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ABSTRACT

In this paper we describe production planning and scheduling models for a

semiconductor company manufacturing specialty wafers. The production of specialty

wafers involves processing a large number of low volume customer specific orders

which can be classified into a number of product groups.

Typically, the literature in scheduling deals with one product and a single

objective. In contrast, we propose and test several heuristics for scheduling

jobs in a multi-product parallel reactor (machine) shop with different criteria.

We introduce a set of indices to measure the degree of homogeneity in the product

set. Based on the results of the computational experiments, we recommend that the

choice of the heuristic should be guided by the homogeneity of the product set and

the chosen objective criterion.

The planning problem relates to the assignment of reactors to the product

groups to obtain homogeneous product sets and can be viewed as an effort to define

smaller, independent shops. The significance of the planning exercise is due to

the fact that a homogeneous product set enables the use of a simpler heuristic and
i

reduces the complexity of the scheduling system. The planning model is a nonlin-

ear integer program and difficult to solve. We propose to obtain an approximate

solution by solving a related quadratic program. We provide bounds on the per-

formance of this approximate solution and demonstrate that it is asymptotically

optimal

.
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1.0 INTRODUCTION

In this paper we describe a scheduling system developed for a semiconductor

wafer manufacturing company. The facility produces specialty wafers which are a

major input in the manufacture of a variety of semiconductor devices. The manu-

facture of specialty wafers is characterized by relatively small volumes, small

lot sizes, and a wide range of products sharing common equipment. The production

of epitaxial wafers involves a number of steps which can be classified into three

stages—crystal growth, substrate fabrication and epitaxial growth. In the first

stage (crystal growth) ingots are produced from electronic grade silicon. The

ingots are converted into substrates in the second stage by a series of machining

and chemical operations. Epitaxial growth is a batch operation in which a thin

silicon dopant layer is grown on the wafer surface. This is a critical operation

and invariably it is necessary to process each order (job) separately. The epi-

taxial growth is achieved by vapor deposition process in a reactor under

specified conditions.

A detailed analysis of the capacity at various stages revealed that the epi-

taxial growth in the reactors was a bottleneck operation. This finding was con-

sistent with the management perception and observations on the shop floor. This

paper describes the system developed for scheduling jobs at this stage. It should

be noted that the facility is equipped with a number of reactors with varying cap-

ability. This results in restrictions on the type of jobs that can be processed

on each reactor. In addition, since the number of jobs is large, scheduling at

this stage is a complex problem.

We model the scheduling problem by a single-stage parallel-machines facility.

Traditional approaches in scheduling typically consider a homogeneous job stream

and a single objective. The variation in resource requirements of different prod-

ucts suggests that this may not be quite appropriate in the present application.

We consider a facility with different types of products and propose several
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heuristics for two criteria: make-span and tardiness. Computational experiments

were performed with realistic data to test the heuristics. In addition, we

examined the performance of these algorithms with respect to the number of tardy

jobs. The results suggest that the two phase hierarchical procedure (referred to

as H5 in the paper) proposed performs reasonably well under a variety of

conditions for all the three objectives. An exception to this is the case when

the job due dates are dependent on the product groups and are tight. In this

instance we recommend the use of two heuristics depending on the objective.

Further, we classify the prod-uct mix as "homogeneous" or "heterogeneous" and

suggest measures to do so. The experimental results suggest that while a simpler

heuristic is adequate for homo-geneous products, a more elaborate algorithm is

required for the heterogeneous case.

We also consider the planning problem of obtaining a homogeneous set of prod-

ucts by appropriately assigning reactors to products. The motivation for this

effort is the fact that a homogeneous product set would enable use of a simpler

heuristic and reduce the complexity of the scheduling system. We formulate a non-

linear integer programming model, which can be interpreted as an attempt to obtain

smaller independent shops with homogeneous product sets. Since this is difficult

to solve, we propose a simpler problem to obtain an approximate solution. We

provide bounds on the performance of this approximation and demonstrate that it is

asymptotically optimal with the number of products. We also show that the approx-

imate solution yields assignments that are asymptotically optimal for the make-

span.

The plan of the paper is as follows. In the next section we describe the

scheduling model and the heuristics. The results of the computational experiments

are discussed in Section 3. In Section 4, we describe the planning models for as-

signing reactors to products. The last section provides a brief summary of the

conclusions of this study.
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2.0 THE SCHEDULING PROBLEM

We model the scheduling problem at the wafer manufacturing facility in the

following terms.

