If more

options are used in the portfolio, the risk can be further reduced.

Our analysis also suggests that portfolio based tests of the efficiency

of the options markets are more powerful than the traditional tests that

examine whether individual options are mispriced. The portfolio methodology

tests for the joint mispricing of options by taking advantage of the

variance -covariance matrix of the accumulated hedging errors of individual

options. Tests based on single options ignore the joint distribution of the

hedging errors over the holding period and therefore may leave out from the
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test sample options that can reduce the risk of a strategy without reducing

the abnormal returns. These tests also ignore the information about the

correlation between the accumulated hedging errors, while the portfolio

approach uses this information.

The paper is organized as follows. In section I we derive analytical

expressions for the variance of the accumulated hedging errors for a

discretely rebalanced delta hedged option. There we also discuss why simple

generalizations of the single-period hedging errors in Boyle and Emanuel

(1980) and Leland (1985) can often underestimate the dispersion of hedging

errors over longer holding periods. In section II we derive the joint

distribution for the accumulated hedging errors for a portfolio of delta

hedged options. In section III we show that the effectiveness of hedging

strategies used to exploit the mispricing of single options can be

considerably improved by employing a portfolio approach. In Section IV we

generalize the results of section II by deriving the joint distribution of

the accumulated hedging errors between options written on different

underlying assets. The implications of our results for option market

efficiency tests are discussed in Section V. Finally, in section VI we

present the conclusions.

I. The Variance of The Acciimilated Hedging Errors for a Delta Hedged Option

To compute the variance of the accumulated hedging errors, we focus on

the hedge portfolio consisting of positions in a European option and its

underlying asset. Assume that trading takes place only at discrete

intervals and that over a small interval. At, the underlying security value

follows a process of the type:

^ = aUAt-"-/^ + (ii +
I

a U^)At + (^iaV + \ cT^U^)At-^/^ + O(At^) (1)
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where AS is the change in the non-dividend paying asset's stock price over

the rebalancing interval At and U is a normally distributed random variable

with zero mean and variance equal to one. There exists a riskless asset

paying a continuous rate of return r. Consider a zero- investment portfolio

which combines with borrowing or lending a long position in an European call

option hedged with m units of the underlying asset (m - -C„) . The value of

this portfolio when the option has r time to maturity is

H = mS + C(S,t) - B

where B equals C + mS and is the amount invested in the riskless asset.

Over a discrete rebalancing interval, the change in this portfolio is

AH = mAS + AC - BrAt + 0(At )

.

Following Boyle and Emanuel (1980) , the hedging error over the interval At

can be rewritten as

AH = -C^At + (l/2)Cg2AS^ + (C - CgS)rAt + Cg^ASAt + (l/6)Cg2gAS^ + O(At^) . (2)

Knowing that the option value satisfies the differential equation

=- -C^ + (l/2)CggS^a^ + (C-CgS)r,

expression (2) can be rewritten as



AH - -(l/2)CggS^a^At + (1/2)C22AS^ + C2j.ASAt + (l/6)CgggAS^ + O(At^) . (3)

2 3
Substituting in (3) for the values of AS, AS , and AS gives, after leaving

3/2
out the terms of order higher than At '

,

AH = (l/2)Cg2S^CT^(U^-l)At + C22S^aU[/i+(l/2)a^U"^]At-^/^ + C^^SaVAt^^^ +

(l/6)Cg2gS^a^U^At^/^ + O(At^). (4)

2
where U is chi- squared distributed with one degree of freedom. Equation

(4) shows that discrete rebalancing of the Black- Scholes hedge portfolio is

risky even when m = -C at each rebalancing since the stochastic terms in

(4) cannot be hedged by taking a position in the underlying asset. At each

rebalancing instant the hedging error requires additional borrowing or

lending and the position is no longer zero- investment. The net wealth of a

discretely rebalanced Black-Scholes hedge portfolio with zero- investment at

its inception is therefore equal to the present value of the accumulated

future hedging errors.

We now define

\ = (l/2)C33s2_^a2

and

^ - C33s2_^aU[M+(l/2)aV] + C^^S^.^aU + a/2)C^^^sl_^a^V^

where C„„ , C„ , and C„„<, are all evaluated at time t-1 and S •, is the

security price at the beginning of the t-th rebalancing interval. Define W



2 2= U - 1, for a long position in the option and W - 1 - U , for a short

position in the option. Gilster (1990) shows that an option's beta over a

discrete rebalancing interval is proportional to the length of the interval,

At. Therefore, for sufficiently small rebalancing intervals, it is

appropriate to compute the future value of the hedging errors at the risk-

less rate of return. Thus at maturity the future value of the hedging error

for the first rebalancing interval is

(A^W^At + 8^At^^^)R^'^ + O(At^)

where R = exp(rAt) . Similarly, the future value of the hedging error over

the second rebalancing interval is (A^W^At + ^^^^ ^ )R^' + 0(At ). The

accumulated hedging errors at the maturity of the hedge portfolio is thus

simply the sum of these future values of errors for the n rebalancing

intervals

.

