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Abstract

We analyze probabilistically the classical Held-Karp lower bound derived

from the 1-tree relaxation for the Euclidean traveling salesman problem (ETSP).

We prove that, if n points are uniformly and independently distributed over the

d-dimensional unit cube, the Held-Karp lower bound on these n points is almost

surely asymptotic to /?//a-(c?) ji''^"^^^'', where /?//a'(^) is a constant independent

of n. The result suggests a probabilistic explanation of the observation that

the lower bound is very close to the length of the optimal tour in practice since

the ETSP is almost surely asymptotic to I3rsp{d) n''^"'^^''. The techniques we

use exploit the polyhedral description of the Held-Karp lower bound and the

theory of subadditive Euclidean functionals.
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1 Introduction

During the last, two decades combinatorial optimization has been one of the fastest

growing areas in the field of mathematical programming. Some of the major contri-

butions were Lagrangian relajcation, polyhedral theory and probabilistic analysis.

The landmark in the development of Lagrangian relaxation (see Geoffrion [6]

or Fisher [5]) for combinatorial optimization problems were the two papers for the

traveling salesman problem (TSP) by Held and Karp [9], [10]. In the first paper,

Held and Karp [9] proposed a Lagrangian relaxation based on the notion of 1-

tree for the TSP. Using a complete characterization of the 1-tree polytope, which

follows from a result of Edmonds [-1] for matroids. they showed that this Lagrangian

relaxation gives the same bound as the linear relaj^ation of a classical formulation

of the TSP. In the second paper. Held and Karp [10] introduced a method, which is

now known under tlie name of subgradient optimization (Held, Wolfe and Crowder

[11]), to solve the Lagrangian dual. The 1-tree relaxation has been extensively and

successfully used to devise branch and bound procedures to solve the TSP (see Held

and Karp [10], Ilelbig Hansen and Krarup [8], Smith and Thompson [17], Volgenant

and Jonker [20] or, for a survey, Balas and Toth [1]). These computational studies

have shown that, on the average, the Held-Karp lower bound is extremely close to

the length of the optimal tour. According to most of the above authors (see also

Christofides [-3] and Johnson [12]) the relative gap is often less or much less than

l9{i. On a theoretical ground, a result due to Wolsey [21] states that the Held-

Karp lower bound is never less than 2/3 of the length of the optimal tour when the

triangle inequality is satisfied. However, this worst-case analysis does not capture

the efficiency of the bound in practice. The probabilistic analysis developed in this

paper is aimed at shedding new light on the behavior of the Held-Karp lower bound.

The area of probabilistic analysis has its origin in the pioneering paper by

Beardwood, Halton and Ilammersley [2]. Tlie authors characterize very sharply

the asymptotic behavior of the TSP if the points are uniformly and independently



distributed in the Euclidean plane or, more generally, in R"^ . The potential im-

portance of this early work was demonstrated in Karp [13]. Steele [18] analyzed

probabilistically a general class of combinatorial optimization problems by develop-

ing the notion of subadditive Euclidean functionals. In Karp and Steele [14] the

original proof of Beardwood et al. [2] is simplified using the Efron-Stein inequality.

In Steele [19] an even simpler proof is offered using martingale inequalities. Mar-

tingale inequalities were first applied to the probabilistic analysis of combinatorial

optimization problems by Rhee and Talagrand [16].

In this paper, we combine the combinatorial interpretation of the Hekl-Karp

lower bound with the probabilistic techniques of Steele [18]. We prove that, if

n points are uiiifornily and independently distributed over the d-dimensional unit

cube, the Held-Karp lower bound on these n points divided by n' '' is almost

surely asymptotic to a constant 0HK{d)- ^^ li*"!' d = 2, we prove the complete

convergence of the Ileld-Karp lower bound divided by s/ti. We exploit extensively

tlie fact that the bound can be viewed as the cost of the best convex combination of

1-trees such that each vertex has degree 2 on the average. Relying on computational

studies for the TSP and the matching problem in the Euclidean plane, we estimate

that the asymptotic gap {Ptsp ~ 0H !<)/pTSP is less than 3%. To our best knowledge

this is the first time that a linear relaxation of a combinatorial optimization problem

is analyzed probabilistically using subadditivity techniques.

The remaining of this paper is structured as follows. Section 2 reviews briefly

the main results of the Held and Karp [9] paper. In section 3 we first prove that

the Held-Karp lower bound is monotone and subadditive and then prove the main

theorem. In section 4 we use a martingale inequality to derive some sharp bound

for the Held-Karp lower bound and we establish its complete convergence.