1) Each job requires one operation.

2) Jobs are independent— i.e. there are no precedence constraints.

3) Process times are deterministic and sequence-independent.

4) All the jobs in the facility are available initially for processing.

5) The facility consists of multiple machines operating in parallel.

6) The machines are neither identical nor uniform. (The machines are said to

be uniform when they can process all jobs with possibly different speeds). Each

job can be processed on a subset of machines depending upon the product character-

istics. The process time, however, is identical on the reactors which are capable

of processing the job. Thus, we can classify jobs into product groups. With each

group j we can associate a subset of reactors I(j) which is capable of pro-

cessing the jobs in that group.

7) The availability of the machines is deterministic but not identical for all

the reactors. This follows from the differences in the operating schedules of the

machines.

The brief review of the literature which follows suggests that the above

characteristics lead to a difficult problem for which no efficient algorithms

are available to obtain optimal solutions. As we describe subsequently, the

model we consider does incorporate some features that are important from a

practical perspective.

2.1 REVIEW OF THE LITERATURE

The single machine scheduling problem is perhaps the simplest of the sequen-

cing problems and is discussed in detail in Baker (1974) and Conway et al. (1967).

It is shown that for the static case with all jobs available initially, sequencing
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according to the shortest processing time minimizes the average flow time. Like-

wise, sequencing in order of due dates minimizes the maximum lateness. While

simple rules are available for some objectives, no efficient algorithm exists for

minimizing the average tardiness. In fact this is still an open problem since it

has not been shown to be NP-complete. Optimal solutions can be obtained by using

dynamic programming or branch and bound techniques and a number of heuristics have

been proposed for generating "good" schedules.

The complexity of sequencing with parallel machines depends on the machine

characteristics and whether preemption of jobs is permitted. The problem of min-

imizing total tardiness with multiple machines and no preemption is NP-hard (Law-

ler et al. , 1982) and hence there is little hope of developing an efficient algor-

ithm for this criterion. Minimizing the make-span and average flow time are the

criteria that have been considered in detail and reported in the literature for

the multiple machine problem. Make-span refers to the time required to complete

all the jobs and is of interest because it is often related to the work-in-

process. It has been shown that a simple ordering by processing times minimizes

the average flow time if the machines are identical. The make-span problem has

been shown to be NP-complete with two or more machines and no preemptions. A num-

ber of heuristics have been proposed—for example list processing techniques such

as largest processing time, the differencing method by Karmarkar and Karp (1982),

and a duality-based method by Hochbaum and Shmoys (1984). All these algorithms

use intuitively simple notions and have been shown to be asymptotically optimal

with the number of jobs.

The problem complexity is considerably reduced by permitting preemptions.

Polynomial-time algorithms have been proposed for the make-span problem with uni-

form machines. Federgruen and Groenevelt [8] developed an algorithm using ordin-

ary network flow techniques. Labetoulle et al. (1984) consider the problem with

arbitrary release dates and provide two algorithms—one for minimizing the make-



span with an arbitrary number of machines and the other for minimizing maximum

lateness with two uniform machines.

Most of the reported literature deals with the scheduling problems with either

identical or uniform machines and very few results are available for the general

case. For the non-uniform machine case Horn (1973) formulated an assignment prob-

lem to minimize the make-span with no preemptions and general processing times.

More recently Davis and Jaffe (1981) proposed a heuristic based on list processing

techniques

.

2.2 THE SCHEDULING PROBLEM AT THE EPITAXIAL GROWTH SECTION

The above discussion makes it clear that scheduling jobs with parallel mach-

ines is a difficult problem with either the make-span or the tardiness objective.

The problem outlined at the beginning of the section corresponds to a quite

general case of parallel processing and hence it is difficult to solve. Some

practical issues not explicitly considered in the initial description of the

problem are briefly discussed below.

i) The model considers a static Job shop, while in practice the shop is dyn-

amic and jobs are released as and when orders are received. We address this prob-

lem by periodically solving static problems comprising the jobs on hand. Since new

jobs are typically assigned later due dates we expect the procedure to yield

schedules which are stable in the short run. Our experience with the scheduling

system that has been implemented at the wafer manufacturing facility confirmed

this conjecture.

ii) Deterministic approximation of stochastic process times is quite reason-

able in the present application. The process time includes a component for test

run which is stochastic. The time required for the production run which follows

the test run is nearly deterministic. In addition, the jobs are relatively large

in the sense that test runs constitute, a minor part of the total process time.