EAH = AiW,R'^"-'-At + AoW^R'^'^At + ... + A.W.R^'^At + ... + A W At11 22 11 nn
+ ^R"-^At2/2 ^ . Rn-2^^3/2 + _.. + ^

^^3/2 ^3^

2
where terms of order At and higher have been ignored. At t^. , A, and 6-, are

known since S^ is known; all other A coefficients are stochastic. Boyle and

Emanuel (1980) and Leland (1985) who model the hedging errors over only one

rebalancing interval need to assume that the option's market price at the

end of the rebalancing interval equals the Black-Scholes value. However,

one cannot be sure that the market prices the option according to Black-

Scholes. In our analysis, we do not need to make these assumptions since

the hedge portfolio is not unwound until the options' maturity.
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We are now in a position to derive the expression for the variance of

the accumulated hedging errors.

Proposition I: The variance of the accumulated hedging errors, valued at

maturity, of the Black- Scholes hedge portfolio is:

VrZAH] = 2A^At^R, + 2GAt-^R„ + K^At^R, + KAt'^R.
^ ' o 1 2 1 i

where

and

_ 1 2 2
"^0 ~ 2^SS^0'^ •

G = A^S^a^ + 2A0A3S0M + AQA33s2a2-2AQA^,

Kq =Xo2 + ISYq^ -h eXgYQ,

K = (2X0X3 + 3OY0Y3 + 6X0Y3 + 6YoX3)SoM + (Xg^ -H X0X33 + ISYg^

+ I5Y0Y33 + 3X0Y33 + 6X3Y3 + 3YQX33)So2a2 . (x^X^ + ISY^Y^

+ 6XoY^ + 6YoXp

^0 = Ss^o'^'^
-^

^St^O^^'

Yo= (l/2)C33s2a3 -h (l/6)C333S^a^

R^ = (r2"-1)/(r2-1).

R2 = [R^'^-R^-(n-l)(R^-l)]/(R^-l)^
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In the above expression, A„ and A„„ are the first and second partial

derivatives of A^ with respect to the asset price and A is the first

partial derivative of Aq with respect to time to maturity; X„ , X„„, X , Y„

,

Y„„, and Y are interpreted similarly.

Proof: See Appendix.

Proposition I implies that the variance of the accumulated hedging

errors depends on the option's degree of moneyness. The hedge ratio changes

most with changes in the underlying asset for at-the-money options so that

with discrete rebalancing, the variance of the hedging errors is highest for

this case.

Proposition I also implies that the variance of the accumulated hedging

errors is approximately proportional to the length of the rebalancing

interval. This can be easily seen by assuming that the interest rate is

"X "X /

zero. Then V[SAH] = 2Aq At n + GAt n(n-l) + KpAt n + (l/2)KAt n(n-l) , where

n = (r/At) and is the number of rebalancing intervals. For a sufficiently

2
large n, this expression for V[SAH] is approximately equal to (2A„ + Gr)rAt

+ O(At^).

Table I provides a sense for the magnitude of the dispersion of the

accumulated hedging errors at the maturity of the options. Assume that the

current stock price is 100, the annual risk- free rate is 10%, the expected

return on the stock is 15%, and the annual volatility is 15%. The

calculations assxime an European option and the underlying asset to be non-

dividend paying.

Panels A through C respectively present the standard deviations of the

accumulated hedging errors for a one-month call, a three-month call, and a
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12 -month call. Two rebalancing intervals, daily and weekly, are

2 3
considered. ' For each rebalancing interval, the standard deviations are

provided based on Proposition I as well as using a simple generalization of

the Leland and Boyle and Emanuel results. This generalization assumes that

the hedging errors are independently and identically distributed through

time.

The hedging errors computed using the simple model differ considerably

from those based on the other model for deep in- and out-of -the-money

options. This difference increases with maturity. For example, for the

one-year maturity with daily rebalancing, the out-of-the money (X=120) call

has a standard deviation of accumulated hedging errors of about $0.32

according to our model while the simple model gives a value of about $0.23,

about 30% lower. For a long maturity option, when the option is away from

the money, the hedging errors are likely to be quite small at the initial

stages and the simple model significantly underestimates the true standard

error by generalizing those hedging errors. The discussion that follows

focuses only on the more accurate results from our model.

The variance of the accumulated hedging errors increases almost five-

fold as one goes from daily to weekly rebalancing and this result obtains

irrespective of the moneyness or maturity of the option. This is consistent

with the implication of proposition I that the variance is of order At.

Even with daily rebalancing, hedging errors can be quite important.

