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Abstract

The operation of an arbitrary number of oscillators mutually coupled into an arbi-

trary number of loads is discussed. By utilizing the oscillator Rieke diagrams, the

scattering equations of the interconnecting network, and the constraints furnished by

the passive loads, the behavior of such a system may be predicted. Two simple, but

practically important cases are discussed: (1) two oscillators operating into a matched

parallel junction, and (2) the dual of this arrangement. The operation of these systems

is critically dependent upon the oscillator spacing relative to the interconnecting net-

work, although the tolerances on these spacings are not severe. Dissimilarities between

the oscillators are not an important factor.
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A NOTE ON THE BEHAVIOR OF MUTUALLY COUPLED OSCILLATORS

Introduction

There are practical and theoretical limitations on the power output obtainable from

a single oscillator. These limitations are particularly severe when one considers the

microwave region, for there the physical geometry of the device becomes increasingly

important. The cathode area, for instance, is determined by factors other than the

total desired emission current, which may be quite large, so large, in fact, as to

require current densities greater than those obtainable from practical emitting surfaces.

Nonetheless, great progress has been made in the production of large power at short

wavelengths. The maximum output available from a single tube, however, is quite

insufficient for many purposes. In applications such as the linear electron accelerator

and very high power radar transmitters, it is desirable to operate two or more oscillators

into a single network so that their powers combine in an additive fashion. One suspects

immediately that this problem is closely akin to the oscillator synchronization problems

considered in Technical Report No. 63 (1). It is, however, much more involved, for

here each oscillator supplies a locking signal to each of the others. In addition, the

network used for the interconnection affects the problem in an important way. A general

solution, then, would be highly complex and is unnecessary for most purposes. We can

show that the general problem is soluble and then carry out the solution for two simple

but practically important cases. The results of this analysis may be used to predict the

more involved cases.

1. The General Case of N Oscillators Operating into an M Terminal-Pair Network

Before considering some practically important cases of mutually-coupled oscillators,

it would be satisfying to examine the most general situation. If such an examination

shows that a unique solution is possible, one may use with confidence the results of

simplified analyses to draw certain conclusions about the more complex cases. Suppose

that N oscillators are operating into an M terminal-pair network; that is, there are N

oscillators and M-N passive loads (these may or may not be frequency-sensitive). The

network itself, assuming linearity, may be completely characterized by a set of M inde-

pendent equations containing 2M independent variables. One possible set of these

equations is

b = Sl a l + S12a2 + S13a3 · + S1NaN + S(N+l)a N+1 . S1Ma M

b2 = S2la 2 + S22a2 + S23a3 · . + S2NaN + S2(N+l)aN+1 + S2Ma M

bM = Slal a+ SZaZ + SM 3 a 3 . + SMNaN + SM(N+l)aN+i1 . + SMMaM (1)

where all other a's 
S - all other a's = 0

Ij aL
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is the scattering coefficient for the i t h terminal-pair with respect to the jth terminal-

pair, and a. and b. are the incident and reflected waves respectively for the i t h terminal-1 1
pair. In order to obtain a solution, M additional relations are needed. These are

provided by the constraints relating a i and b i . For the M-N passive loads, the constraints

take the form

N+1 = bN+ 1 rN+l1

aN+2 = bN+2 FN+2

aM = bM rM (2)

where r i = Z i - 1/Z i + 1 is the reflection coefficient of the load at the it h terminal-pair

and Z i is its impedance relative to the impedance of the line. The constraints imposed

by the N oscillators are contained in the Rieke diagrams and may be represented func-

tionally by

bl = alR 1

b2 = aR2

bN =aNRN (3)

Suppose that in such a system the only information available is the unperturbed frequency

