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THE QUANTUM THEORY OF ANTIFERROMAGNETISM*

R. J. Harrison

Abstract

Recent neutron diffraction experiments on antiferromagnetic crystals at low tem-
peratures indicate the existence of a long range correlation in direction of the spin mag-
netic moments. Although the Ising model predicts such a correlation, a consideration
of the uncertainty relationships for spin shows that in the correct quantum description
of an antiferromagnet, the ordering cannot be the simple type given by this semiclassical
model. The problem of determining the lowest quantum state of an antiferromagnet is
much the same as the quantum chemical problem of determining the state of a large
molecule. The short range correlation of spin moments is measured by a quantity called
the "bond order" in molecular problems. This assumes its maximum in the lowest
eigenstate.

In an attempt to make progress in solving the general quantum mechanical problem,
a new method of approximation has been developed and applied to the linear antiferro-
magnetic chain. The spin eigenfunction is expanded in terms of a set of "valence bond
spin functions", grouped according to "degree of excitation". The amplitudes for each
excitation are determined by the solution of an infinite set of linear difference equations.

* This report is based on a Doctoral thesis in the department of Physics, Massachusetts
Institute of Technology.
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THE QUANTUM THEORY OF ANTIFERROMAGNETISM

I. Introduction

In the semiclassical Ising model for ferro- and antiferromagnetic substances, the

energy is proportional to the sum of scalar products of the magnetic moments of neigh-

boring pairs of the elementary magnets. The proportionality constant is positive for

ferromagnetic, and negative for antiferromagnetic substances. For antiferromagnetism,

the lowest state would be reached when, if geometry permitted*, neighboring magnetic

moments were always antiparallel; the highest state would correspond to all magnetic

moments parallel.

Recent experiments (1) give evidence that the ordering of the spin magnetic moments

of an antiferromagnetic crystal below the Curie temperature is, qualitatively at least,

like that predicted by the Ising theory. A more detailed analysis of the experimental

results may be warranted because of differences between predictions of semiclassical

theory and the quantum theory which we shall now discuss.

One of the early developments of the new quantum theory was the explanation of the

chemical bond. An atom having an electron with an unpaired spin forms a bond with a

similar atom, provided that the spin state of the resulting molecule is one in which the

electrons of the two atoms have antiparallel spins. The mechanism of binding was

described in terms of a negative exchange integral. It was shown later that positive

exchange integrals could arise in certain circumstances, and that a parallel alignment

of spins would then be favored. Such positive exchange integrals were characteristic of

the situations where ferromagnetism occurred, and provided an explanation of this phe-

nomenon.

Since antiferromagnetism differs from ferromagnetism in having a negative exchange

integral, one returns to the theory of the chemical bond when investigating ferromag-

netism. The problem of describing the quantum state of an antiferromagnet is like that

of describing the state of a complex chemical molecule. Even if we confine our attention

to the lowest state, as we shall do, the problem is made extremely complicated by the

phenomena of "resonance" (3). Thus one may consider the example of the benzene

molecule which has six Tr electrons with unpaired spins. Here the lowest state is a

mixture of the two Kekule structures and the three Dewar structures. As the number of

spins increases, the number of bond structures among which the molecule is in reso-

nance increases very rapidly.

There is just one state which has a relatively simple description. This is the state

which corresponds to the lowest state for a ferromagnet and to the highest state for an

antiferromagnet. This state, with large total spin, is not very different from its ana-

logue in the semiclassical Ising model. On the other hand, the quantum state, which is

*Instances of geometries where one cannot have ordered antiparallel arrangements are
the face-centered cubic lattice, and the two-dimensional triangular net (2).
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the lowest for an antiferromagnet and has zero spin, behaves quite differently from the

corresponding state in the Ising-model description. This fact makes the analogy of an

antiferromagnet with a large molecule more pertinent than the analogy with a ferro-

magnet.

In previous work (5, 6, 7) it has been recognized that the lowest quantum state of an

antiferromagnet does not exhibit perfect ordering of spins. In the discussion that

follows, we try to bring out more clearly the physical concept involved in describing the

state of spatial ordering of spin magnetic moments. We shall do this by drawing certain

qualitative conclusions from the consideration of Dirac's well-known operator (8) for the

exchange interaction. This operator, acting on the spin part of the wave function, is the

operator for that part of the energy arising from the exchange interaction. Calling this

operator H 1, we have

H1 = -2 a (1 + ) (j) (1.1)

i, j

where, in the nearest neighbor approximation that we consider, the sum is taken only

over neighboring pairs of electrons i and j; a is the exchange integral, and is negative

in the antiferromagnetic case; (i) and ao ) are the Pauli spin matrices operating on the

spin eigenfunctions of the i'th and the j'th electrons.

This expression is useful because it gives the explicit dependence of the energy upon

the average value of spin correlation o) . o() between neighboring spins. If one

replaces the operators a(i) and a(J) by classical vector quantities proportional to mag-

netic moment or to spin angular momentum, one essentially has the semiclassical

expression for the energy in the Ising model of a ferro- or antiferromagnetic material.

One may verify immediately for this semiclassical case the statements we made at the

beginning regarding the arrangement of spins for the lowest and for the highest energy

states.

In quantum mechanics, the situation takes on added complexity. Because of the

properties of spin angular momentum, one cannot have a quantum mechanical state in

which two electrons can be described as having parallel spin angular momentum vectors.

Two neighboring spins are as nearly parallel as they can be if they have equal compo-

nents in some one particular direction, while the other components are completely

uncorrelated. Under these circumstances (i) . (j) takes its maximum value of 1.

This may be compared with the magnitude of

()] = (j)] 3

for the individual electrons.

If two electrons are paired to form a singlet state, the spin angular momentum of

one will be antiparallel to that of the other, but, at the same time, it will be completely
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uncorrelated in direction with that of any other electron. Thus if 1 and 2 are the elec-

trons thus paired or "bonded", a) .h(2)has the value -3; if k is any other electron,
d( 1) · o(k) and ( 2) · o(k) have the average value zero.

The state in which all 2N electrons have the same components of spin in a given

direction z, e.g. all spins "up", will be an eigenstate of the total spin angular momentum

operator corresponding to the eigenvalue S(S + 1)h /412 = N(N + l)h /4wr, and of the

energy operator HI corresponding to the eigenvalue -Nza, where z is the number of

nearest neighbors. This is the highest state for the antiferromagnet, and the lowest

state for the ideal ferromagnet. It very much resembles the parallel spin case of the

Ising model; the difference is that instead of all magnetic moments being parallel, the

components of all moments in one specific direction are equal, with no correlation

among any other components.

Let us examine what would seem to be the natural analogue of the antiparallel case of

the semiclassical model. This would be an alternating "spin-up, spin-down, spin-up,

spin-down, etc. " arrangement in which every other electron is in an eigenstate corre-

sponding to az = + 1, while its neighbor is in an eigenstate corresponding to o = - 1.

(i). (j)

would have the value -1, giving the value zero for the average of H1 over such an

arrangement. However this arrangement is not an eigenfunction of either the total spin

or of the energy operator H 1. It does not, therefore, correspond at all to the lowest

state of an ideal antiferromagnet.