-7-

Operational data from the shop floor supports this reasoning and the variability

in process times is not significant.

While the research in scheduling is typically concerned with one objective, in

practice, managers are often faced with multiple and at times conflicting object-

ives. Minimizing the make-span is an important criterion, since this is often

related to the work-in-process. In addition, jobs have assigned due dates and

minimizing the total tardiness and/or the number of late jobs is also a critical

objective. It is also well known that these objectives are, in general, not

equivalent and an optimal solution for one is not necessarily optimal for other

objectives. Thus, we have two different scheduling problems with conflicting

objectives—one with the make-span as an objective and the second with total tard-

iness as the criterion. We now describe some heuristics to address these prob-

lems. In the following section we report on the computational experiments to test

the performance of these heuristics.

2.3 PROBLEM 1 - TARDINESS CRITERION

We first consider the case where the objective is to minimize the total tardi-

ness. The earlier discussion on the literature should make it clear that we are

unlikely to find efficient algorithms to obtain optimal solutions and the best we

can hope for are good heuristics. We propose to examine four different heuris-

tics. The algorithms are similar and schedules are derived in two phases. In the

first phase jobs are considered at an aggregate level and priorities are assigned

to the product groups. In the second phase, based on these priorities, reactors

are assigned to the individual jobs. For jobs within a product group the priority

is given by its due date. The assignment of jobs to reactors is obtained by a

single-pass heuristic. The four heuristics essentially differ in the manner in

which the priorities are defined. Finally jobs assigned to a reactor are sched-

uled according to the due dates. The priority rule for reactor assignment for the
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four heuristics is as follows (note that a lower index represents a higher

priority) :

i) Each product group is assigned a priority based on the number of reactors

on which jobs in that group can be processed, i.e. the cardinality of the set

I(j). The priority for jobs within each group is determined by due date and in

case of ties by the process times.

ii) The priority for product groups is determined by the ratio of total work

load for jobs in the group to the number of reactors on which these jobs can be

processed. The priority of jobs within each group is similar to that in case i).

iii) The priority is defined by the quotient of two factors. The first factor

relates to the tightness of job due dates and is defined by the average slack for

jobs in the group. The second factor is the average load per reactor. The prior-

ity is defined as follows.

P(j) = priority for product group j = Sl(j)|I(j)| / d.

g
j

where: Sl(j) = average slack per job = £ (dd(k) - p(k))/g.
k=l J

|I(j)| = number of reactors available for group j

g . = number of jobs in group j

d .
= total work load for jobs in group j

dd(k) = due date of job k

p(k) = process time for job k.

Again, for jobs within each group the priority is similar to the previous cases.

iv) The priority is determined by the due date of the job and in case of ties

by the process time. In this heuristic we do not classify the jobs into product

groups

.

Heuristic iv) is similar to the one proposed by Bernardo and Lin (1984) adap-

ted to the present situation and is used for comparison. The authors have tested

their heuristic on small (up to 14 Jobs and 6 machines) and large problems (up to



80 jobs and 20 machines) and reported encouraging results. In the present appli-

cation we have up to 300 jobs. The heuristics are described in detail below.

Notation :

n number of reactors/machines

n number of jobs

g = number of product groups

I(j) * set of reactors capable of processing jobs in group j, j = 1 g

g(j) = number of jobs in group j

dd(k) due date of job k

p(k) - process time for job k

P(k) = priority measure for job k

GJ(k) = product group of job k

S(k) = start time of job k

F(k) * completion time of job k

n(i) = number of jobs assigned to reactor i

a(k,i) job that occupies position k on reactor i

Z = measure of tardiness (objective).

Without loss of generality we can assume that product groups are ordered ac-

cording to the priority, i.e., group 1 has the highest priority and group g the

lowest. Note that the priority of a product group depends on the rules (1 - iv)

used and may be different for the four heuristics.

ALGORITHM

Step 1 Initialization

Z •<- 0.

Set n(l) - 0. i * 1 to m.

Compute product group priority. Then within each group compute job priority.