Consider an at-the-money (X=100) call with one month to maturity. The

Black-Scholes option price is $2.14. The standard deviation of accumulated

hedging error for this call is about $0.28 which is 13% of the price of the

option. If such an option is mispriced by 5% then a trader following a 5%

rule would take a hedged position in the option. If he plans to rebalance
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the hedge daily and if he has to carry this position to maturity, the

probability of a loss is 35%. Weekly rebalancing increases the hedging

error induced risk. For example, for a one-year out-of -the-money call

(X=120) with a Black-Scholes price of $2.72, a weekly rebalancing strategy

results in a standard deviation of accumulated hedging errors of $0.69,

approximately 25% of the option value.

The standard deviation of accumulated hedging errors is highest for

options that are slightly out-of -the-money forward and lowest for deep in-

and out-of-the-money options. This is reasonable since for deep in- and

out-of -the-money options the hedge ratio does not change very much over

small intervals of time and hence hedging errors accumulate at a small rate.

This is not the case for near- the-money options for which the hedge ratio

can change significantly over small periods of time and hence hedging errors

grow at a fast rate.

Hedging errors are more serious for short-maturity options than for

those with long maturities. For example, with daily rebalancing, for a one-

year maturity, the (forward) at-the-money call (X=110) has a standard

deviation of the accumulated hedging errors of $0.30 or only 5% of the

option value, whereas for the one-month option the standard deviation for a

near -the -money (X=105) call is $0.29 or about 24% of the Black-Scholes

value. This results from the smaller gamma for long-maturity options.

II. The Covariance of Accuinulated Hedging errors Across Different Options

In this section we derive the expression for the covariance of the

accumulated hedging errors between two delta hedged options, when each is

held until maturity. Proposition II provides the expression when both

options are held in either short or long positions.
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Proposition II: If two European options C and C with strike prices X and

X (9^ X) are both held until a common maturity in either short or long

positions, the covariance of the accumulated hedging errors, SZvH and ZAH
,

is given by the expression:

COVfSAH.SAH*] = 2AQA*At^R^ + 2GAt"^R2 + KQAt"^R, + KAt^Rj

where G = (AqA"^ + ^l^s^S^^. + 1/2(AqA*3 + ^l^ss^sy + ^s^^y

Kq = XqX* + ISYqY* + 3(XoY* + X*Yo).

K = [(XqX'; + xJXg) + ISCYqY* + Y0Y3) + 3(XqY* + Y^Xg + YqX* +

YsX*)]SoM + [(l/2)(XoX33 + X^X^g + 2XgX*) + (15/2) (Y^Y^^ + Y^Y^g +

2Y3Y*) + (3/2)(XoY*3 + 2X3Y3 + Y^Xgg + Y0X33 + 2Y3X3 + x;Y33)]s2a2

- [(XqX; + X^X^ + ISCYqY* + Y*Y^) + 3(XoY* + Y*X^+ Y^X* + X*Yp

]

* * *
and Aq, Aq, Xq, Xq, Yq, Yq , as well as the partial derivatives are as

defined in Proposition I with the recognition that the starred quantities

if

refer to the option C .

Proof: See the Appendix.

The next proposition considers the case when one option is held short

and the other is held long.
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*
Proposition III: If two European options C and C with strike prices X and

X (^X) are held until a common maturity, one in a short and the other in a

long position, the covariance of the accumulated hedging errors, ZAH and

SAH , is given by the expression:

COVfSAH.SAH*] = -2A A*At^R, - 2GAt R^ - Kr,At R, - KAt'^R^
^ ' o o i z U i Z

^ '^ * ^ ^ ^
with G, Kq, and K as given in Proposition II. Aq , Aq, Xq , Xq, Yq , Yq , as

well as the partial derivatives are as defined in Proposition II.

Proof: See the Appendix.

It can be shown as an implication of these propositions that the

covariance of the accumulated hedging errors is proportional to the length

of the rebalancing interval. Propositions II and III together imply that

when one of the options is held short and the other long, the resulting

covariance is the same in magnitude but opposite in sign to that when both

the options are held either short or long. Henceforth, the discussion

assumes that both options are held either short or long so that the

covariance is always positive.

Table II presents the correlations between accumulated hedging errors

for options with different strike prices, using the same set of parameter

values as in table I. Panels A and B present the data for one-month and

three -month calls with daily rebalancing and panels C and D for a one -year

call with daily and weekly rebalancing respectively.

Table II shows that the correlations between the accumulated hedging

errors for the different options depend significantly on the relative
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moneyness of the options and the time to maturity, and do not change much

with the rebalancing frequency. The correlations between hedging errors for

options whose moneyness are close turn out to be substantial.

It is important to note that these high correlations are not a

consequence of the systematic part of the hedging errors being correlated.

This is because Gilster (1990) has shown that hedging errors are zero-beta

as At - and at the same time, using Propositions I and II, it can be shown

that as At -
, the correlation between hedging errors approaches one. This

can be illustrated by the high correlations in table II for daily

rebalancing and noting that in Gilster (1990) these hedging errors have

betas close to zero.