From the above example, and from the minimal properties of the correct eigen-

function, we may deduce that the lowest eigenvalue for the antiferromagnet is smaller

than zero. While there are Nz terms in the sum (Eq. 1. 1), there can be at most N pairs

of neighboring electrons in singlet states. Therefore, the energy must be greater than

that corresponding to

(i) . (j) =_ 3

giving Nz a as the lower bound for the lowest eigenvalue*.

We shall see later that one can describe the situation in which specified pairs of

electrons are in singlet states, by valence bond spin functions in which a bond connects

* Whether the difference in energies between the highest and lowest states is greater,
or is smaller, in the quantum case than it is in the semiclassical case depends on
how we express the correspondence between the two. If we replace the spin operators
by classical angular momentum vectors of magnitude 2h/2rr, the energy values for the
highest states will correspond, while the lowest state will have a lower energy in the
quantum case. If we replace the spin operators by classical angular momentum vec-
tors of magnitude 1~ -h/2fw, then the quantum energy is lower in the highest state,
and higher in the lowest state than the corresponding semiclassical values.
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each such pair. The lowest energy of the system will be reached when as many pairs of

neighbors will be in singlet states as much of the time as possible. This situation is

realized by the system being in "resonance" among different types of bond structures,

as was described for benzene.

The definition of bond order given by Penney (9) for molecular problems, is a meas-

ure of the fraction of the time a given pair of electrons spends in the singlet state. The

bond order is zero if

.(i) o(j)

is zero, and is unity, if

(i) b(j)

is equal to its value for the singlet state, -3. Since the energy is also a measure of

the bond order may be expressed directly in terms of the energy.

We have found it useful to apply this concept of bond order in discussing antiferro-

magnetism since it is a parameter that is a direct measure of the short-range order of

the spin magnetic moments of the electrons. The lowest state is the one that maximizes

the absolute value of the short-range spin order. Thus in Slater's or Hulthen's descrip-

tion of a linear antiferromagnet, which we shall discuss in more detail later, the lowest

quantum state is described as a superposition of states, the majority of which have

arrangements differing from the regular "alternating" arrangement of spins by having

about 20 percent of the spins "mixed up".

This might make it appear that the order is less than that corresponding to the alter-

nating arrangement, but the resonance between states results in the opposite being true.

The bond order for the actual lowest state of the linear chain is about 0. 6, whereas, as

discussed before, the alternating arrangement corresponds to a bond order of 0. 33.

Returning to the experimental results on neutron diffraction in antiferromagnetic

crystals, we see that it would be desirable to determine from the theoretical analysis of

the scattering of neutrons in a magnetic medium exactly which parameters are measure-

able by neutron diffraction. Presumably these are order parameters analogous to those

measurable in X-ray work on alloys. Then one could proceed to compare these measured

quantities with the theoretical predictions. We have seen that one certainly expects a

high degree of short-range order. However we have no theoretical information

regarding other order parameters, and in particular, regarding long-range order. The

experimental evidence points to the existence of at least some degree of long-range order

in actual materials. It may be pointed out that in these crystals, there is the so-called

"superexchange" (10, 11) interaction which is described by a somewhat more general

type of operator than in Eq. 1. 1. Although the considerations which preclude any
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strictly ordered arrangement are independent of the form of the interaction operator,

the lowest state under the more general operator will no longer be simply the one which

maximizes the short-range spin correlation. It is therefore conceivable, though perhaps

not likely, that if one could solve the spin state problem for both cases, one might find

that long-range order occurred for one case but not the other.

We have therefore investigated the quantum mechanical solutions for antiferromag-

netic models in an attempt to make headway in clarifying this situation. We present

details of this investigation, and include a summary of pertinent previous work in this

field.

II. Development of Formalism

Finding the lowest quantum state in a model describing an antiferromagnetic

material in terms of a localized system of spins having only nearest neighbor interaction

poses problems of interest and difficulty, so we shall try to set up our formalism in a

way which allows us to confine our attention to such a system, disregarding for the

moment the further complications which can arise in actual antiferromagnetic crystals.

We shall first show how the Hamiltonian operator acting on the complete wave

function describing both the spatial and the spin coordinates of a system of 2N electrons

can be replaced by an equivalent operator acting only upon the spin part of the wave

function. (With the assumption that only nearest neighbors interact, this operator is the

one described in section I. ) The problem is then one of determining the eigenvalues and

corresponding eigenfunctions of this spin operator. We can do this by expanding the

spin eigenfunction in terms of an independent set of spin functions, and determining the

coefficients in this expansion by solution of a set of linear equations whose secular

equation determines the eigenvalue.

The idealized system which we shall consider consists of a set of 2N electrons which

are more or less localized at 2N sites. The complete wave function 1 for this system

involves both the spatial and the spin coordinates of each of these electrons. We assume

that the interaction between the electrons is described by a Hamiltonian operator H, not

involving the spin, and whose form we shall leave otherwise unspecified for the moment.

The function 4lis an eigenfunction of H, such that the Schroedinger equation

(H - W) = 0 (2. 1)

is satisfied.

The Pauli principle requires that \4 be antisymmetric in the coordinates of all elec-

trons. We may construct functions of this type from a function, the "representative

term", which treats the electrons as distinguishable, by forming the sum of all the

(2N)! functions which arise from the (2N)! possible permutations of the electrons among

themselves in the representative term. Each function includes a factor of plus or minus

one, according as the permutation is even or odd. The representative term itself may

be written as the product of a spatial part and a spin part.
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We assume that 1 may be written in this way. Thus

4 = (-l1)j Pj [u(1,2, .... ZN) (1,2.....N)] (2.2)

J

where

u(l, 2, .... 2N) (1,2 ..... 2N) (2. 3)

is the representative term, with u the spatial part, and the spin part; P is one of the

(2N)' operations of permuting the 2N electrons among themselves, acting on both u and

i; and j is even or odd when Pj is even or odd. If we insert this form of into the

Schroedinger equation (2. 1), multiply by

u(l, 2 ..... 2N) - u(xl, Y1 Z, Y 2' Z,' 2 ' XZN' Y2N' Z2N)'

and integrate over the spatial coordinates xl, ....... Z2N' we get

X,( 1)j (u H-W I Pj u) · Pj 0 = O

j

or

Gj Pj 9 = o (2.4)

J

where we have written

Gj = (l) j (u I H-W IPju) (2.5)

i, the spin part of the representative term of the complete eigenfunction T of the

operator (H - W) is thus an eigenfunction of the operator

EGj Pj
j

We shall therefore call the spin eigenfunction of the system. The operator

Z Gj Pj

involves the matrix elements Gj, which are pure numbers, and the permutation opera-

tors Pj, permuting the coordinates of the electrons in the spin eigenfunction.

So far our discussion has been quite general. We shall now introduce certain simpli-

fying assumptions.