2 Held-Karp lower bound

In this section we summarize the main resuUs of Held and Karp [9]. They presented

a lower bound on tiie length of the optimal tour to the symmetric traveling salesman

problem on the complete undirected graph with vertex set V. This bound can be

described in several equivalent ways.

First, it can be expressed as the optimal objective function value HK of the

linear relaxation of the following standard formulation of the TSP:

^^'" Y. Z ^u-Tu (1)

subject to

^ x-„ + Y, ^-n = 2 V. € V (2)

}>< J«

EE-'-'. <l'?|-l V0^5cr (3)

o<x-,,<i yijevj>i (4)

Xij integer Vf,j € V,j > i (5)

In this program, i,j indicates whether cities i and j are adjacent in the optimal

tour; Ctj represents the cost of traveling from city i to city _;' or, by symmetry, from

city j to city i.

We now give two alternative definitions of a 1-tree which constitutes the core of

the other formulations.

Definition 1 T = (V, E) ts a 1-iree (rooted at vertex 1) if T consists of a spanning

tree on V \ {!}, together with two edges incident to vertex 1.

From now on we shall always assume, unless otherwise stated, that the root node is

identical for any 1-tree, say vertex 1.



Definition 2 T = (V', £') ts a 1-iret if

1. T IS coniKcttd

2. \V\ = \E\

3. T has a cycle containing vertex 1

4- (he degree in T of vertex 1 is 2.

Held and Karp [9] highlighted the relation between the linear program (l)-(4) and

the class of l-trees. More precisely, they showed that the feasible solutions to (2)-(4)

can be equivalentiy characterized as convex combinations of l-trees sucli that each

vertex has degree 2 on the average. Hence, we may rewrite (l)-(4) in the following

way:

k

UK ^ MinY^KdTr) (6)

r= \

subject to

^ A. = 1 (7)

k

Y,^rdjiTr) = 2 Vje\'\{l} (8)

r=l

A, > r=l....,t, (9)

where

• {Tr}j._j
I.
constitutes the class of l-trees defined on the vertex set \',

• c{C) = IIe=(i,j)€E^u '® ^^^ total cost of the subgraph C = {V, E) and

• dj(T) denotes the degree in T of vertex j.

Finally, tlif most common approach to find the Held-Karp lower hound is to

take the Lagrangian dual of (6)-(9) with respect to (8). We then obtain:



HK = maxL{^i) (10)

subject to

Li^j.)= mm c,{Tr)-2Y,^^J (H)

where c^{Tr) is tlie cost of tlie 1-tree T^ with respect to the costs c,j + /j, + /ij

.

3 The main theorem

Let tlie n points A"'"' = (A'l, ,Y2, • • • , A'„) be uniformly and independently dis-

tributed in the d-cube [0, 1] . Let //A'(A'''^') denote the Held-Karp lower bound on

A''"' as defined by any of the formulations of section 2. We are interested in the

behavior, as n tends to infinity, of //A'(A"'"'). Steele [18] proved that the asymptotic

behavior of a particular class of Euclidean functionals L defined on finite subsets of

R to R can be characterized very sharply as follows:

Theorem 1 (Steele [18]) Lei L be a monotone [L{Ali{i'}) > L{A) Vj- e W^^A C

R ], Euclidean [L{ai'i,ai-2 ai-,,) = aZ,(j-i, 2-2, ..., Xn). ^(-''i + -Ti -^2 + 2-, ...,!„ +

z) = L(ji, X2, ..., x„)] /unc/i07)a/ d/ finite variance [l'aj-[L(A''"'] < oc] which saiis-

fies Ihe subadditivity hypothesis;

If {Qi : 1 < ' < n? } IS a parfition of the d-cvhe [0, 1] into t7? identical subcnhes

with edges parallel to the axes then there exists a constant C > such that V'n G

A' \ {0},V/ > 0, we have that

Li{xi x„ } n [0, /]^) < ^ L({xi , . .
.

, x„} n tQ,) + Ctmd-\

1=1

Then there exists a constant pL{d) such that

I(A'("))
imi
n—»oo

almost surely

„l"i;;(^rT]77 = /?^(^)



We empliasize thai tlie critical property in theorem 1 is the subaddilivity liypotli-

esis. It can easily be seen that II K is a Euclidean functional with finite variance.

Proposition 2 proves that the subadditivity hypothesis holds for the functional UK.