W1 of one oscillator (hereafter referred to as No. 1) and the synchronized frequency of

the system, w. By substituting Eq. 2 into Eq. 1 and transposing, there results

bl S l la = S 12a2 + S13a3 SNaN + Sl(N+l) aN+'. .+S1MaM

S21a l = 2 + S22a2+ S23 3 . S2NaN + S2(N+) aN+1 M+SZMaM

-SNlal = - N + SNZa+SN3a 3 . ..SNN N + SN(N+1) aN+1. .+SNMaM

-S( N+ 1 )lal = S(N+1)2 a + S(N+1) 3 a 3 ' ' S(N+ 1)NaN

+ (N+ 1) (N+ 1)- rN aN+l ' S(N+I)MaM

-SMlal = SM2 2 + SM3a3 .... SMN N

+ SM(N+ )aN+ [MM . M mmaM

(4)

Now since oscillator No. 1 is operating at frequency o, a and b have a restricted

range of values, which are specified by the appropriate frequency line on the Rieke

diagram. There is, on each of the other Rieke diagrams, a corresponding locus, which

is related to the first by Eqs. 4. In addition, these equations specify the ratios bi/bll
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and ai/all. This condition likewise determines a locus on each Rieke diagram. The
intersection of the two loci on a Rieke diagram specifies the operating point, providing

the ratio Ibi/bll (or lai/all) and i
= bi/a at that point correspond to the same al and

bl. Once the operating point for each oscillator has been located, the relative tuning
and power output of each is determined. It is possible, of course, that there is no

operating point which satisfies the conditions. This means that the initial assumptions

of 1 and w are not possible ones. However, this situation arises only if the difference

I w1 w- I is quite large. Results of this type may be used to establish the limits of the
locking band.

Further, one may use similar procedures to establish operating conditions when

sets of information other than the one discussed above are available. For instance,

the tuning of each oscillator and the operating frequency of the system desired might

be known. In any case, it has been shown that there are 2M independent variables

involved, and these are related by 2M equations. Thus a solution is possible.

2. Normal Parallel Operation of Two Similar Oscillators

The operation of two oscillators, identical except for their relative tuning, into a

single load is usually accomplished by use of a circuit which places the tubes in paral-

lel. Such a circuit may be a transmission line tee or an H-plane waveguide tee junction.

Usually the load arm is made to have a characteristic impedance half of the main line
connecting the oscillators. Further, in order to make the oscillators appear truly in
parallel, they should be located an integral number of half-wavelengths from the tee
reference planes. Under such conditions the oscillators are said to operate in a "normal"
fashion.

IDEAL IDEAL Figure 1 shows an equivalent circuit whichIDEAL ~~IDEAL
:I Emay be used to analyze the normal situation.

From this circuit, the scattering equations are
-. bt

- 1 1 +2
bl 2 al 2 a2 2 a3

1 1 /fb2 = - al-2 a + -2 a 32 12
/ -I f ___

Fig. 1 b3 2 + 2 2

In practice, the passive load is usually matched to its line, making a 3 - 0. If this is
the case, Eqs. 5 become

1 1
bl 2 al , a2

1 1
b 2 = al2 a2

b =2 al + - 2 a . (6)
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It is seen immediately that the condition b1 = - b2 must be satisfied regardless of the

values of a l and a Z. Stated in another way, this condition means that the reflected

powers of the oscillators must be equal if they are to operate at the same frequency.

Let this condition be incorporated in either of the first two Eqs. 6; there results

a a
1- =-±-- 2 .- (7)

1i b,2 ·f r

Note fj and r2 are complex variables and may be written r = R 1 + j 1 and rZ = + jI?.

Then Eq. 7 becomes, after separation of the real and imaginary parts

R R
+ I2 + 2 = 0

+ = . (8)

Now Eqs. 8 must be satisfied at the operating point; however, these conditions carry the

stipulation, imposed by the passive network, that the reflected waves be equal. This

proviso, as well as Eqs. 8, must be applied to the Rieke diagrams.