These are, first, that permutations involving the exchange of more than a single pair
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of electrons do not give any contribution; and, second, that only those single exchanges

which involve the exchange of neighboring pairs of electrons give a contribution. (The

last assumption may be relaxed in special cases to include interactions with a finite

number of non-nearest neighbors. )

These assumptions give for G.:
J

Gj = Q - W, if Pj is the identical permutation,

the ordinary Coulomb energy term;

G. = -a, if P. interchanges a pair of nearest neil
ij 

G. = 0, in all other cases.
]

(2. 6)

Although we have spoken of interchanging neighboring electrons as if they were

distinguishable as well as localized, this is only because we are confining ourselves to

dealing with the representative term of the entire wave function. When we exchange

electrons in the spin part of that term, if the spatial part describes the electrons as

localized at definite sites or in given orbitals, this exchange effectively interchanges

the spins of the electrons which are localized at these positions. Hence we shall some-

times speak of interchanging the orbitals, or the spins.

We may also note here that the permutation operator which acts on a spin function to

interchange the spins of the electrons 1 and m may be represented by the operator

P_ = - ( + ( ) (m))
l,m 2 - -

where ( 1) and (m ) are the Pauli spin operators for electrons 1 and m, so that Eq. 2.4,

together with the assumptions of (2. 6) made for the form of Gj, gives

2 ZfQ-W + (1 +() (m)) 0 (2.7)
1, m

nearest
neighbors

which leads directly to the form of the operator H1 given in Eq. 1. 1.

We have now formulated our eigenvalue problem for the spin eigenfunction ~, in terms

of the operator

>Gj Pj

j

so that is determined by Eq. 2.4 together with the relations of (2. 6) for G.. This

problem can be solved formally by expanding 4 in terms of a set of independent spin

functions ~i,

= i~ i (2.8)

i
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and then, by the procedure which we shall outline, obtaining a set of linear equations for

the coefficients a..

The eigenfunction i is a function describing a many-particle spin state. We must

represent such many-spin wave functions in terms of the single electron spin functions.

There are 22N independent spin functions in a set which is sufficient to describe any

possible spin state of 2N electrons. However, it is possible to use a smaller subset of

spin functions which are eigenfunctions corresponding to a common eigenvalue of any

operator which commutes with

ZG. P.

j

S2 and Sz , the operators for total spin, and for components of spin in the z direction

respectively, are such operators.

There are two types of spin eigenfunctions which we shall discuss. The first type,

which we shall call the spin product functions, are eigenfunctions of S z only. The

second type are the valence bond functions and are eigenfunctions of S2 as well as S z

and therefore have the advantage of effecting a greater reduction in the degree of the

secular equation when they are used than do the spin product functions.

There are 2 N independent spin product functions, which can be formed by taking

the product over the 2N electrons of spin functions a or for each electron. For

example, one of these spin product functions is

a(l) (Z) (3) a(4) (5) a6) a(7) ...... a(2N)

a and are the well known spin eigenfunctions corresponding to the eigenvalues

2h/2rr, and - h/2Z, respectively, for the z component of spin angular momentum of a

single electron.

All of the spin product functions are orthogonal to each other in spin space. They

are also eigenfunctions of the operator S corresponding to the eigenvalue (n - n )h/4r,

where n is the number of a's, and n is the number of i's. The subsets of the set of

spin product functions corresponding to the different values of S fulfill the condition of

being noncombining. The subset corresponding to S = 0, in which equal numbers of

a's and 's occur in the product, is of particular interest. There are (N)! /(N ) inde-

pendent functions in this subset.

The valence bond functions may often be used to advantage because they are eigen-

functions of S as well as of S . They may be defined in several equivalent ways.
-z

First, they may be constructed out of the spin product functions just defined. A

bond function having a bond between two specified orbitals will be formed of all spin

product functions which assign opposite spins to the electrons in these two orbitals.

The sign is plus or minus, depending on the direction of the bond with respect to the

spin. Thus, a bond function with bonds between the M electron pairs a-b, c-d, e-f, ...

but not between any of the remaining 2(N - M) electrons, is

-8-
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6 I (2.9)
a-b, c-d, e-f... = ,6ab cd ef ...... 9)

j

where the sum is over all spin product eigenfunctions .j with a particular value

(n a - nP)h/4T for Sz, and 6 ab' etc., is +1 for a j which contains a(a) (b) as factor; it

is -1 when P(a) a(b) occurs in j, and it is zero if either a(a) a(b) or p(a) P(b) occurs.

If we perform the summation we get

a-b, c-d, e-f... = [(a)(b)- (a)a(b)] [a(c)(d) - (d)a(d)] ..... xC a(l)p(m).... (2. 10)

where the products are taken over the M pairs, and the sum is taken over the

[2(N-M)] ! /(na-M)! (n -M)! different ways of distributing (na-M) a's and the (n -M) 's

over the 2(N-M) electrons. It can be shown that bond functions containing the same

number of bonds are eigenfunctions of S2 corresponding to the same eigenvalue. For the

singlet state with S2 = S = 0, all electrons are paired, there being N bonds.,
Not all the bond functions which one can construct by drawing bonds between pairs of

electrons are independent. Rumer (12) has given a rule for constructing a complete

linearly independent set of bond functions. In the case of the singlet state, this rule is

that one represents the electrons by points distributed around a circle. Bonds are repre-

sented by lines connecting pairs of points. If one draws all possible arrangements for

the N bonds, such that each lies wholly within the circle and no two bonds intersect, one

will obtain (2N)!/N! (N+1)! diagrams, representing a complete, linearly independent set

of singlet-state bond eigenfunctions. These are the canonical structures. The reduction

of the order of the secular matrix by use of the bond functions is a factor of N+1 greater

than one gets by using spin product functions. Thus, for example, with 10 electrons,

the secular equations are of order 252 when using spin product functions, and of order

42 when using bond functions.

Any other bond function with the same number of bonds may be expanded in terms of

the noncrossing set. If there is only one pair of crossed bonds, the uncrossing may be

done by means of the rule, expressed symbolically,

a b a b a b

c d c d (2. 11)

This follows immediately from the identity

[a(d)P(a)- (d)a(a)] [a(c)p(b)- (c)a(b)] =

[a(a)(b)- P(a)a(b)] [a(c)(d)- (c)a(d)]- [a(a)(c) - (a)a(c)] [a(d)p(b)- (d)a(b)]

-9-



Cases involving multiply crossed bonds may be handled by successive uncrossings,

using the above rule, or by other equivalent methods (4).

Having made this digression in order to discuss some properties of the kinds of

functions b in terms of which we may expand the eigenfunction ~, let us now return to

the problem of determining the coefficients a in that expansion, which we rewrite

PN

= ai i (2. 12)
i=l

where PN is the number of functions in the subset in the terms of which we expand.

f must satisfy Eq. 2. 4, which becomes

Z aiGjPji=O . (2. 13)
i j

If we multiply this by 1 and perform the summation over spin coordinates, we are led

to the following set of linear equations for the ai's:

PN

21i Gj -j l i ? ai=H-Wli = 
i j ( i=

1 = 1,2... PN (2. 14)

where

[H-W] li = Gj (1 Pjii) (2. 15)

is the matrix element of the secular equation.

If the functions i are the set of spin product functions, because of their orthogo-

nality property these matrix elements are zero unless 1 and i are alike except for the

exchange of not more than a single pair of neighboring spins. In this case we are led to

a secular equation which is nearly diagonal.