The correlations decline as the options' moneyness become further

apart. For example, for the three-month options, the correlation between

the hedging errors for an in-the-money call (X=95) and a deep out-of-the

money call (X=110) is 0.348 for daily rebalancing. Suppose that one option

is in-the-money and the other is out-of - the-money. If the stock price goes

up, the hedge ratio for the first option does not change by much but it

changes considerably for the second option. This causes the turnover in the

two corresponding hedge portfolios to deviate significantly and results in a

low correlation in the accumulated hedging errors.

In summary, one finds that the accumulated hedging errors for European

options sharing a common maturity and written on the same non- dividend

paying asset display significant cross-correlations. These correlations

decline as maturity increases but still remain quite large, especially for

options whose moneyness is close, even for maturity as long as one year.
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III. The Portfolio Approach to Option Arbitrage

The correlations between the accumulated hedging errors across options

can be used in option arbitrage strategies to reduce the hedging error

induced risk that results from infrequent rebalancing. Let n be the number

of available options with maturity t, all written on the same asset with

current price S, let r be the continuously compounded risk- free rate to

maturity r, and w an arbitrarily chosen wealth level. Let S and D

respectively represent the variance -covariance matrix of the accumulated

hedging errors and the vector containing the current mispricing of options.

Let a represent the vector of positions taken in the options. The objective

function then minimizes the standard deviation of the accumulated hedging

errors for the option portfolio, subject to the constraint that the future

value, at the options' maturity date, of the expected profits of the

aggregate portfolio be u. Formally, the quadratic optimization problem is:

Min y(a'Sa)
a

St: a'D exp(rr) = w

The solution to this problem is straight -forward and is given by

a* = [w/exp(rr)](S"^D)/(D'S''^D)

If the minimized standard deviation, /(a 'Sa ), is acceptable compared to

the expected profits w (i.e., it meets the trader's risk-return trade-off),

then the arbitrageur sets the trade, otherwise not. For example, the

arbitrageur may set up a trade only if the standard deviation is less than

half of cj.
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Consider, for example, a one-month call (option 1) with strike price of

100, which is underpriced by $0.05. Assume that the trader has only one

more option available to him for arbitrage, with X=102 and that this call

(option 2) is fairly priced. Assume that cj=$l and the trader wants to

•k

rebalance daily. Then the optimal solution to the problem is: a, = 19.84

and a„ = -18.17, so that the trader would thus buy 19.84 calls with strike

price of 100 and write 18.17 calls with strike price of 102 and hedge this

portfolio with the underlying stock. This trade would result in expected

future profits of $1 and the standard deviation of those profits turns out

to be $1.79. As opposed to the portfolio approach, if the trader only

bought 19.84 calls with X=100, his expected future profits would still be $1

but the standard deviation would be $5.51 so that the optimal policy results

in reducing the standard deviation by more than two-thirds.

Consider the availability of one more option, say with X=98 , which is

overpriced by $.05. Then, denoting this option as number three, the optimal

"k ic St

policy with tJ = $1 is: a, =12. 21, a^=-6.19 and a., = -7.63 and the minimized a

is $0.24. Thus a long position in the underpriced option and short

positions in the fairly priced and overpriced options results in very little

accumulation of hedging errors to maturity.

As another example, consider the one-year call with X=110 that is

overpriced by $0.10. For expected future profits of $1, i.e., for w = $1,

with weekly rebalancing, under standard arbitrage one has to write 9.09

calls. This results in a standard deviation of accumulated hedging errors

of $6.86, which is much higher than the level of expected profits. If a

fairly priced option with X=100 is available then the portfolio approach

entails combining the 9.09 calls written in the overpriced option with

buying 11.24 calls with X=100 and the resulting standard deviation turns out
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to be $2.69, a 60% reduction. If the X=100 call is underpriced, the

improvement is even greater. For example, an underpricing of X=100 call by

$0.10 implies that the optimal portfolio consists of buying 5.27 X=100 calls

and writing 3.82 X=110 calls and the standard deviation that results is

$1.16. Similar results obtain when other options, maturities, or

rebalancing frequencies are considered.

The portfolio approach requires more options to be traded than the

simple approach of only taking a position in the mispriced option.

Employing the portfolio approach therefore involves a trade-off between

higher set-up costs and lower rebalancing costs that result from the smaller

net hedge ratio of the aggregate position. Nevertheless, the major

conclusion is that instead of focusing on mispriced options individually,

combining options into portfolios has significant potential in reducing the

risk due to infrequent rebalancing.

rV. A Generalization to Options on Different Underlying Instruments

Consider two European options that have the same maturity date but

different underlying instruments. Let p be the correlation between the

returns of the underlying instruments. Then the joint distribution of the

accumulated hedging errors for these options can be derived and proposition

IV summarizes the results.