For jobs within a product group the priority is given by the due date and in case

of ties by the process time. Any remaining ties are resolved randomly. We assume

that the jobs are arranged in accordance with this priority.
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Step 2 Reactor Assignment

For k = 1 to n:

a) compute A(k,i) = increase in the total tardiness if job k is

assigned to reactor i and scheduled according to the earliest due

date (e.d.d.) rule, i e I(GJ(k)).

Note that the e.d.d. rule implies that jobs assigned to a reactor are processed

according to the due date. Hence A(k,i) is computed by first determining the

position in which the new job k would be- inserted on reactor i by following

the e.d.d. rule. The increase in total cardiness is then computed by examining

the changes in the completion times of the succeeding jobs on that reactor.

b) i* = arg min A(k,i), A = A(k,i*).
i c I(GJ(k))

c) Assign job k to reactor i*.

Update the queue at reactor i*; n(i*) «- n(i*) + 1.

Compute start and finish times for job k and the jobs on i* which

are processed after k.

Z «- Z + A.

Step 3 Adjusting the Schedule

The schedule is adjusted to delay the start of jobs as much as possible

without increasing the tardiness. The sequence of jobs on a reactor remains

unchanged.

For i = 1 to m:

For k = n(i) to 1 step -1

If F(a(k,i)) < dd(a(k.i))

then (F(a(k,i)) <*- dd(a(k,i))

S(a(k.i)) «- F(a(k,i)) - p(a(k,i))}

else next i

Next k

Next i



-11-

Note that while the algorithm described above schedules all the jobs, it can also

be used to add new jobs. In this case the initialization step is modified. The

queues are not empty but reflect the current schedule. The priority index and

related computations in Step 2 are required for new jobs only. This is a very

useful feature since the plans are updated on a rolling horizon basis.

Step 3 of the procedure is relevant if some of the jobs assigned to a reactor

can be completed within the due date. In such cases the schedule is adjusted so

that the jobs are completed as late as possible without making any job overdue.

This feature has been incorporated because early completion imposes a small

penalty. This is considered to be a secondary objective.

m

2.4 PROBLEM 2 - MAKE-SPAN CRITERION

We propose a two phase hierarchical approach to develop a schedule to minimize

the make-span. In the first phase we consider jobs in aggregate at the group

level and determine the allocation of load among the various reactors. The crit-

erion at this stage is to minimize the make-span. In the second phase jobs are

assigned to reactors and a schedule is developed consistent with the loading

pattern derived in the first phase. The objective in the second phase is total

tardiness. In fact, in the first phase we consider the additional objective of

achieving a balanced load between the reactors. This is subsequently described in

this section. We derive a schedule which considers three objectives, albeit in a

hierarchical fashion. The problem of allocating the load among the reactors is

formulated as a convex program described below. Observe that at this level we are

ignoring the due dates of individual jobs. However, we expect that this procedure

will give reasonable results for tardiness-related criteria as well, so long as

due date assignment is not based on the product group. The results of computa-

tional experiments described in the next section confirm this conjecture.
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We define the following additional notation:

dj = total load of jobs in product group j (load refers to the machine

or process time required to complete the Jobs in the group)

av(i) = availability of reactor i (for example hrs/week)

J(i) = set of products that can be processed on reactor i.

Variables:

x(i,j) : load of product group j assigned to reactor i

MS : make-span

r. : total load assigned to reactor i.

"
2

[AP] Z = min £ (MS - r./avfi))"
1 = 1

s.t. r = Z x(i.j), 1 = 1.2 m;

jeJ(i)

r^avU) < MS, i = 1, 2 m;

E x(i.j) = d j = 1, 2 g;

iel(j) J

x(i,j) > 0. i e l(j), j = l, 2 g.

In this formulation we are assuming that the jobs are completely divisible and

can be processed in parallel. This is not an unduly restrictive assumption in the

present instance. Long jobs can and sometimes are processed in parallel on dif-

ferent reactors. However, since it is more common to find a large number of small

jobs, the indivisibility of jobs has a marginal impact on the total make-span.

This follows from the fact that if MS* is the optimal MS in problem AP and pmax

is the process time of the longest job, the optimal make-span without divisibil-

ities in jobs is less than MS* + p /min (av(i)) .

*max .