If however the functions i are the set of bond functions, they no longer are ortho-

gonal, and the secular equation contains a large number of nondiagonal terms. The

actual calculation of the matrix elements is expedited by sets of rules which have been

developed for the purpose (13, 14).

In this latter case, where we are dealing with nonorthogonal functions i', it is

advantageous to derive the equations for the ai in a slightly different form, due to

Wheland (15), for which the secular equation has fewer nondiagonal elements. Our deri-

vation differs somewhat from Wheland's in order that we may be able to demonstrate the

exact relationship between these equations and the ones we have already derived, which

are due originally to Slater (16).

-10-
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For this purpose, we introduce a set of functions p' which is determined by the condi-

tion that it form a biorthogonal set of functions together with the functions b. That is,

(1 lOk) = 0, 1 k; (; Ok) = 1

1, k = 1,2 .... PN (2.16)

(If the functions are orthogonal, the set 4' is identical to the set c. )

If we then multiply Eq. 2. 13 by the function b, and again sum over spin coordinates,

we get

>3 jai Gj(l IPJ = 0. (2. 17)

i j

If the effect of the permutation operator P. can be expressed as
J

(J)
Pj i i = bik (2. 18)

k

then, using Eq. 2. 16, Eq. 2. 17 becomes

(j)
Za i Gj bil =0

i j

or

PN

ai( Gj b i)= 0 (2. 19)

i=l j

1=1,2, ...

where

(j)
Gj bil (2. 20)j i l

is the il'th matrix element of Wheland's secular equation, and is not, in general, equal

to the li'th element. For orthogonal functions 4 i , these equations are identical with the

ones given by Slater. For nonorthogonal functions, we may easily show the equivalence

as follows:

Since

l =E (l+ lm)+m (2. 21)
m

as one can verify from Eq. 2. 16, then

-11-



[H-W]i i = Gj (m1Pj 'i )

j

E j( (+ Im) >m l bik tk)
j m k

(j)
Gj Z (1 m)bim

j m

or

[H-W] li ( 1 m )(G bim) (2. 22)
m j

This is the desired relationship between Eq. 2. 15 and Eq. 2. 20.

In order to apply this latter "method of spin valence", we must be able to compute

the coefficients b j ) of Eq. 2. 18. When we apply the permutation operator Pj to a bond

function i', if this operator exchanges the two electrons sharing a bond, the result is

just the negative of the original bond function. If the exchange is not of this type, the

resulting bond function will be a "crossed" structure, which when resolved into sets of

the canonical structures by means of the rules for "uncrossing" bonds we have discussed,

determines the coefficients b( j )
ik'

III. The Infinite Linear Antiferromagnetic Chain - Present Status

If one is interested in obtaining a solution to a three-dimensional problem, one

usually starts (and often finishes) by consideration of a corresponding one-dimensional

problem. Accordingly, we shall begin by considering the solutions to the problem of the

linear chain.

Bethe (5) has given a general solution to the problem of the linear ferromagnetic or

antiferromagnetic chain. He describes the spin state of the system in terms of the spin

product eigenfunctions, specifying these functions by means of the numbers nl, n2 .... n r

which denote the location of the a's. Thus the correct eigenfunction of the system is

given by

= Z an ln2 .... n ().... a(nl)(n 1 + 1) .... a(n 2 ) .... a(nr) .... (2N) . (3. 1)

He obtains a set of linear partial difference equations of the first order for the coef-

ficients a , which have the formal solutionn n1 .... r

an nr =j P exp ki n + i j (3. 2)

P i=1 i<j

12-
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where the sum is taken over the r! permutations of the number 1 through r; and theP
permutation operator P is considered operative on the indices i of the coefficients k i and

on the indices i, j of the coefficients ij, (but not on the indices i of the numbers ni); and

where the coefficients k i and ij may be determined from a set of equations arising from

the periodic boundary conditions. There are a number of different sets of these coeffi-

cients corresponding to the different eigenvalues of the problem. These eigenvalues are

given by E = (1 - cos ki), with the energy W related by W = Q - Naz + 2 ea.

Bethe shows that the highest ferromagnetic (a> 0), and lowest antiferromagnetic

(a< 0) state for 2N spins is the singlet state, with the ki's determined by the relations

N

2Nk. = 2(2i-) + i 1, 2, .... N, (3. 3)

j=1

with

cot ~ i 2cot ij/22 -cot kj/2

Tr< ij <

From solutions of these equations, one may in principle obtain complete information

as to the eigenfunctions and eigenvalues for any value of N. In practice, it is difficult

to carry out the algebra involved.

In the limit for N very large, Bethe (5) and Hulthen (7), have given asymptotic solu-

tions to the above equations. k is given in terms of a distribution function A(k):

A(k) = N (3. 4)

4 sin2 kcosh ( cot )

which represents the number of values of k. within the interval dk. The eigenvalue is
1

given by

= (1 - cos k) + f 2 sin2 k A(k)dk = 2N log 2 (3. 5)

The energy of te lowest state is thus

W-Q = -2 Na + 2 Na (2 log 2)

= 2zNl a -NI a (1. 3863)

=- 0. 3863 (2N) I a (3.6)

corresponding to a fractional bond order of 0. 590.

The problem is still incomplete unless one has the eigenfunction. Although a formal

solution would seem to be given by Bethe's method, it is difficult to interpret the result.

Accordingly, we have considered other approaches to the problem of the linear
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antiferromagnetic chain, which provide fuller information in this respect.

Slater-Hulthen Approximation for Infinite Chain

One such approach is the approximate treatment of the infinite chain developed by

Slater (6) and elaborated on by Hulthen (7), involving the use of spin product wave

functions.

Slater's approximation started from the assumption that the spin arrangement for

the lowest level of the antiferromagnetic chain differed very little from the completely

alternating arrangement apapap... A given spin product function was characterized

by a single parameter p giving the number of exchanges of neighboring spins which would

produce this state, starting from the alternating state. All spin product functions with

the same value of this parameter were assumed to enter with the same coefficient in the

correct wave function. In computing matrix elements of a given spin product function

with other functions, only those spin functions were considered in which the sites where

neighboring spins were interchanges were far apart from each other. The others were

disc arded.

With these assumptions, Slater obtained a second order linear difference equation for

the amplitude of the p'th spin product function. He found an approximate solution of

this difference equation by the WKB method, obtaining a value of -0. 29 jal (2N) for the

energy of the lowest state, and a value of +0. 691 al (2N) for the energy of the highest

state. The energy value for the highest state would not be expected to be good, since

the approximation is not valid in this region. We may compare the value -0. 291 a (2N)

for the lowest energy state though with the value -0. 38631 ca (2N) from Bethe's solution.

The spin state having the largest amplitude in Slater's solution was one for which p

was about 6 percent of the total number of spins.

Hulthen, in his "first approximation", assumes that all spin product functions

having the same number M of pairs of neighbors with opposite components of spin in the

z direction enter with the same amplitude in the correct eigenfunction. The value of M

ranges from 2N, corresponding to the completely alternating spin product function, to

the value two. The parameter M thus is designed to cover a larger range than Slater's

parameter p with which it is approximately equivalent, for small p.