Proposition IV: If two European calls C and C with exercise prices of X and

X that have the same maturity date but different underlying instruments,

are both either held long or short, the covariance of the accumulated

*
hedging errors, ZAH and EAH , is given by the expression:
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COV[SAH,SAH*] = 2p ApA^At R^ + 2p GAt R2 + pK^At R^ + pKAt^Rj

where G = AQAgSj/ + Aq^s^O'^ "^ ( ^2) [ AqA^^ (SQa*)^ + A^AggS^a^] +

Kq = XqX* + 3(2p2+3)YoY* + SCXgY* + xJYq) .

K =. [XqX* + 3(2p2+3)YoY* + SCX^Y* + ^q^^IS^

+ [xJXg + 3(2p2+3)YoY3 + H^^^ + YoXs)]SoM

H- (l/2)[XoX*3 +3(XoY*3 + YqX*^) + 3(2p2+3)YoY*5] (sja*)^

+ (1/2)[X*X33 +3(X;Y33 + Y0X33) + 3(2p2+3)Y;Y33] (So<7)2

+ [X3X* + 3(X3Y3 + Y3X3) + 3(2p2+3)Y3Y3]SoS*aa*p

- [Vr ^ Vr ^ 3(2p2+3)(YoY; + Y*Y^) + 3(XqY* + Y*X^+ Y^X^ + X*Y^)

•k "k "k

and Ap,, A^, X^. , X^, Y^ , Y^, as well as the partial derivatives are as

defined in proposition I with the recognition that the starred quantities

refer to the option C .

Proof: See appendix.

Proposition IV reduces to proposition II for p = 1. Furthermore, it

implies that the higher the correlation between the returns of the two

underlying instruments, the higher is the covariance between the accumulated

hedging errors of the two options. This has implications for reducing the

hedging error induced risk in option arbitrage. Consider taking a position

in an option on an instrument that has no other options available.

Proposition IV then implies that the hedging risk can be effectively reduced
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by combing this option with others written on a security whose returns are

highly correlated with the returns of the option's underlying security.

The possibility of employing options on other instruments to reduce the

hedging risk becomes even more useful when the transactions costs on options

on different securities vary significantly. Thus, if transactions costs

are high on the options on a given security, in forming the portfolio one

may substitute these options with those on an asset with high return

correlation with the underlying instrument but whose options have lower

transactions costs.

V. Implications of the Portfolio Approach for Tests of the Efficiency of

Options Markets

Traditionally, tests of efficiency of options markets are based on

examining whether options are individually efficiently priced. Our analysis

in the previous sections suggests two reasons why such tests are likely to

have low power. First, the screening rules for including options in the

test samples typically are simple percentage rules that do not take into

account the notion that the standard deviation of the accumulated hedging

errors depends on the option's degree of moneyness. For example, a commonly

used screening rule to determine sufficient mispricing of an option is to

choose the cutoff to be a particular percentage by which the option's price

differs from its model value. This is the case in Trippi (1977), Chiras and

Manaster (1978), and Blomeyer and Klemkosky (1983). Table I implies that in

percentage terms, deep in-the-money options have the lowest standard

deviation of accumulated hedging errors so that under a percentage rule such

options should have the highest probability of earning abnormal returns.

The rule, however, does not treat these options in a different manner from
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others, and may therefore result in option hedge portfolios that have a high

probability of earning abnormal returns not being included in the test

sample.

The second reason for the low power of traditional tests is that the

test design does not consider all available information, e.g., the cross-

sectional distribution of accumulated hedging errors across options. These

tests only examine whether options are individually mispriced and therefore

cannot capture market inefficiencies manifested in the joint pricing of

options. Chiras and Manaster (1978), Whaley (1982, 1987), and others have

used portfolios of options which consist of options that are individually

mispriced. A more powerful portfolio approach would, however, explicitly

consider joint pricing in the test design; it would determine whether all or

most of the options traded on a stock are jointly efficiently priced. Given

that the hedging errors of different options are correlated, the accumulated

hedging errors as well as the amount of rebalancings needed on the portfolio

of options are likely to be much smaller than when only an individual option

is considered. The portfolio approach has more power because it can

identify inefficiencies which tests based on mispricing of individual

options ignore.

VI. Conclusions

In this paper, we have examined the risks due to hedging errors that

result from discrete rebalancing of option hedges. We have derived

expressions governing the joint distribution of the accumulated hedging

errors across different options traded on the same stock. We find that for

option maturities of one month or more, even with daily rebalancing the

accumulated hedging errors on individual option hedges can be substantial
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and quite different from those derived over a discrete time interval

generalized to many periods.

The hedging errors across the different options are found to be highly

correlated, especially for options whose moneyness is close. This implies

that the risk of option arbitrage can be significantly reduced by combining

options into portfolios. Indeed the portfolio approach implies that option

markets where there are many options available on different assets and with

many different strike prices can have prices that are close to those implied

by the Black-Scholes model. This is because arbitrageurs by employing a

portfolio approach can neutralize the hedging error induced risk on

individual options that arises from infrequent rebalancing.