The choice of objective function needs some elaboration. The problem of min-

imizing the make-span can be formulated with a linear objective function (Min MS)

as a modified assignment problem. This is unlikely to be very useful because of
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the large number of alternative optimal solutions. We are in fact interested in

achieving minimum make-span and also maintaining a balanced load on various reac-

tors. Each term in the objective function can be interpreted as the idle time on

each reactor. Replacing the quadratic term by a linear one would result in min-

imzing the idle time and the makespan but would not discriminate between the loads

on different reactors. It may be noted that the processing requirements of the

various product groups could lead to imbalance in reactor loads. The minimum

make-span is determined by the load on the critical reactor. A wide range of

feasible loading patterns on the other reactors gives rise to alternate optima

with respect to the make-span objective. The use of the quadratic objective

function ensures that the optimal solution will favor a uniform loading of the

reactors. The results provided in Appendix 1 demonstrate that the optimal

solution to the problem will indeed result in a minimum make-span solution.

The convex program is relatively small since, in practice, the number of prod-

uct groups and reactors tends to be of the order of 25 and 10, respectively. The

problem can be solved using standard techniques (Bradley et a_l. (1977), Schrage

(1984), Shapiro (1979)). In the computational experiments we used the LINDO

package to solve the quadratic program.

The detailed scheduling consisting of job assignments to reactors can be done

using the heuristic (iv) described earlier, subject to the aggregate allocations

given by AP. Although such allocation may require job splitting, in implementing

the heuristic we have maintained integrality of jobs in a reactor. We have also

modified Step 2 of the algorithm as follows: The set of admissible reactors at

any stage excludes those which have already been assigned jobs up to the limit

specified in the primary allocation.

3.0 COMPUTATIONAL EXPERIMENTS

In this section we describe the computational experiments performed to examine
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the behavior of the heuristics discussed earlier. The data base for generating

the test problems was developed from operational data obtained from a specialty

wafer manufacturing corporation and is representative of realistic situations in

that industry. The corporation has two shops which operate independently and pro-

duce a range of semiconductor wafers. The two shops provided data bases for the

two sets of experiments reported in this study. All the test problems in the ex-

periments consisted of 300 jobs and the following criteria were used to compare

the results:

i) Make-span or the minimum time required to complete all the jobs;

ii) Total tardiness;

ill) Number of jobs tardy.

The maximum number of jobs in each shop at any point in time is of the order

of 300. We observe that these problems are significantly larger (in terms of num-

ber of jobs) than those reported in the literature in testing related scheduling

algorithms. For example Baker and Martin (1974) considered test problems with a

maximum of 15 jobs while Bernardo and Lin (1984) reported results with 80 jobs and

20 machine problems. It should be mentioned that Baker and Martin solved the

problems to optimality for comparison purposes and this is nearly impossible in

large problems. However, we do obtain a lower bound for the make-span criterion

and the bound is reasonably close.

,3.1 DATA BASES FOR THE EXPERIMENTS

1) Number of machines: 9 and 12, respectively, for the two data sets.

2) Product Groups: The jobs processed by the facility were classified into

homogeneous groups from a processing perspective. The numbers of groups are 15

and 18 for the two data sets. For each product group a subset of reactors, cap-

able of processing jobs in that group, is assigned. The distribution of jobs into

the product groups was determined empirically from a sample of orders processed by
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the company. While the test problems were run with the total number of jobs fixed

at 300, the product groups were assigned in a random manner consistent with the

observed distribution.

3) Process (Operation) Time: Computational experiments reported in the liter-

ature have typically used the normal distribution to generate process time data.

For example see Bernardo and Lin (1984) and Baker and Martin (1974). The data

from our sample suggested that this distribution is inappropriate in the present

instance. Operations in the wafer manufacturing facility were characterized by a

large proportion of small jobs with few orders requiring large process times.

This feature is characteristic of both shops and is analogous to the A-B-C class-

ification in inventory systems. It was also observed that the distribution of

process times was very similar for jobs in different groups. Therefore, we

decided to use the same form of distribution for all the groups in both the data

sets. The parameters defining the distribution were different for each group and

were estimated from the sample data. We were unable to fit any standard distrib-

ution to this data and hence used the empirical distribution obtained from the

sample data itself. The ratio of process time (p) to its mean (p) defines a non-

dimensional measure of process time (p) which was used to describe the dis-

tribution. The relation between process time and the number of jobs is described

by the following:

log(p) = a
x

+ b
x

log(x). < x < Xg

= a
2

+ b
2

log(x) , x
Q

< x < 1

where p = p/p

p = mean process time

x = cumulative proportion of number of jobs

and x , a , b , a , b are parameters determined from the sample data.