Having made this assumption, that the parameter M is sufficient to describe the

eigenfunction, Hulthen computes the matrix elements of the spin function formed by

summing all spin product functions having the value M, with the corresponding functions

characterized by the values M, M-2, and M+2. He considers the combinatorial problem

in a more detailed and exact fashion than is given in Slater's treatment. In this way he

is again led to a linear second order difference equation for the coefficients in the expan-

sion of the eigenfunction. He also solves the equation by the WKB method. He obtains

a lowest energy eigenvalue of -0. 31(2N) a , and a value for the highest energy of

W = Q + N I a . That the highest energy level is in agreement with the correct value in

this case comes from the facts that the combinatorial coefficients entering into the
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difference equation were exact for all values of M, and that the approximation that all

states with a given M have equal weight becomes strictly true when M assumes its mini-

mum value. The approximate eigenfunction that Hulthen obtains is given by

2N 1 W(M)

i P ~C(M) WM) E (M) (3.7)
M=2 M constant 

where the sum within brackets is taken over all the W(M) spin product functions con-

sistent with a given M. The coefficient p(M) may be approximated in the neighborhood

of its maximum by the Gaussian function

(M-Mo)2
-aN

M (3. 8)
p(M) - e 0

where a is a numerical constant of the order unity, and M o is equal to 0. 775(2N). The

maximum value of the function p(M) W(M) occurs at the value M = 0. 658 (2N). Hulthen

also carries out a "second approximation" in which he introduces a second parameter

describing how many "wrong" second neighbors a given spin has. With this second

approximation, Hulthen obtains the energy value for the lowest state -0. 347 (2N) [a I,

which is somewhat closer to Bethe's value.

Valence Bond Approximations

Because of the advantages inherent in describing a system of spins in terms of the

valence bond spin eigenfunctions, it was thought desirable to develop a method of

obtaining an approximate eigenfunction for the infinite chain using these types of

functions in the expansion. The nature of the approximation tried was one used by

Pauling and Wheland (17) in their solution of the secular equation of the napthalene mole-

cule by the valence bond method. Without approximations, the equations determining

the lowest state of napthalene are of fourteenth order. This order is reduced to four,

by the assumption that all canonical structures with the same "degree of excitation"

occur with the same coefficient. The degree of excitation is defined as follows.

In a given canonical structure, a bond which is drawn between orbitals that are

adjacent in the molecule is called "effective"; a bond between orbitals that are not

actually adjacent in the molecule is "ineffective". The degree of excitation, is just the

number of "ineffective" bonds in the canonical structure. Or in other words, structures

with the same degree of excitation have the same number of double bonds. Since struc-

tures with a given number of double bonds have the same energy in a model neglecting

resonance, one might expect that their amplitudes when in quantum mechanical

"resonance" would not be too different.

The full set of fourteen equations was later solved by Sherman (18), checking the

fact that this type of approximation gave good results.
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By using this same approximation for the infinite linear chain, namely, making the

assumption that all canonical structures having the same degree of excitation enter the

eigenfunction of the problem with the same coefficient, we were able to find a solution

using a procedure very similar to that of Slater and Hulthen. We had expected that since

the valence bond functions are correct singlet spin functions, we might obtain a better

approximation, for the same labor, than had been obtained when starting from the spin

product functions. We did in fact obtain a value for the energy of the lowest state which

was closer to the "exact" value than was obtained by Hulthen, even in his "second

approximation" .

IV. Approximate Solution of Infinite Linear Chain by Valence Bond Method

We assume a periodic chain with N electrons per period. The canonical set of bond

functions for this case is found by drawing a plane 2N-gon, and connecting the N corners

together in pairs such that none of the connecting lines or bonds intersect. The degree

of excitation for any given canonical structure is exactly the number of bonds which

connect other than nearest neighbors.

We shall assume that the correct spin eigenfunction can be obtained to a good degree

of approximation by an expansion in terms of the complete set of canonical singlet bond

functions in which all canonical structures having the same degree of excitation enter

with the same coefficient. Symbolically, the spin eigenfunction is assumed to be of

the form

N-2 k.

E ai( E i (4.1)

i=O i const.

where the sum within brackets is over all the k i functions 0i having the degree of excita-

1tion i. The number k i , of canonical structures of excitation i has been given by Wheland
(19).

In order to apply the formalism developed in section II to the determination of the

best spin eigenfunction in our problem, we must find out what happens to the functions

i, which we shall take to represent bond functions of excitation i, when we apply the

permutation operators, exchanging nearest neighbors.

The answer is that we either get back the original function with a negative sign, or

we get a "crossed" bond function, which when "uncrossed" gives the original function

minus a different bond function. This other bond function may have the same degree of

excitation, or it may be one degree higher, or one or two degrees lower in excitation.

Figure 1 shows the way that these different cases can arise.

In using Eq. 2. 13 we must form the sums . G P i , where P. consists of the

identical permutation and the 2N permutations of neighboring pairs, and where

Gj = Q - W for the identical permutation, and -a for the others.

-16-
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For the 2N possible exchanges of neighboring

pairs, for a bond function i of excitation i:

/ i- N-i times, there will be a bond between the

-'- -< pair exchanged, giving a contribution (N-i) a i to

*·\ - the sum G P

i-2 An average of IIA 2N times, case IIA will

~- \occur, contributing -IIA ZNa (i- Di) where the

i 's are in the set of which i is a representative,

*. _ though not the original function i

Case IA or IIB will occur an average of

(IA + IIB) 2N times contributing -(IA + IIB) ' 2Na

[(i - i- 1] where ti-1 1 is of the set having

excitation i-l.

Case III will occur an average of IIIi 2N

=-- ,. times, contributing - IIIi . Na [i- il].

'*l ·+ Case IB will occur an average of I 2N

times, contributing - IB 2Na i- 2
Figure 1

Thus, altogether,

ZGj Pj i = (Q-W) i + [(N -i)a-(II + I II + III + IB)2Nal4i

+IIA' 2Nai"+ III 2Na i+l + (I + IIi) 2Nai
+IB il A B i-l

+BI B 2N ~i2 (4.2)

Or, since
(I + I + I + +IIIi)- 2N = N + i,

A B A B

we have, setting !i' = 0i1 1

ZGj Pj i
j

= IIIi 2Nai+l+ Q- W - 2ia+ III Z2Na}i
i+1 f A i· LDIP

+ (I' + IIB) 2Na i- + IB - 2Na 2A B i_1 B i-2

i i
C+1 = III 2Na;

Ci = (I + II) 2Na;
-1 A B

C = iQ - W -.2ia +II 2

i iC = I 2Na-2 B

-17-
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ZGj j i C- 2 i-2 1 i + + C i
i

j

To determine the coefficients a. of Eq. 4. 1, we use the equations in the form
1

N-2

i=O

k.
1

i=const
a i EGj Pj i =

j

(4. 5)

0

(4. 6)

N-2

f, Z (kiai) G Pj i = 0
i=0 j

i-i i-i i-i i-l
=C 2 i-3 + C 1

1 i-2 + o 4 i-1 + C 1 i- -z o i-1 + 1 b

i i i
-2 4 i-2 + CI i-1 + o Oi C i+l

i+l i+l i+l
-2 i-1 + C- 1 + i+lGj Pj i+1

+ Ci+l
1 i+2

i+2 i+2 i+2 i+2
-2 i -l 'i+ o 'i+2 + l i+3-1 io

we are led to the set of difference equations,

i i+l
Pi-1 + C 0 Pi + C-1

i+2
Pi+l + -2

i= 1,2,...N-4

o 0 + 1 1 P2
o PoC1 Pl +C 2 P2

N-4 +N-3
1 PN-4 + o

+N- 2

PN-3 -C 1 PN-2

CN-3 + CN-2
1 PN-3 +o PN-2

(4. 7)

= 0

= 0

= 0 (4. 8)

where Pi = ki ai-

If we can find the coefficients C i and then solve the difference equations (4. 7) subject

to the boundary conditions (4. 8) we shall have obtained a solution to our problem.