Finally, we have also argued that the traditional tests of efficiency

of option markets have low power since they are based on testing whether

options are individually mispriced. For tests of market efficiency we

recommend a more powerful portfolio approach that examines whether all the

options traded on a stock are jointly efficiently priced. A possible

extension of our work would be to examine how transactions costs affect the

design of the hedge as well as the accumulated hedging errors both on

individual options as well as portfolios of options.
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Appendix

PROOF OF PROPOSITION I:

Applying the variance operator to equation (5) gives:

vrSAH] = .2, V[A.W.At + ^.At-^/^]R^^"'-^^
J=l J J J

+ .|. 2C0V[A^W^At + S^At'^/^.A.W.At + 9 .At^^^]R^^'^'^ (A.l)

We first show that all covariance terms in this expression equal zero.

Write the covariance as

COV[Aj^W^At + ^^At / .A.W.At + 8 .At ' \
-

E[(A.W.At + «.At'^'^^)(A.W.At + 6 . At"^/^) ] -E[ (A .W. At + ^ . At'^/^)E(A . W. At + ^.At'^/^)

The first terms equal zero because, by definition, the U. and U. terms in W

and are independent of one another. Also, E[W.W.] = 0. To see this,

consider

:

E[(U^^-l)(Uj2-l)] = E[Uj^2]E[Uj2] - E[U^2] - E[U^2] +1 = 0.

Also , for any j

,

E[A.W.At + S.At-^/^] = E[W.]A^At + E[^.]At^/^ = (A. 2)

since both E[W. ] = and E[5.] =0. Thus, all the covariance terms in (A.l)

are zero. Hence V[EAH] can be re-written as:

V[ZAH] = .|^ V[A.W At + «.At^/^]R^^"'^^ . (A. 3)

For each and every j

,
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V[A.W.At + e.hx}^'^] = E[(A.W At + ^ At^^^)^] - [E(A.W At + (? At^^^)]^ (A. 4)

From (A. 2), one can see that the second term in the right hand side of (A. 4)

equals zero. Furthermore, E[W.^.] = 0, since all terms comprise an odd

power of U.. Therefore,

V[A.W.At + e.Lt?^'^] = E[(A.W.At + (? At^^^)^]

2 2 2 5/2 2 3= E[A. W. At + 2A.W.«.At^ + ^ . At
]

2 2 2 2 3= E[A. W. ]At + E[^. ]At

- 2E[A.'^]At^ + E[^.^]At^ (A. 5)

where the last expression results from the independence of A. and W. and the

2 4 2
fact that E[W. ]

= E[U. + 2U. + 1] = 2. We now proceed in two steps.

First, we examine the A. terms and then the 6. terms. At the beginning of

2 2
the first balancing interval A, = (l/2)C„„S^a , where C„_ is evaluated at

the inception of the hedge, when the stock price is S^. Defining A„ =

2 2 2 2
(1/2)C_„S«CT , then E[A, ]

= A^.. At the beginning of the second rebalancing

2 2
period A„ = (l/2)C„„S,a . A„ can be approximated by expanding A around the

initial stock price, S^, and calendar time, t:

A2 = Aq + AgAS + (l/2)A2gAS^ - A^At

3/2 2
where terms of order At ' and higher are disregarded. A„ is then:

A2 = Aq + AgAS^ + 2AQAgAS + AqA^^AS^ -2AQA^At.
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2
Note that both AS and AS refer to the stock price changes over the first

rebalancing interval only. Applying the expectations operator gives:

E[A2] = ^0 "^
'^s^o'^^^'^

"^
2-^0'^S^O'^^'^

"^
'^O'^SS^O''^'^^

' ^AgA^At (A. 6)

For the d. coefficients, let us first define

2 3 2 3
r. = (X.U. + Y.UT) Af^
J J J J J

where

and

Xj = Sss].i'^M + St^j-i''

Y. =(1/2)C33S]./ -. (l/6)C353s].^a3.

One can approximate 6. using an expansion around the stock price, S^, and

calendar time. Hence, 8. can be rewritten as

e. = [Xq + XgAS + (l/2)XggAS^ - X^(j-l)At]U.At^/^ +

[Yq + YgAS + (1/2)Y33AS^ - Y^ (j - 1) At ]Uj At^/^

,

3/2
where terms on the expansion with order At ' and higher are disregarded.

Squaring d . and taking its expectation gives

E(5^) = K^At^ + K(j-l)At^

where

and

2 2
Kq = Xq + 15Yq + 6XqYq,
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K - ( 2X^X5 + SOYqYs + eXgYg + 6YoX3)So,i

+ (Xg^ + X0X3S + I5Y32 + iSYgYgs + 3X0Y35 + 6X3Y3 + 3YoX3s)So2a2

We can then rewrite (A. 5) as

V[A.W.At + d.At^^'^] = 2AQAt'^+ 2G(j-l)At^ + KgAt^ + KAt^

for all j=l, ..., n. Expression (A. 3) is then

V[SAH] = 2{.|^ [Aq^ + G(j-l)At]R^^"'J^)At^ + { .|^ [Kq + K( j -l)At]R^
^"' ^

^ ) At"

where from (A. 6)

G = ^232^2 ^ 2A0A3S0,. + AQA33s2a2-2AoA^.