Since the distribution of cumulative number of jobs is uniform in the inter-

val L . 1 J . the process times for test problems were generated using a uniformly



-16-

tion. The corresponding process time is obtained as p = p-p where p is the

mean process time for the group.

4) Due Dates: To generate due dates for the jobs in the test problems we

adopted a procedure similar to that followed in the literature (Baker (1974),

Baker and Martin (1974), Bernardo and Lin (1984), and Conway et al. (1967)). In

assigning due dates, three factors were considered: tardiness factor (t), due

date range (r), and dependence/ independence between process times and due dates.

The due date for job k was selected randomly from the interval dd, + w/2,

where dd. is the mean due date for job k and w is the due date range.

In case of dependent due dates, the mean due date for each job is proportional to

its process time while with independent due dates the mean due date is the same

for all jobs. In both cases the mean is a function of the tardiness factor t.

Likewise, the range of the due date distribution is the same for all jobs and is

defined by the range factor r. The determination of these parameters is des-

cribed in detail below.

a) Tardiness factor (t) is a rough measure of due date tightness which

together with the dependence factor determines the mean due date of a job.

dd
R

= n(l - t) / m Pj< (1)

dd = n(l - t) / mp (2)

where dd = mean due date for job k

m = number of machines (reactors)

n = number of jobs

t = tardiness factor, < t < 1

p = process time for job k

n

p = mean process time for the job set = (£ n )/n .

k-1
k

b) Dependence factor: "Dependent due dates" refer to the case in which due

dates are dependent on process times. We use a procedure similar to that adopted
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by Baker and Martin (1974) and the mean due date is determined by (1). When the

due dates are independent of the process times, the mean due date is given by (2).

c) The width of the due date distribution is defined by the range factor r

by the formula:

n

w = r £ PL/"
k=l

*

where w is the width of the due date distribution.

3.2 EXPERIMENTAL RESULTS

In designing the computational experiments, we considered two levels for each

of the three factors. This is consistent with the practice followed in the liter-

ature (Baker and Martin (1974), Bernardo and Lin (1984)). The factor levels are

such that the due dates are generated with varying degrees of tightness. The

experiments were performed for the following factor levels.

Tardiness (tightness) factor t = 0.6 and 0.2

Due date range r = 0.2 and 0.95

Dependent and independent due dates.

The heuristics were tested with eight sets of parameters defined by the three

factors. For each set, ten replications were performed totalling 80 problems for

each data set. As described in the previous section the five heuristics tested

are

i) (HI) Priority of group j is determined by the cardinality of the set

I(j). In case of ties, the group with higher load will have a higher

priority,

ii) (H2) Priority is given by |I(j)| / d.

iii) (H3) Priority is given by S 1 ( j )
-

j
I < j ) |

/ g(j)

iv) (H4) No priority among product groups,

v) (H5) The two-phase heuristic for the make-span objective proposed in the



previous section. In the first phase of this method the work load of

the product groups is allocated to the reactors by solving the quadratic

programming problem described earlier.

We propose a reactor-based index for each data base to check for homogeneity

in the products. This index measures the average load on each reactor and is

defined as follows:

RG(i) « E N(J) P(j) / |I(j)|

JeJ(i)

where N(j) number of jobs in group j

P(j) mean process time for jobs in group j

and I(j), J(i) are as defined earlier.

Each term in the summation represents the average load per reactor due to a

group, assuming that the total load is uniformly distributed among all the reac-

tors that can process such jobs. We propose this measure because it reflects the

thinking of the shop managers in the absence of any formal scheduling system. As

the computational results show, this measure plays a useful role in selecting the

algorithm for the scheduling system.

We define a "homogeneous" product mix as one in which the variation in the

reactor indices is "small." In contrast, a "heterogeneous" product mix is charac-

terized by a "large" variation in these indices. These definitions are vague and

qualitative in nature and are intended to serve only as a diagnostic in choosing

the appropriate heuristic. Products with variations in process requirements would

give rise to wide spread in the reactor indices and would be classified as "het-

erogeneous." The variation in reactor indices is indicative of the imbalance in

the reactor loads. These measures for the two data sets tested are displayed in

Table 1. It can be observed that for data set 1 the RG index varies between 21.28

and 158.67, while for data set 2 the variation is from 20.65 to 44.22. This sug-

gests that the job data for the second set is relatively more homogeneous than for

the first. In the discussion which follows we refer to the products in data bases