-18-
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Thus the first step is to evaluate the coefficients C i . These involve the calculation

of the probabilities IA , I, IIA, II, and IIIi. We can compute these by means of a

method which is very similar to that used by Wheland (19) in computing the value of k..
1

Therefore, we will first repeat verbatim Wheland's computation of the ki's.

"The orbitals are arranged in the circle in the same order in which they come in the

chain. The polynomial C N, associated with the chain of 2N atoms, is given by the recur-

sion formula

C N = CN_ 1 + z ECj- 1 CN_j (49)

which is derived in the following manner:

2K

2j

We first number the orbitals in order, from 1 at one end of the chain to 2N at the

other end. Now we consider the canonical structures which contain a bond between

orbital 1 and some other definite orbital, say 2j. This bond divides the molecule into

three parts: (1) the orbitals 1 and 2j involved in the bond; (2) the orbitals 2, 3, ... 2j-1

lying on one side of the bond; and (3) the orbitals 2j+l, 2j+2, ... 2N lying on the other

side of the bond. (In the special cases in which j = 1, or N, the second, or the third

part will be missing. We then simply treat the missing part formally as a chain of 0

orbitals, and associate with it the polynomial C = 1. ) If these three parts are con-

sidered separately, they can be represented by the polynomials J 1 J 2 and J 3, respec-

tively. Then J1 = 1 if j = 1 (i. e., if the bond between orbitals 1 and 2j is effective) and

J1 = otherwise (i. e., if the bond is ineffective). Similarly J = Cj-1 and J3 = CN-j-
If the three parts are now considered as a whole, the corresponding polynomial, which

represents the totality of structures with a bond between orbitals 1 and 2j, is the prod-

uct J 1 J 2 J3. This follows from the fact that there can be no bonds between any two of the

three parts, since such bonds would necessarily lead to noncanonical structures. The

law for combining such noninteracting systems is then formally identical with that for

multiplying polynomials. We now consider the canonical structures in which the orbital

1 is bonded with some further definite orbital, say 2k. As in the previous case, the

associated polynomial is equal to K 1K2K 3, with K 1 = 1 or z, K 2 = Ck_ 1. and K3 = C Nk.
Obviously none of the structures of this second group will occur also in the first group,

and consequently the totality of structures in which the orbital 1 is bonded to either 2j

or 2k will be represented by the sum J 1 J 2 J 3 + K 1 K2 K3 . This same procedure can now
be repeated until all of the possible canonical structures have been taken into
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consideration. The resulting polynomial is then

CN = J1 J2J3

which is just the recursion formula given originally."

One can easily find the general term of this series using this recursion formula.

The expression for the general term, given by Wheland is

N-1

CN = N (N)(+ z . (4.10)
j=0

The derivation of the expression for the polynomial, RN, corresponding to the closed

ring (or cyclic chain) with 2N members is exactly the same, except that J1 = 1 for j = 1,

or N, and J1 = z otherwise. This gives

N-1

RN £ J1 2J 3 = Z Cj_1 CNcj + c2CN1 ' (4.11)
j=Z

or

RN = CN + (1- Z)CN-l (4. 12)

The general term of this may also be given explicitly

N-2

RN = 2 X (N)(N-1) zj (4. 13)
j=0

We now proceed to use these results, and this method, to calculate the probabilities

I - III that we are interested in.

Let us consider those cases in which we interchange electrons 2p and 2p+l1, and in

which there is no bond connecting 2p and 2p+l. There is a bond from electron 2(p-j) + 1

to 2p, and from 2p+l to 2(p+k).

2p 2p+ 

2(p+ k)

2(P-j)+ I

These bonds divide the ring into 5 separate chains.

-20-
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I II III

2 p + 1 and 2 (p + k)

2(p- j) + 1 and 2p

2p + 2, 2p + 3, .... 2(p + k)- 1

2(p- j) + 2, 2(p- j) + 3 .....

.... 2p- 1

2(p + k) + 1, 2(p + k) + 2,.....

.... ZN, 1, 2, .... 2(p -j)

J1=

2J =

J3 Ck-1

J4 = Cj-

J5 = CN-k-j

z 1 or z 1

z z or 1

Thus to calculate the probabilities we are interested in, we must compute sums of

the form ' k J1J2J3 4 J 5 where the conditions on each sum depend on the case with

which we deal. The different cases may be characterized as follows:

II A

k= 1, j 1
or

k 1, j = 1

j+ k=N j+k N

IIB

k= 1, j 1
or

k 1, j = 

j+k=N

Therefore the sums we compute for each case are:

N-k-l N-3

j=Z k=2
J1J2J3J4J5

J1J2J3J4J5

N-2

j=2
(k=l)

J1JzJ3J4J5

(k=N-1) j j J Jj
(j=l) 12345

(j=1)
(k=1)

N-2

k=2
(j=l)

J1JZJ3J4J5

+ (j(k=1) j123J4J5
(j-N-I) J1 3 4 

J1J2J3J4J5

These sums are

-21-
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k/1

j/ 1

j +k/N

IB

k/1

j/!

III

k=l

j= 1

IBB'

N-2

k=2
(j=N-k)

IIA:

IIB:

III:

Chain Polynomial



N-k-l N-3

IA: z2 N Z C k- j-1 CN-k-j
j=2 k=2

N-3

= z (CN-k -CN kl ZCN-k-l) Ck-l
k=2

=CN CN-CN- Z [CN+ CN2 + (1 + Z)CN_3] -(1 + z) [CN_ 1 - CN_2 - Z(CN_2

= CN - 2(1 + (1 + z + Z ) CNN N-1 N-2

N-2

Z2 Y Ck-l1 CN-k-l Co
k=2

= z CN_1 - Z(1 + z) CN-2

N-2

2z 
j=2

C 0 Cj- 1 CN-1-j

= Z(CN 1 -CN-2)- Z CN2=- _ _ _

(4. 15)

= 2[CN 1 -CN-ZCN_-2]

= 2 CN_ 1- 2(1 + z) CN_2

2z C C C = 2z CN- 2

Co CO CN-2 = CN-2

where we have used Eq. 4.9 repeatedly, together with the fact that C O = C 1 =

(4. 16)

(4. 17)

(4. 18)

1;

C = 1 +z.