It can be easily shown that

and

.^ (j-1)r2^"'J^ = [R^^-R^-Cn-DCR^-Dl/CR^-D^.

Consequently, the variance V[2AH] in (A. 3) becomes:

V[2AH] = 2AQAt2[(R2"-l)/(R2-l)] + 2GAt-^ [R^'^-R^- (n-1) (R^-l) l/CR^-l)^

+ KQAt-^[(R2'^-l)/(R2-l)] + KAt^[R2"-R2-(n-l)(R'^-l)]/(R2-l)2.

QED.

We now list the partial derivatives of Aq, Xq and Yq. Recall that

1 2 2

'^O
"^

2 ^SS^O*^

2
^0 ° ^ss^o'''' ^ St^o''-

and

Yq = (1/2)C33S2 a^ n- (l/6)C333S^a^
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The option's gamma is equal to C„_ = N(d)/(SCTr ), where N(
.
) is the standard

normal density function and d equals [ln{S/(Xe ^))/[aT ] + (l/2)aT . As A„

2 2= l/2C„„Sf^a , it follows that A^ can also be written

Aq = (l/2)N(d)Sar"^.

To obtain the partial derivatives A^, A„g and A
, we first note that

aN(d)/ad = -dN(d)

ad/as = l/(SaT^)

ad/ar = -(l/2)r"-'-(d)

where (d)=d-ar . The partial A„ is thus

dX^/dS = (l/2)N(d)ar'^ + (l/2)r ^Sa[aN(d)/ad] (ad/aS)

and substituting the partials aN(d)/ad and ad/aS in the expression above

gives

Ag = (l/2)N(d)[aT^-d]T"-'-

The partial Ag„ is

aAg/aS = (l/2)[aT^-d]r'-'-(aN(d)/ad)(SaT^)'-'- - (l/2)N(d)r "''•(ad/aS)
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-(l/2)[aT^-d]r'-'-dN(d)(Sar^)"-'- - l/2N(d)r '-^(Sar^)
"-^

(l/2)N(d)(Sar^/^)'-'-[d^-daT^-li

The partial A is
r

dX^/dT = (l/2)Sa[r"^(aN(d)/ar)-(l/2)r"^/2N(d)]

using 3N(d)/ad = -dN(d) and dd/dr = -(1/2)t (d) in the expression, we have:

dX^/dr = (l/4)Sar'-^/^N(d)[dd-l] .

Proceeding similarly, one finds that

Xg = X^[2pi/a - d/r^] -Xq/{Sot)
,

Yg = X^[o - (l/3)(d+ar^)/r^]- AQ/(3Sar),

Xg3 = X^^[2^l/a - d/T^] - 2Ag/(Sar) + AQ/(S^ar).

Ygg = Aggla - (l/3)(d+ar^)/r^] - 5Ag/(6SaT) + Ag/OS^ar),

X^ = A^[2/i/a - d/r^] + (l/2)AQr"^/2 (d + d)
,

and

Y^ = X^[a - (l/3)(d+(7r^)/r^] + (l/6)AQr"^/2 (d + d) .

PROOF OF PROPOSITION II:

By definition of the covariance operator

COV[SAH,SAH*] = E[(EAH)(SAH*)]-E[ZAH]E[EAH*]
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From the proof of Proposition I, the second term in the right hand side of

the above expression is zero. The covariance is then

GOV [ ZAH , ZAH* ] = E[ (ZAH) (EAH*)

]

which can be rewritten as

COV[EAH,ZAH*] = .Z^ E[(A W At + ^ .
A^'^^) (A*W*At + ^*At^/^)] R^^^'J)

which can be restated as

n .„,.,„ n
C0V[2AH,SAH*] = .Z E [ A A*] E[ W W*]R^ ^"'

J ^At^ + .Z E[ ^ . 5*]R^ ^"^^ J ^At"^

* *
Recall from Proposition I how A., A., 9., and 6. are expanded. Also, recall

that E[W.W.] = 2 if both options are held short or long. Taking

expectations and collecting terms gives:

C0V[2:aH,ZAH*] = 2[ .Z^ E[A.A*]R?'-^'J^At^ +.2, E[ ^ . 5*]R? ^"" J ^At^^
^ J=l J J^ J J=l ^ J J^ J

and from the proof of Proposition I, it is easily shown that the

COV[ZAH,EAH ] satisfies the expression in Proposition II. QED

.

PROOF OF PROPOSITION III:

Same as for Proposition II, except that when one option is held short and

the other option is held long E[W.W*]=E[ (U?-l) (1-U?) ] =-2. QED.