The monotonicity of HK is proved in proposition 3. For these propositions the most

useful formulation of the Held-Karp lower bound is (6)-(9). For convenience and

clarity we denote by P(A) the program (6)-(9) corresponding to the set A of cities.

Proposition 2 UK is subadditive, i.e. 3C > O.Vni e A' \ {0},V< > :

in<{\r, x„}n[o,/]'')<^//A-({ji,...,x„}nf(?,) + c/m''-i

for any finttf suhstt of R .

Proof:

Using the fact that JIK is a Euclidean functional, we may restrict ourselves to

the case < = 1. Let V = {j, , . . . , a-^} n [0, 1]'' and V, = {xi, . .
.

, i,,} Pi Q, for

z = 1, . . .
,
in . Let p — m". We arbitrarily choose a root vertex 1, in every \]. Let

{T,i , T,2, .... T,k, } be the class of 1-trees defined on \', (with respect to the root 1,).

We consider the optimal solution {A,>}r=i,...,it, to P{Vt), i.e. {A,r}r=i k, satisfies:

^A,> = 1 (12)

r=\

*-,

^A,,fO(T.>) = 2 VjG\;\{l,} (13)

r= l

A,> > r=\,...,ki (14)

k,

//A-(V^) = ^A,>c(T,>) (15)

From these optimal solutions we shall construct a feasible solution to P{\') whose

cost is less than



^HK{\]) + Cm'^-'^ (IG)

where C = 2\/d + 3. For this purpose, we consider every possible combination of

selecting one 1-tree in each subcube Q,. There are (nr=i ^"i) such combinations. Let

us focus on one of them, say {Tir, }i=i p. Let A be the indices (ri, r2, . . . , Tp) of the

corresponding 1-trees. From these p 1-trees we shall construct a 1-tree T^ rooted at

li, spanning V' and satisfying the following conditions:

d.in) = dj{T,r,) ifjeQ, (17)

c(TA)<^c(r,.,) + Cr7i''-i (18)

1=1

We claim that, by assigning a weight of Aa = nf=i -^iV, to each 1-tree T\ we get a

feasible solution to P(V) whose cost is less than (16). Indeed,

1. Using (12) recursively, we have;

A A = (ri,...,rp) 1= 1

= zJ ''^I'-l zZ •^^rj Zl Vp
7-j = l r2 = 2 'rp=P

= 1- (19)

2. Consider any vertex j 6 V'. Assume that j G Qt- ^Ve have that:

E^A^^(^a) = E^Af/,(7^>,)
A A

' = 1 je{l p}\{l} rjirl

k,

= ^ A,>,dj(T,^,)

r, = l

= 2 (20)

using (17), (12) and (13) respectively.



3. X.\ > follows from (14).

1, 2 and 3 imply that the solution is feasible in P{V)- The cost of this solution is

given by:

A A=(ri Tp) 1= 1 A

1=1 Ti= l

P

= Y^HK{Vi) + Cm^-' (21)

1=1

using (18), (12), (19) and (15) respectively. The last point left in this proof is the

construction of the 1-tree T\ satisfying (17) and (18). We proceed in 2 steps:

Figure 1: Step 1 in the construction of 7^.



1. (Figure 1) In each 1-tree T,^, {i = I. . . . ,p) we delete one of the 2 edges incident

to tiie root 1,, say (1,, 2,). Note that typically 2, depends on r,.

Figure 2: Step 2 in the construction of Ta.

2. (Figure 2) Assume that the numbering of the subcubes is such that the sub-

cubes Qi and Qi+i {i = l,....p— 1) are adjacent. Such a numbering clearly

exists for every d. A possible numbering for the case cf = 2 is represented in

Figure 3. We now add the edges (2i,l,+i) (i = l,...,p- 1) and the edge

(2p,li)-

We first claim that the resulting subgraph T\ = (V, £'a) is a 1-tree rooted at vertex

li- This follows from definition 2. Indeed T\ is clearly connected, the number of

10
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We now prove the monotonicity of the functional HK

.

Proposition 3 If n > 3 //(en HK ts monotone, i.e.

Va-i,...,2-„+i e W^ : //A'(xi,...,a-n+i) > H K{xi, . . . ,Xn).

Proof:

Let {Ti, . . . ,rfc} be the class of 1-trees defined on a set V of n+1 points. Without

loss of generality we may assume that the optimal solution {A,},=i_..._fc to P{V) is

a basic feasible solution and thus rational. Let A = gcd(Ai , . .
.