As an aid to the computation, contours of constant R/ rJ Z and I/ 1rf will be plotted

in the reflection coefficient plane. These, of course, will be the same in both the I'

and r2 spaces and are a set of orthogonal circles. Figure 2 shows the unit circle of the

reflection space with the orthogonal set plotted thereon.

Consider then the contours of constant frequency and reflecter power shown in Fig. 3.

Such a plot is representative of an idealized reflex klystron (3) and will be used as the

Rieke diagram of both oscillators in the computation. Note the diagram is symmetrical

about the center frequency line; this, in general, is not the actual configuration. The

analysis, however, will be affected in detail only by asymmetries. Now upon super-

posing Figs. 2 and 3 it is seen at once that the R/ Ir12 = - 1.0 circle is the locus of

points satisfying both Eqs. 8 and stipulation of equal reflected powers. Any two points,

r1 and ri, lying simultaneously on this locus and the same reflected power contour

represent possible operating points for the two oscillators. The frequency contour

passing through each of these points determines the relative tuning of the oscillators.

Just how this is accomplished may be seen by considering Fig. 4, which shows the rl

and r 2 spaces with the operating locus and frequency contours. Typical operating points

for synchronized operation are 01 and 02' lying respectively on the frequency contours

W1 + x22 and w2 - o22 where w1 and w2 are the oscillator center frequencies (frequency
into a matched load) and are determined by the relative tuning. Now since the tubes are

synchronized, o = 1 + 22 = Z - W2 2 ' or w2 - W1 = 222 and, in general, for any two
operating points

w2 W1 Wii + jj (9)
where wii and wjj are the frequency deviations of the contours passing through the points.
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The synchronized frequency is

w 1 + ii = 2-jj (10)

This discussion makes the assumption that when an oscillator is tuned over the range

indicated on its Rieke diagram, this diagram is not changed except for the absolute

frequency of the contours. All available evidence indicates that this assumption is

quite good for physical and electron-beam tunings, but may not be good for electronic

tuning, such as large reflector voltage changes in a reflex klystron (3).

Now a complete picture of normal parallel operation may be constructed. If both

oscillators are tuned to the same frequency, they operate at the point r = 0 (matched

load). As either or both oscillator tunings are varied so that 1w2 - wJI increases, the

operating points move outward on the circular loci, the value of 2 - w1 and w at any

time being given by Eqs. 9 and 10. Returning to Figs. 2 and 3, the maximum value

of this difference, still maintaining synchronism, for this case is greater than 40 Mc.

In general, this value is determined by the factors which become important in the "sink"

region such as the series oscillator coupling impedance. Note that if the operating locus

actually follows a circular path at large reflection coefficients, 1w2 - w1 1 could assume

an infinitely large value. That is, at the point r = - 1, the load admittance consists of

an infinite susceptance and, hence, may " pull" the oscillator frequency an infinite

amount. Actually, of course, even though the load at the oscillator output terminals

may approximate a short circuit closely, the series coupling impedance places a lower

limit on the effective load impedance, hence on the maximum-frequency pulling. Thus,

in this region the shape of the locus is altered by factors not included in this analysis,

and the frequency deviation introduced by an infinite susceptance at the output terminals

determines the synchronization bandwidth.

There remains one additional matter to be discussed, namely that of the power avail-

able from the system. Figure 5 shows constant power output contours for each oscil-

lator. Since the microwave junction is essentially lossless, it may be seen that the load

power is the sum of the individual oscillator powers. Once the operating points have

been determined, these powers, and hence the load power, are immediately calculable.

Also, the latter decreases sharply when 1w2 - ol ] becomes large; this characteristic is

to be expected quite generally.

3. Anomalous Operation of Two Similar Oscillators

When the oscillators are not located at the tee reference planes, or an integral

number of half-wavelengths from them, the operation is changed quite drastically. An

extreme example of this sort occurs when the spacing is an odd number of quarter-

wavelengths. This condition results in operation of the "anomalous" variety.