If we add up all these polynomials for cases I through III, together with the poly-

nomial CN _1 representing the case where there is a bond between p and p+l, we should
have just RN.

Z= CN + CN_1 (-22 + z + + 1) + (1 + z + z - z -z2 2z + 2z + 1)(CN_ 2 )

= CN + CN-1 (1-- z) = RN

Next we calculate explicitly the polynomials corresponding to the different cases,

using Eq. 4. 10. These results are:

N-3
3 

N-2I-
j=2

(N- 2 N- 2 z
j-2 j+l) (4. 19)

(4. 20)

N-2
N-2 (N-2) (N-2) Zj

N- j=2 -2
j=2

-22-

+ CN_3)]

(4. 14)

IIA:

IIB:

III:

IA:

IB:



N-3
4 IN-2 N-2) zi (4.21)

AIA: N Y j-1 j+41
j=l

N-2
IIA,: N~2 Z N-2 N-2,

LIB E~ (j-1 ) ( j ) zi (4.22)
j=l

N-3
IiB: g- E7 (N 2) (N- 2 ) Z (4.23)

N-2 (N2 j+zj
j=O

We calculate the probabilities for the different cases by taking the coefficient of the

i'th power of z in the polynomial corresponding to a particular case, and dividing it by

the total number of structures corresponding to the excitation i. (This defines what we

mean, for example, by the probability IIA; namely, that if we consider a given exchange

of nearest neighbors, if this is applied to all the ki structures corresponding to the exci-1
tation i, case IIA will occur exactly IIA ki times.)

These probabilities are:

I 3 i(i-l)(N-i-2) (4.24)
A 2 N(N- 1)(N-2)

Ii = i(i-1)(i+1) (4. 25)
B N(N-1)(N-2)

II = 2 i(N-i)(N-i-2) (4. 26)
A g N(N- 1)(N-2)

i i(i+1)(N-i) (4 27)
N(N- 1)(N-2)

i 1 (N-i)(N-i-l)(N-i-2) (4. 28)III = --
N(N-1)(N-2)

k. = 2N! (N-2) (4.ki (4. 29)
i! (i+l)! (N-i)! (N-i-2)! ( 

We can again check, and verify that IA + I B +II + II B +III is equal to (N+i)/2N.

The coefficients Ci may be computed by reference to (4. 4).

We find that:

Ci = (N-i)(N-i- l)(N-i-2) i-1 (N-i+l)(N-i)(N-i-l) (4 30)
C a -;C (4. 30)

(N-1)(N-2) 1 (N-1)(N-2)

C -W - 2 i + 4 ia (N-i)(N-i-2)
i =(Q0 ~N1)N2 (4.31)

(- 1 i(N- 2))
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i i [3(i-1)(N-i-2) +2(i+l)(N-i)] ci+l (i+l) [3i(N-i-3) +2(i+2)(N-i-1)]
,-1 a , -1

(N-1)(N-2) (N-1)(N-2)
(4. 32)

C C(i+2 =(i- 2 (i+l)(i+2)(i+3) (4. 33C-2 = 2a ; C-2 . (4. 33)
(N-1)(N-2) (N- 1)(N-2)

We are thus now ready to proceed with the solution of the difference equation (4. 7).

Since N is assumed large, we can write the coefficients C in terms of the variable

x = i/N, neglecting terms of the order 1/N. Then

Cl(x) = aN(1 - x)3; (4.30a)

C(x ) = Q-W + 2 Nax(2x -4x + 1) (4.31a)

C (x) = aN 5x2 (1-x) (4. 32a)

C- 2(x) = 2aN x . (4.33a)

If we write

(Q- W)/Na = 2X (4. 34)

Eq. 4. 7 now becomes

(1x) 3 Px/N+ [2X + 2x(2x - 4x+l)] p + 5x 3 ( 1-x) Px+l/N + 2x Px/N = 

(4. 35)

We assume p = eNI(x)dx. Then, again neglecting quantities of the order of 1/N, we

have

Pi+l = e Pi (4. 36)

and

2x 3 e3 + 5x 2 (1- x) e 2 P + 2[X + x(2x 2 - 4x + 1)] e + (1 -x) 3 = 0 . (4. 37)

One may thus determine from a solution of this cubic equation in e. So that

Eq. 4. 36 will correspond to a solution of the difference equations, we must also see that

it satisfies the boundary conditions of Eq. 4. 8.

If we examine these conditions we find that they require

e + as x + 0, and e + 0 as x +1 . (4. 38)

The cubic equation (4. 37) will have three roots for every value of x. Their general

behavior is sketched for different values of x in Fig. 2.
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en ,~ .e e The behavior exhibited by the first sketch
is such that no solution of Eq. 4. 37 satisfies

'l , both boundary conditions. If the value of X

is such as to let two roots of the cubic be-

come equal for at least one value of x, then

it is possible to satisfy boundary conditions

Gus" , I_ , -/ by switching branches at this point. This is

', t illustrated in the second and third sketches;

;"- the second corresponds to the least value of
I x I x I X

X for which the equation can have a double

-I - - -',- - ,root, and hence to the lowest eigenvalue for

,, , , , X. In the third sketch, imaginary roots

exist for a certain region of x. Solutions to

the difference equation exist in this case for

a set of discrete, but closely spaced, values

of X which must be such as to allow the solu-

Figure 2 tions within the regions having complex roots

to be joined on to the solutions where real

roots exist, in such a way that the p's will be real. We, therefore, compute the value

of X corresponding to the lowest eigenvalue of our problem as follows.

The condition for equal roots of Eq. 4. 37 is that the discriminant be equal to zero.

The discriminantal equation can be factored to give the condition:

(X -x) X + x 2x2 - 4x + 1 + 7 + r (x -9) 3( x+x + 2x2- 4x + 1 + - ) ]} = 0.

(4. 39)

This has three roots

X x1

k2 =-x [2x2 4x + 1 + 913 (x- 1)2
2 72 32

X3 = -- x [2x2-4x +(X- 1)2] (4.40)
3 32

Since the range of x is from zero to one, we see immediately that any value of X

between zero and one will give equal roots for some value of x, and in fact, since the

value of 1 is the maximum value of either X1 , X2 , or X3 in this range, we conclude that

the highest eigenvalue corresponds to X = 1.

The lowest eigenvalue of the problem occurs when X is equal to the minimum value

assumed by either X1, 2' or X3 , for any x, which occurs for

4-- A7- 3¢3/4913x = = 0.2346 (4.41)
6
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at the value

X2 = -0.3707 (4.42)

Since = (Q - W)/2Na, we obtain

ENERGY OF HIGHEST STATE: W = Q - 2Na

ENERGY OF LOWEST STATE: W = Q- 2Na + 1.3707(2Na) (4.43)

Thus the value of the energy we obtain for the lowest eigenstate is closer to Bethe's

exact value than Hulthen's second approximation, and quite a bit closer than Hulthen's

first approximation.

Therefore, we have confirmed our expectation that the use of bond functions would

enable us to obtain a good approximation.