, A^.), i.e. A is the

greatest rational that divides A, for i = 1,...,^-. By duplicating T, (Aj/A) times

we get a multiset 5 = {T",},-!
..._/ of 1-trees such that each 1-tree has weight A

in the optimal solution. For clarity we assume that two identical 1-trees can be

differentiated and therefore every multiset can be seen as a set. Now assume that

we want to remove vertex {n-\- 1). Let V = \'\{n+ 1}- We shall construct a feasible

solution to P{V') whose cost is less than HK{V). For this purpose, we first need

to show that the optimal solution to P{V) can be decomposed in such a way that S

does not contain some particular 1-trees. Let 5a = {T : T G S,dnj^i{T) — 2, 3j €

y ' (lij)'!!'" + l).(j-" + 1) € T}. A possible candidate for 5a is represented in

Figure 4.

Claim 1 Without loss of generality, iSa can be assumed to be empty.

Indeed, let T 6 5a such that (l,j),(l,n+ l),(j,n+ 1) e T and

dn+i{T) = 2. As n + 1 > 4, the degree of vertex j in T is at least 3.

Therefore, since the degree of each vertex is 2 on the average, there exists

a 1-tree T' G 5 sucli that dj{T') = 1. Let ij and i2 be the two vertices

adjacent to vertex 1 in T' . Without loss of generality, we may assume

that j'l ^ n + I. Moreover, since T' is a 1-tree with dj{T') = 1, we have

that i\ ^ j and ij ^ j. If we replace (l,j) in T by (1,J]) and (l,»i)

in T' by (l,j), we get two 1-trees T and T' which are not in 5a- This

12



Figure 4: 1-tree in ^a-

basically follows from the fact that (l,j) ^ T while (1. n4-l), (j, n+1) G T

and that if (l.n + 1) and (j, n + 1) were both in T' and dn+\{T') = 2

then T' would not be a 1-tree since T' \ {(l.zi),(l.n + 1)} would be

disconnected. But 5 \ {T,T'} U {T,T'} represents the same optimal

solution as previously since T and T' have the same weight A. Hence, by

applying this procedure repeatedly, we see that we may assume, without

loss of generality, that S^ = 0.

Let 5, = {T e S : dn+i{T) = i}, i = 1.2. We duplicate every 1-tree T

in 5 \ (Si U S2) {dn + i{T) — 2) times and we associate to each copy a weight of

X/[dn+i{T) — 2) in order to keep the solution unchanged. Call J>3 the resulting set.

Note that the weight associated to the 1-trees in »5i or S2 is still A while the weight

associated to a 1-tree T in ^3 is X/{dn+i[T) — 2).

Claim 2 \Si\ = 1^3 1

.

Since vertex n-f-1 has degree 2 on the average, we have

13



^ A + ^ 2A + X: d„^,{T) ^ = 2. (22)

TeSi TeS2 TeSi Un+i{^ ) ^

Now the claim follows by substracting the equality X)t65 -^ + 117652 ^"^

^Tes, j„^.(T)-2 = 1 ^^^''ce from (22).

This means that we can regroup Si and S3 into a set S13 of pairs (Tj.Ts) of

l-trees of (!^i and S3 (|t>i3| = \S\\ = |«^3|)- From ^2 and S13 we shall construct a

feasible solution to P{\ '} whose total cost is less than HI\{V). More precisely, we

associate to each 1-tree T E S2 (to each pair {Ti^Ts) 6 S13, respectively) a 1-tree

T' (a pair (T[,T^) of l-trees, respectively) defined on \'' such that;

XciT') < Xc{T) (23)

(Ac(TO+- j^r—^ciT^)<\c{Ti) + - -^^—-c{T3), resp.)
dn+ li-ls)-^ d„+i(i3)-J

Xdj{T') = XdjiT) Vj e V (24)

{^d,{T{) + —-^—-d,iT^) = Xd,{Ti) + t. MTs), resp.)
"n+n-'a)-^ "n+U^3)-^

hold. Combining (23) and (24) we clearly see that, by keeping the old weights,

we get a feasible solution to P(\'') whose cost is less than the cost of the optimal

solution to P(\') which is HI\'{\').

The construction of T' and [Ti.T^) is as follows:

1. T eS2

Let {i,n + 1) and {j,n + 1) be the two edges incident to vertex n + 1 in T.

Let T' = T\ {{i, n + 1), (>, n + 1)} U {ij}. The fact that T' is a 1-tree on

V' follows from definition 2 and the fact that we can assume without loss of

generality that S^ = (claim 2). Clearly (24) is satisfied and the triangle

inequality implies that (23) holds.