The analysis may be carried out exactly as for the normal case. However, the

Rieke diagram of Fig. 3 must be referred to the tee reference planes. In order to

accomplish this, the diagram should be rotated 180 ° , following Smith Chart computations.

-6-
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Fig. 5 Power output contours.

O1 = rl - il

Again considering Figs. 2 and 3, it

is seen that the operating locus is a

circle, but displaced, on the Rieke

diagram, 180 ° from the one previously

discussed (see dotted locus in Fig. 4).

Thus the operation is entirely similar

except in two important respects:

(1) the synchronization bandwidth is

greatly reduced (7 as compared to

> 40 Mc); and (2) each intersecting

frequency contour now crosses the

locus twice, giving two sets of possible

operating points for each tuning of the

oscillators. In order to resolve this

ambiguity, it is necessary to examine

each point with respect to stability.

The angle of the reflection coeffi-

cients for the oscillators may be

and 02 = r -- i (11)

where r is the

incident wave.

r = r z + iT;1I r2

angle of the reflected wave at the tee terminals and i is that of the

From the condition b = - b 2 , imposed by the junction, it is seen that

so by subtracting Eqs. 11 and substituting

(12)01 -0 = 1 i i + 

or differentiating with respect to time

d+.i d i.

t-H - ,V A '2 ~1- ' (13)*

This equation states a fundamental law as illustrated in Fig. 6, which shows a vector

representation of the oscillator outputs. Relative motion of the two vectors determines

the quantity, Aw2 - -1- If the angle between the vectors is to increase (dy/dt > 0),

*The approximation involved here is a rather subtle one. Specifically, a change of fre-
quency corresponds to the derivative of the phase angle of the total voltage (vector sum
of incident and reflected voltages) rather than the derivative of the phase of the incident
voltage alone. For most conditions, however, the magnitudes of these derivatives are
not greatly different, and for all points inside the unit circle (incident wave > reflected
wave) they will have the same sign, which will be our major concern.

7

written



INCREASING
Wj + Wii \ FRUENCY / W2-wil

Locus /

/ 0 8, / 02

I

I c

', I

Fig. 6 Fig. 7

Aw2 must be greater than Aw1, making A - A 1 > 0 and inversely. Consider Fig. 7

which shows the operating locus and two sets of operating points illustrating the ambi-

guity. Suppose now that the oscillators are subject to a perturbation, such as might

result from noise modulation of an electrode. Under these conditions, the frequency

contours on which 01 and 02 lie shift to some new position, as indicated by the dotted

loci in the figure. If the oscillators are to take up the new steady-state operating points,

the angle 01 - 2 must decrease. Hence dy/dt = Aw2 - Awl < 0 by the previous argument.

Now when the frequency contours shift, 01 finds itself in a region on the Rieke diagram

where the frequency is greater than before the shift; thus Awo < 0. For point 02 the

opposite is the case, so A 2 < 0. Then the condition A 2 - Aw1 < 0 must certainly be

satisfied, and the oscillators assume the new steady-state condition. A similar exami-

nation of points 0 and 0 show that A 2 - A1 should be greater than zero, while actually

this is not the case, since the signs of aw and Aw1 remain the same as for 01 and 02

Hence points 0 and 02 are unstable, stable operation occurring at 01 and 02. For

stability in general, then, the sign of hAy- A 1, as determined by both the angle 01 - 0

and the position of the locus on the Rieke diagram, must be the same.

Quarter-wavelength spacing, therefore, results in a rather unusual condition.

Specifically, when the two oscillators are tuned to the same frequency, they work into

unity reflection coefficient (open circuit). As I 2 - wl is increased, the operating points

move on a circular path toward smaller reflection coefficients. The locking bandwidth

is determined by the frequency contours tangent to the locus. Also, the power available

under these conditions is quite small, as may be seen by considering Fig. 5. In fact,

when identically tuned, the oscillators give zero output. This anomaly is caused, quali-

tatively, by phase shifts introduced through the lengths of transmission line. With

normal conditions and identical tuning, 01 02 = r so that i - i, the relative phase

of the two generated waves, is zero. Hence reinforcement results. With anomalous

conditions and identical tuning, 01 - 02 = 0, so i - i = r and destructive interference

is produced. Therefore, no voltage appears across the load and no power is delivered.