The maximum value of Pi = k.ai will occur when dp/dx = 0, or when f = 0, or when

e = 1. If we substitute this relation in Eq. 4.37 we find that

(x)p = 1 + 2X = 0.2586 (4.44)
max

or, in other words, the degree of excitation which corresponds to the maximum value of

kiai., corresponds to an i of 0. 2586N, roughly one-quarter of the maximum possible

degree of excitation.

We may approximate p in the neighborhood of this maximum value by the Gaussian

function

N(x-xo)2

p = const exp [-N(x-x) 2/2(3x2 + 1)] const e 4 (4. 45)

where x is the fractional excitation (0. 259) corresponding to Pmax. This is a very

sharp distribution, due to the factor N in the exponent.

Knowing that we have such a sharp maximum of kiai, we may derive the relation

(4.44) between the eigenvalue, and the maximum excitation, from a result of Wheland

(19), namely that

aiki(N-i)
W = Q + a (4.46)

i aiki

Assuming that only the set of bond functions near (aiki)max is important, we get

W = Q + (N-i)a. Since X = (Q-W)/Na, from Eq. 4.34, we have N-i/2N = -X; or

i/N = 1+2X, which is just relation (4. 44).

We may therefore summarize the results of our valence bond approximation as

follows.
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We have expanded the spin eigenfunction describing the state of a linear antiferro-

magnetic chain in terms of the Rumer canonical set of valence bond functions, under the

approximation that all bond functions having the same degree of excitation, i, have the

same coefficient a. in that expansion.
1

The secular equation then contains only matrix elements between the state i, and the

states i + 1, i, i - 1, i - 2; and reduces to a set of third order linear difference equa-

tions. This set of difference equations is solved, in the limit of large N, by the WKB

method. The range of values of energy within which there exist solutions satisfying the

boundary conditions determines the highest and lowest energy eigenvalues. In the solu-

tion for the lowest state, appreciable amplitudes occur only for bond functions within a

narrow range about values of the degree of excitation 0. 2586N. The results for the

lowest energy eigenvalues, compared with those obtained by other methods are

Bethe "exact" value Q =. 38632NQ

Slater approximation 0. 29

Hulthen "first approximation" 0. 316

"second approximation" 0. 347

Our approximation 0. 3707

V. Special Solutions

Solutions pertinent to the problem of determining the lowest spin eigenfunction for

the linear antiferromagnetic chain with periodic boundary conditions for 2, 4, 6, 8, and

10 spins have been given in the literature. The 6, 8, and 10 spin solutions arise in the

treatments of the molecules of benzene, cyclooctatetrane, and cyclodecapentane, respec-

tively. The various types of structures represented in the valence bond diagrams have,

in a sense, a physical reality to the chemists, who had empirically developed similar

models before the development of quantum mechanics. The molecule was considered to

undergo a "resonance" between the different kinds of bond structures with the resonance

energy reckoned as the difference between the actual energy, and the energy which would

correspond to just one of the "unexcited" bond structures. Resonance among a large

number of structures would give a large resonance energy, and hence greater stability.

We present a tabulation of the results for energy, amplitude of excitation of each

type of bond structure, and bond order for these cyclic structures.

We have also investigated other six- and eight-spin structures in other arrangements,

in order to try to get some information about what happens in two and three dimensions.

We have also tabulated these results for energy and bond order.

We notice that the fractional bond order is less in these cases than it is in the one-

dimensional case, as could have been anticipated from the fact that it is harder for a

given spin to stay paired with another in a singlet state when the number of nearest

neighbors increases. Even in these cases, though, the bond order is still appreciably
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CANONICAL STRUCTURES

(: =Zai i

2

I A
A

A(x2)

aA = aB

B

aA = 1/2

aB = 0. 626/3

B(x 3)

aA= 1/2

aB= 1.45/8

aC = 0.20/4

-- /,
t 

AB

A(x2) B(x8)

aA = 1/2

aB = 1.71/10

aC = 0. 67/5

aD = 0.31/10

aE = 0.50/10

aF = 0.03/5

Note: A(x 2) means that there are 2 structures of type A equivalent by symmetry opera-

tions, etc.
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4

6

8

C(x4)

I

10 C(x5)A(x 2)

D(x 10)

.

B(x 10)

E(x 10) F(x 5)

2N EIGENFUNC TION



NUMBER OF ELECTRONS ENERGY BOND ORDER
STRUCTURE Highest Lowest

2 a a 1.0

4 - 4a 2a 0. 67

6 - 6a 2 . 6 055a 0.623

6 - 7a 2.759a 0.596
6* 0e

(Periodic boundary conditions)

- 12a 4 .6 06 a 0.589

6

* 0

8 - 8 a 3 .3022a 0.609
9

(Periodic boundary conditions)

8 - 16a 5. 869a 0.578

8 -- 24a 7 . 28a 0.536

10 - 10 14. 031a 0.602
..

2 N - co -2Na 0. 3863(2N)a 0.591
.. -- . H.

-29-



larger than the value 1/3 that it would have if the spin components relative to a fixed axis

alternated in sign. This difference may, of course, get smaller if we consider larger

numbers of spins in the three-dimensional case. The degree of complication of the

computation increases rapidly as the number of spins increases, but it is possible that

some approximate type of treatment could produce good results. We might also mention

in this connection that secular equations of quite high order have been set up for the

valence bond method using punched card methods (20), so that it may be feasible to solve

a problem with enough spins to afford a reasonable approximation to the infinite lattice.

Conclusion

In ferromagnetism the lowest state in the semiclassical Ising model is characterized

by a simple ordered structure; this remains valid in the quantum mechanical model with

the modification that only one component of spin shares in the ordering.

For antiferromagnetism, even in the Ising model, the lowest state may, for certain

geometrical configurations, be only partially ordered. In quantum mechanics this state

is quite complicated for any geometry. The situation is more analogous to the problem

of chemical binding than it is to ferromagnetism. There exists the phenomenon of "reso-

nance" among different bond structures such as occurs in certain molecules.

Both from the neutron diffraction experiments of Shull, and from considerations

based on Nernst's law, one is led to believe that some sort of ordering actually exists in

antiferromagnetic materials at low temperatures. From simple quantum mechanical

considerations, however, this state cannot exhibit perfect ordering in the usual sense.

Our main problem was to clarify the nature of this order.

A knowledge of the state of a system comes from both the eigenfunction and from the

eigenvalue for the energy. Knowledge of the value of the energy enables us to calculate

the "bond order". This concept, originally used by chemists, which we have adapted for

our problem, describes the short range order of a spin system. We may thus calculate

the bond order for the infinite linear chain, where we have a value of the energy due to

Bethe. Energy values and bond orders have also been obtained in two and three dimen-

sions for some special models, but not for the infinite lattices.

We have obtained an approximate eigenfunction in terms of the valence bond spin

functions for the problem of the infinite linear chain to supplement the formal solution

given by Bethe. We do not feel that we have obtained as complete information from the

eigenfunction as might be possible; in particular, because of the simplicity of Bethe's

results for the energy of the linear chain, one is led to suspect that the description of

the eigenfunction must also contain elements of simplicity which have thus far remained

hidden.

We have not entered into any consideration of excited states. It would be necessary

to do so if one wished to consider the statistical problem, or the effect of the magnetic

field.
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