2. (Ti,T3)e.s'i3

Let i ^ 1 be the unique vertex adjacent to (n + l) in Ti . Let v = dn+i{T3) > 3.

14



Let ji j^ be the vertices adjacent to n + 1 in T3. We may assume without

loss of generality that i is in the same connected component as ji when we

remove the vertices 1 and n + 1 in Ts. Moreover, if vertex 1 is adjacent to

vertex n -j- 1, we may assume that J2 = 1 if and only if (l,Ji) ^ T3. The

T,

\/.

T,

-^

t;

Figure 5: Construction o( T[ and T^.

transformation is the following (see Figure 5):

T{ — T,\{{i,n+l)}

A T'3 \ {{ji,n + 1), .
. . , {j^, n+l)){J {U1J2), Ua, i),, (j:., 0}

The fact that Tj' is a 1-tree is obvious. We notice that none of the edges

added to T3 were already present in T3. We then check that T3 is connected,

IT3I = IT3I — 1 — \V\ — 1 = \V'\, T3 has a cycle containing vertex 1 and

di{T^) = 2. Hence, by definition 2, T3 is a 1-tree. Using the triangle inequality,

we have

Xc{T,) + -^cin) - Xc{T[) - -^c{n)
u — 2 u — 2.

15



"A A ''A

A

A
"

A:=3

and therefore (23) holds. Moreover, since

[ -1 if; = i

I otherwise

and

{V -1 lU = i

otherwise

we see that

Hence, (24) is satisfied.

This completes the proof of proposition 3.

We may now deduce the asymptotic behavior of HK as a corollary to theorem

1 and propositions 2 and 3.

Theorem 4 Lei ilu n points A"'"' = (A'l, . . .
, A'n) be uniformly and independenlly

distributed in the d-dimensional unit cube. Then there exists a constant PHK{d)

such that

almost surely.

A number of combinatorial optimization problems, like the Euclidean traveling

salesman problem, the Euclidean minimum spanning tree problem and the Euclidean

minimum weight matching problem, have a similar asymptotic behavior although

16



witli a (iifT^^rPiit constant ^ (see Beard wood, Halton and Hammersley [2] and Pa-

padimitriou [15]). It is therefore interesting to compare /?//a(c') to the value of (3

for closely related combinatorial optimization problems. In particular, it is clear

that 0HK{d) < l3TSp{d). Moreover, since the value of the Held-Karp lower bound

on n points is never less tiian the cost of the minimum spanning tree on a subset

of n-1 points, /?//a-(c/) > /?r(f/) where I3r{d) is the corresponding constant for the

Euclidean minimum spanning tree problem. The relationship between BuKi^) arifi

[3\f{d). where P\i{d) is the constant for the Euclidean minimum weight matching

problem, is a little less obvious. Using a complete characterization of the perfect

matching polytope, we may express the cost M of the minimum weight matching

as:

il/ = A//n^^c„y„ (25)

subject to

(27)

(28)

Substituting y,j by J:,j/2 we get a relaxation of the linear program (l)-(4). Hence

M < ^ which implies that l3}u<{d) > 2/?A/((f). We thus obtain the following

proposition:

Proposition 5 max(2/?A/(c/),/?r(d)) < 0HK{d) < 0TSP{d).

When d = 2, ,SA/(rf), /?7(cf) and 0TSP{d) were estimated to be 0.35, 0.68 and 0.72

by Papadimitriou [1.5], Gilbert [7] and Johnson [12], respectively. Using proposition

17



5, we may therefore deduce tliat the asymptotic gap {0TSP — Puk)/i^TSP is approx-

imately less than (0.72 — 0.70)/0.70 ^ 3%. This suggests a probabilistic explanation

of the observation that the Held-Karp lower bound is very close to the length of the

optimal tour in practice.

4 Martingale inequality and the Held-Karp lower bound

In this section we use a martingale inequality to deduce a sharp bound on

Pr{|//A-(A-'"^) - £'[FA-(A''"))]| > i)

for the case d = 2, i.e. in the Euclidean plane. As a consequence, we shall be able

to establish the finiteness of

//A'(A'("';

n=l
s/Vr

- Phk > €

for all f > 0, i.e. the complete convergence of the Held-Karp lower bound. This result

is stronger than the almost sure convergence of theorem 4. This section basically

rests upon the martingale arguments developed by Rhee and Talagrand [16] for the

TSP.