4. General Parallel Operation of Two Similar Oscillators

Thus far the extreme examples of parallel oscillator operation have been considered

in detail. One asks immediately about operation in the transition region between these

-8-



extremes. More specifically, one would like to know the details of the operating loci
when (1) the spacing of each oscillator from the tee reference planes is not an integral
number of quarter-wavelengths, and (2) when the oscillators are asymmetrically spaced
with respect to the junction.

Consider, then, the case of both oscillators located the same distance, d, from the
tee and having the physical and electrical distances identical. That is, frequency sen-
sitivity of the transmission line lengths is neglected. In order to determine the loci
it is first necessary to refer the Rieke diagrams to the tee reference planes. This may
be accomplished by rotation of the diagrams an appropriate amount with respect to the
reflection coefficient plane. The loci may then be found through a point-by-point exami-
nation of Figs. 2 and 3. Again, each pair of points on the locus must satisfy the conditions
imposed by the junction, namely Eqs. 8 and equal reflected powers. This procedure has
been carried out for seven different spacings ranging from zero to quarter-wavelength.
These loci are shown in Fig. 8. Those for spacings of quarter- to half-wavelength are
mirror images of the ones shown, since the Rieke diagram is symmetrical with respect
to the center frequency contour. Several facts are to be noted. Firstly, the bandwidth
of synchronization is strongly dependent on the spacing. Figure 9 shows the manner of
this dependence. Secondly, portions of the loci lie outside the unit circle, indicating
there are points at which one oscillator absorbs more power than it delivers. Operation
of this sort occurs on the dashed portions of the loci in Fig. 8. These parts are extra-
polations of the data; an exact evaluation would require the "load characteristic" of the
oscillator, that is, information about its output and frequency at points where the output
wave is smaller than the reflected wave. Only points inside the unit circle were used
in calculating the bandwidth values shown in Fig. 9. Lastly, in several cases, two sets
of points correspond to the same frequency intersections. These ambiguities may be
removed by utilizing the stability criterion presented in Sec. 3*. Regions of unstable
operation are indicated by double lines in Fig. 8. Thus it is seen that no drastically
new aspects of behavior are revealed. The transition from normal to anomalous
operation is a systematic one. Finally, the line-length tolerances for normal operation
are not severe in practical applications.

One must note that the single loci indicated in Fig. 8 are a special case in which the
locus of both oscillators coincide. This situation exists only when the spacings relative
to the tee are equal or differ by an integral number of half-wavelengths. In all other
cases, two loci will be necessary to describe the system. The simplest condition of
this type occurs when the spacings are respectively nX/2 + x and mX/2 - x where m and
n are integers, not necessarily equal, and x is the deviation from integral half-wavelength

This criterion, as presented, does not apply to operating points outside the unit circle.
It may be made pertinent to these cases if we determine the appropriate sign of /C 2 -
A Cl(in Eq. 13). This may be found by examining the vector diagram formed by the
incident, reflected, and total voltage at the oscillator terminals for each specific case.

-9-
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Fig. 8 Operating loci for line spacings nX/Z to nX/2 + /4.

I
I

m

d- WAVELENGTHS

Fig. 9 Locking bandwidth as a function of oscillator spacing.
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spacing. Again appropriately rotating the Rieke diagrams and satisfying the junction

conditions, the operating loci are found to be circles, passing through the point = 0

and tangent to the unit circle respectively at points X/4 + x and k/4 - x (see Fig. 10).