PROOF OF PROPOSITION IV:

By definition of the covariance operator,
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C0V[2:AH,EAH*] = E[(SAH)(SAH*)]-E[ZAH]E[ZAH*]

From the proof of Proposition I, the second term in the right hand side of

the above expression is zero. The covariance is then

COV[EAH,EAH*] = E[ (IIAH) (ZAH*)
]

which can be rewritten as

COVrSAH.EAH*] = .Z, E[(A.W.At + S . A^^^) (A*W*At + ^*^X?^'^)] R^'^^'J)
J=l J J J J J J

where

E[(A.W.At + ^.At^/^(A*W*At + ^*At^'^^ ) ]
= E[ A . A* W.W. At^ + 5./.At^

]

so that

COV[SAH,SAH*] = .Z, E[ A . A*] E[W.W*]R? *^"' J ^At^ +.Z, E[ ^ . 5*]R? ^'^" J ^At^^ (A. 7)
J=l J J J J J J=l J J J

We now proceed in two steps. First, we examine the first term on the R.H.S.

of the above expression and then the 6. terms. Recall that if the calls are

held long, W. = U?-l and W*= U*^-l (if the calls are held short, W. = 1-U?

* *2 *
and W.= 1-U. . The correlation between U. and U. is denoted p. Following

if

the proof of Proposition I, multiplying SAH by SAH and taking expectations

yields

.L E[A.A*]E[W.W*]R2("-J)At2 = Zp^.g, E[A

.

A*]r2("- J )At2

•k -k 2.

since Cov(U.U.) = p implies E[W.W.] = 2p (with a negative sign when one

call is held short and the other long). By approximating A. and A. with

•k

expansions around S„ and S^,, and taking expectations of the product gives
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.1^ E[A^A*]E[W^W*]RJ^"-J)At2 = 2p^ [ .^^X^X^R^At^ +jS^GR2At^] (A. 8)

A

where G is as provided in the statement of proposition IV.

To evaluate the second term in the R.H.S. of (A. 7), recall, from Proposition

I, how 6. and d. can be written in terms of X and Y and X and Y and how X.
J J J

and Y. can be approximated by higher order expansions around S^ and S^,.

*
Multiplying 9. and 9., taking expectations, and collecting terms,

* 3 *
terms, one obtains expressions involving the terms E(U.U.). E(U.U.).

*3 3 *3
E(UjUj ), and E(UjUj ).

It can be shown that E(U.U*) =p , E(U^U*) = E(U.U*"^) = 3p , and E(U^U*'^) =

2 *
3p(2p +3) so that E[9.9.] can be rewritten as

E[^..*] = pK^AtV^-J)-. pI^tV("-J)

A A

where K„ and K are as given in the statement of proposition IV. Summing up

over all j

,

^'^E[9.9.] " pKgAt^R^ + pKAt^R2 (A. 9)

Combining (A. 8) and (A. 9) gives the covariance of the accumulated hedging

errors as stated in Proposition IV. QED

.
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Footnotes

1. Combining options into portfolios to reduce the risk of hedging errors

caused by discrete rebalancing is distinct from using multiple options to

reduce the risks resulting from having more than one state variables. The

latter possibility has been discussed in the previous literature [See, for

example, Wiggins (1987), who considers employing not one but two options

plus the stock to form a hedge portfolio when the volatility is stochastic]

.

2. We assume daily rebalancing is equivalent to 20 rebalancings every month.

Similarly, weekly rebalancing requires 4 rebalancings in a month.

3. For the one-month option, we do not report the numbers for weekly

rebalancing since the underlying assumption that hedging errors are zero-

beta is unlikely to hold in that situation.

4. This assumes that the hedging errors are normally distributed. With a

standard deviation of 13%, P[Profits < |E(Profits) = 5%] = 0.35.

5. Using panel B, Table I, the standard deviation of the accumulated hedging

errors for 19.84 calls with strike price of 100 is $0.2778x19.84 = $5.51.

6. Glister (1990) notes a related problem with some of the empirical tests

in that the hedging errors of the delta-neutral hedge may not be zero-beta.
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Table I

Dispersion of Accumulated Hedging Errors

The table presents the standard deviation of the accumulated hedging errors to maturity. The current stock

price is set at 100, the risk-free rate at 10%, the expected return on the stock at 15% and the standard

deviation of the stock return at 15%. Daily and weekly rebalancing respectively correpsond to 240 and 48

rebalancings per year. The simple model is a simple generalization of the Boyle and Emanuel and the

Leland models.

Panel A: One-month Call
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Table U
Correlations Between Accumulated Hedging Errors of Different Options

The table presents the correlations between the accumulated hedging errors for different

options on the same asset with the same maturity but different exercise prices. The current

stock price is set at 100, the risk-free rate at 10%, the expected return on the stock at 15%

and the standard deviation of the stock return at 15%. Daily and weekly rebalancing

respectively correpsond to 240 and 48 rebalancings per year.

Panel A: One-month Call, Daily Rebalanced

Strike Price 98 100 102 104

98

100

102

104

1.000 0.944
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