For each 1 < J < n, we let .4, be the sigma field generated by A'^, 1 < J < i-

Let IIK, = i/A'(A'i,...,A',_i,A', + i,...,A'„). Clearly E[H K,\A,] = E[H K,\A^_i].

If A, = //A-(A-<")) - //A',, then d, ^ E[HK{X^^^)\A,] - £'[//A-(A'("')|.4,_i] =

E[Ai\A,] - E[A,\A,-i]. In this way, HK{X^''^) - ^[//A'CA'*"))] = E?=id, and

the sequence (£/,),<n is a martingale difference sequence. We prove the following

theorem.

Theorem 6 There erisfs a coiisiant 7 svch ihai for every n

Pr{|//A-(A'"')-r[//A-(A'("')]| ><} <2e-'^'.

18



Proof:

We apply the martingale inequality (see Rhee and Talagrand [16])

1 = 1
^'h^^-^p^-c?^)

1 /9

where B = max;- ||£' [Hr=/c ^?l-'^^-] Hoc ^^^'^ ^i '^ ^ numerical constant. The goal is

to prove that, for the Held-Karp lower bound, D < C2 for some constant €2- We

first need the following lemma.

Lemma 7 7. < A, < 2\/2 for all i

2- There exist constanis C3 and C4 such that, for k < i < n and k < n — \,

E[A,\A,]< ^]
\/n — A — 1

and

E[A]\A,]<—^.
n — V — 1

Proof:

The Held-Karp lower bound on (A'l. . . .
, A',_i, A'.+j, . .

.
, A'„) can be viewed as a

convex combination of 1-trees (Ti,...,T,), rooted at vertex A'j, with correspond-

ing multipliers (Ai,...,A,). Let cr(T) denote one of the two vertices adjacent to

A'j in the 1-tree T. For every Tr (r = 1,...,^) we add the two edges (A'j,A',)

and (A',,(T(Tr)) and delete [Xj,a{Tr)). This, produces a new 1-tree T/ spanning

(A'l, . . . , A'„) with the degree of each vertex unchanged and the degree of A', being

2. The multiplier associated to T/ is still Xy. Because the degrees remain unchanged,

we have constructed a feasible solution to P({A'i, . .
.

, A'„}). As a result,

r=l r=\

= HK, + 2\X,-Xj\

Thus, A, < 2IA',- — A'jl for every j ^ i. Hence A, < 2v2 for any i, wliich, together

with the monotonicity of the bound, proves the first part of the lemma. Moreover,

19



when fc < i < n and k < n— I, we have that A, < u where u = 2min{|,Y, — Xj\ :

k < j < n,j 7^ ?'}. Since u is independent of .4^, we get that £'[A,|.4fc] < -£"[11] and

E[A]\Ak] < E[u'^]. As Pr{u > ^ < (1 - ai^)"-/:-! < exp(-a(n - k - l)t^) for

some constant q (see Karp and Steele [14]), we easily get that

E[v] <
Cs

and £[11"^] <
C4

VrT^nr^ ' - n- k -\

for some constants C3 and C4, which proves the second part of the lemma.

As a corollary of the above lemma and following exactly the same techniques as

in Rhee and Talagrand [16], we can easily prove that

1. E[dj\Ak] < Cs for any k <i < n and

2. E[d^\A,,] < ^^ for k<i<n-h

where C5 and Ce are constants. As a result, we can bound B as follows:

E-^'i-^/c
t=k

= E[dl\A,]+ Yl E[dJ\Ak] + E[dl_,\A,] + E[dl\A,]

k<t<n-l

< 3C5 +
Ce

n - k -I

1/2

(n _ t - 2) < 3C5 + Ce = C2

Hence, B = max;. H^ [E"=;- ^?l--iA-] ill, < C2. Letting 7 = j^, the theorem fol-

lows. D

Applying theorem 6 with t = e-y/n, we find that

Pr||//A"(A"("') - E [//A'(A"<"')]| > €/"} < ie''"^

.

(29)

The complete convergence of the Held-Karp lower bound now follows from (29) and

the fact that E[H K{X''^')]/\/n. tends to /?hA' as n tends to infinity.

5 Concluding remarks

We analyzed probabilistically the Held-Karp lower bound for the TSP. Our result

corroborates the observation that the lower bound is very close to the length of the
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optimal tour in practice. We would like to emphasize that we exploited the combi-

natorial interpretation of the Held-Karp lower bound and the theory of subadditive

Euclidean functionals. We believe that the idea of combining polyhedral charac-

terizations with probabilistic analysis has the potential to lead to very interesting

results.
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