Stability of operating points on dual loci is determined exactly as formerly. In other

cases of unsymmetrical spacing, the loci shapes are distorted and shifted about on the

Rieke diagram much as loci 2 through 6 in Fig. 8. These considerations, however,

bring no drastic changes in the operation. Similarly, an unsymmetrical Rieke diagram

will alter the discussion in detail only. In particular, the circular loci presented here

will be somewhat distorted.

5. Series Operation of Two Similar Oscillators

Having considered the parallel operation of two oscillators, it is pertinent to examine

the dual case, that of series operation. Oscillators may be placed in series by use of a

branched transmission line or an E-plane waveguide tee junction. Usually the branch

or load line has twice the characteristic impedance of the line connecting the two oscil-

lators. An equivalent circuit for this type junction is shown in Fig. 11. The scattering

equations as calculated from this circuit are

1 1 _2

b1 = 1 +a + aZ

1 1 2

b 3 = Z al + a2

180

a3

a3

(14)

90
o

Fig. 10 Operating loci f

00 
= UNSTABLE REGION

or asymmetrical spacing.
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IDEAL IDEAL

I:Afo VT :1

bz c <4 p IDEAL = e * bz

a0 b3

Fig. 11 Fig. 12

Equivalent circuit of an idealized series Phase relationships during
junction. normal parallel operation.

Again assuming that the passive load is matched to its line or that a 3 = 0, it is seen

that b 1 = b 2 . Continuing the development as before

R I R z
1 + 2 = 0

-2=0

1 + 2 = 0 (15)

These are identical to Eqs. 8 for the parallel case except for the sign of the sum of the

real parts. Hence, it is seen immediately that the locus for series operation with

oscillator spacing d is the same as for parallel operation with spacing d + X/4. Hence,

for normal operation with series connection the oscillators should be placed an odd

number of quarter-wavelengths from the tee reference planes. In a similar manner,

the entire discussion in Secs. 2, 3, and 4 may be applied to this case.

6. Phase Relationships during Normal Operation

It is of interest to compute the relative phase of oscillators during normal operation.

This information, of course, is available for any specific case from the circle diagrams

previously presented. However, one would like to know explicitly the dependence of the

phase upon oscillator parameters. Consider, then, Fig. 12 showing the normal oper-

ating locus. Now the distance d is d = 61/2, and Irl= 2 X 1/2 sin 61/2 = sin d. Also,

note that the locus is a contour of constant load conductance; hence by the oscillator

operating equations, the electronic conductance and susceptance are likewise constants.

Then in the equation

= + B

only B and may change. Along the operating locus, therefore, the load susceptance

is related to the frequency in the following manner

-12-
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2 Qext ( WC )

B Qe (16)
o

where wC is the center frequency. Also along the locus, d = tan- 1 B/2, or

d = tan l[ Qext C)]
o

Now, note from Fig. 12 and Eq. 12

y= 26 180 - 6 i -i . + r
2 1

or
4i -- i -61
2 1

and

_ _i-sin - _i Q 1ex o - C)

sin = - d sin d sin an I ext 

or

orpi 2 -i = 2 tan 1[Qe1xh( ~2 ) (17)
2 1 2o

where the relation, X- c = 1/2(X1 - 2)' has been used. Equation 17 allows the evalu-

ation of phase sensitivity and tuning tolerance as a function of oscillator bandwidth.

7. Practical Considerations

In most practical applications of mutually coupled oscillators, the center frequencies

are made as closely equal as possible. Under such conditions, it is desired that the

oscillators each operate into a matched load. For the systems just presented, this is

the case so long as normal or near-normal operation is maintained. This fact may be

verified by noting that all such operating loci have a stable point at r = o, corresponding

to 1 - c2 = 0. Such results were derived assuming the oscillators identical. In practice,

the oscillators in question will deviate from this assumption. What will be the effect of

this deviation ?

It will be shown that when asymmetries between the oscillators exist, they will not

work into matched loads even when tuned to the same frequency. Further, it will be

seen that this effect is not large and may be compensated by altering the characteristic

impedances of the tee arms. In orderto show these things, we will assume that the

matched condition exists and find the conditions imposed by the junction.

The scattering equations for a junction may be found from equivalent circuits such

as shown in Figs. 1 and 11. Considering only the series junction (the development for

parallel junctions is entirely similar), the first two equations are

b -z 1 + z + ) (+ Z2+ Z 3 abl z +Z ±z ) '+ 1 +Z'_ 2

-13-
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bZ = (Z + ZZ + 3 1 + Z2 +Z3) z (18)

where Z 1, Z, and Z 3 are the characteristic impedances respectively of terminals 1,

2, and 3; and it has been further assumed that the load impedance connected to arm 3

is matched, making a 3 = 0. For the matched condition, b = b2 = 0, or

(-Z 1 + Z + Z3 ) a l + (Z Z 2) a2 = 0

(2Z 1 Z 2 ) a l + (Z 1 - Z 2 + Z3) a 2 =0 . (19)

Now Z I, Z 2 , and Z3 are all positive-real quantities since they are characteristic

impedances. Thus the ratio al/a2 must be a real quantity if Eqs. 19 are to be satisifed.

Therefore, let a 2 = Kal; then Eqs. 19 become

- Z + Z2 + Z 3 - 2KZ1 Z = 0

K(Z 1 -Z2 + Z 3 ) + 2ZZ 2 = 0 (20)

By successive addition and subtraction, two expressions for Z 3 may be found

K+ 1
Z3 = (Z 2 - Z1 ) K- 21 1 Z

and

3 = ( Z 1) K +1 + 2 Z+ 2Z2

Now in the physical circuit these Z ' s must be identical. This condition results in

K2-(
Z2- Z 1 ( K- ZZ (21)

This relation must be satisfied if the oscillators are to work into a matched load when

identically tuned. Replacing this condition in either expression for Z 3

Z3 - (K2+ 1) Z2 (22)

Thus, the load arm impedance is likewise uniquely specified. Note that if the oscillators are

identical K = 1 and Z1 = Z 2 and Z3 = 2Z1 = 2Z 2, which is the case previously considered.

That the effect of an asymmetry is not large may be seen from a numerical example.

The value of K may be found by taking K2 as the ratio of oscillator powers when both are

operating at r = 0. For this example, take K = 0.81, K = 0.90, and Z= 50 ohms.

By Eqs. 21 and 22, Z 2 = 40.61 ohms and Z 3 = 90.5 ohms. There is another, and perhaps
more meaningful, computation which can be made to show the relative magnitude of this

effect. Consider the case Z = Z 2, Z 3 = ZZ2, and a2 = -Ka, where K is real. (This

latter assumption is good only when K ~ 1. ) From the scattering equations

-14-



1 1 1 1b =a + a = a(1-K) 2 (12 2 = Z 2 2(l_

or b

= a1 2 (1 - K)

b 2 1 1
r2 a ( K) 2 ('2

2

For K = 0.9, then, F1 = 0.050 and r2 = - 0.055. Thus, the resulting mismatch is quite

small, even when there is a 20 percent difference in the oscillator power outputs. In

conclusion, oscillators may be operated successfully in series or parallel for most

practical uses even if only approximately alike.

8. Conclusions

The following conclusions concerning mutually coupled oscillators may be drawn

from the previous discussion.

1. The general problem of N oscillators working into an M terminal-pair network

may be solved by using the scattering equations for the network and Rieke diagrams of

the oscillators. In order to obtain a solution in any particular case, however, an

arduous trial-and-error examination may be necessary.

2. The operating conditions of mutually coupled oscillators are determined prin-

cipally by:

a. The interconnecting network

b. Oscillator spacing relative to the network

c. Relative oscillator tuning.

3. Dissimilarities between the oscillators, so long as they are not large, do not

affect the operation appreciably if the tuning of each is nearly the same.
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