1 and 2 as heterogeneous and homogeneous products, respectively.
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Table 2 compares the performance of the heuristics for some typical cases. In

the absence of an optimal solution, we chose, for each problem, the best perform-

ance measure among the five heuristics as the reference point and measured the

deviations with respect to this base. Table 2 provides the average of these devi-

ations for the ten problems in each case. The deviations are expressed as a per-

centage of the mean value of the reference point for the ten problems. The table

provides these measures for the make-span and tardiness objectives. It can be

observed that while heuristic H5 gives schedules with very good make-span, its

performance with respect to tardiness-related criteria is quite poor when the due

dates are dependent on process times. In contrast with independent due dates, H5

provides least make-span schedules that are typically within 10* of others for the

tardiness criteria. This supports our conjecture that the hierarchical heuristic

H5 should provide reasonable schedules for tardiness criteria as well, when the

due dates are not product group dependent. The table also highlights the differ-

ence between homogeneous and heterogeneous product sets as contrasted by the

results for the two data sets. With a heterogeneous product (data set 1), heur-

istic H4, which does not discriminate between product groups, performs poorly for

both make-span and tardiness criteria. These results demonstrate that priority

based on product groups significantly improves the quality of the schedules when

the products are not homogeneous. We note that the data provided in Table 2 is

representative of the results obtained with other problems. We now describe some

key results.
,

1) The two phase hierarchical heuristic H5 has performed well. It provides

dominant schedules for the make-span criterion. In fact this method provided the

best results for this objective for all but 15 of the 160 problems in the exper-

iment. The deviations from the minimum in these cases is quite small and due to

the indivisibilities of the jobs. The make-spans are quite close (within 5*) to

the lower bound provided by the result of the convex program. These schedules are
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quite good for the tardiness-related criteria. An exception is the case with

dependent due dates which are tight (t = 0.6).

2) The trade-off between the make-span and tardiness criteria is most pro-

nounced with data base 1 for the case in which the due dates are dependent on

process times and are tight (t = 0.6). In this case H5 yields a make-span which

is about 10-20% better than those obtained with the other heuristics. But this is

at the expense of tardiness measures. Total tardiness and number of late jobs go

up by more than 100%. This result is important in that it clearly highlights the

relation between objectives to be attained and the appropriate method for

scheduling jobs.

3) When the tardiness factor is set at 0.2, suggesting loose due dates, the

tardiness-related criteria become less important. In this case the use of H5

gives schedules with least make-span and negligible penalty in tardiness measures.

4) The situation is similar when due dates are set independently of the pro-

cess times. Here again, H5 gives least make-span with marginally higher tardiness

measures. These results indicate that the heuristic H5 would perform well for the

tardiness criterion when the due dates are independent of the product groups.

5) Regarding the heuristics proposed for the tardiness-related objective (HI,

H2 , H3, H4), the results suggest a strong correlation between heterogeneity in job

characteristics and priority based on product groups. In the problems with rela-

tively homogeneous product groups (data set 2), the four methods provide compar-

able results, typically within 6% of each other. On the other hand, in tests with

data set 1. the schedules provided by H4 were inferior to those given by the heur-

istics HI and H2. It is interesting to note that H3 , in which slack is a factor

in determining group priority, does not perform well. In most of the problems

tested it gives schedules that are inferior to those given by HI and H2. HI

performed slightly better than H2 in most cases and seems to offer a compromise

between make-span and tardiness criteria. Typically this heuristic gave schedules
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with deviations within 15% and 5% respectively for the make-span and tardiness

objectives.

In summary, the computational results suggest that, with some exceptions, the

two-phase hierarchical approach, i.e. H5, yields schedules with low make-spans

that are marginally inferior to those given by the other heuristics in terms of

tardiness criteria. An exception to this is the case when the due dates are tight

and are process-time dependent. In these instances it is preferable to use two

heuristics depending on the objective. While H5 is good for make-span, the choice

for the tardiness objective should be guided by the product characteristics. HI

is appropriate when the product set is heterogeneous. For homogeneous products we

recommend H4 , since it is simpler to implement and provides results comparable to

HI, H2 , and H3. The experiments also suggest that the use of priority based on

product groups significantly affects the quality of the schedules in the presence

of heterogeneous products.

4.0 PLANNING MODELS FOR WAFER PROCESSING FACILITIES

The computational experiments described in the previous section strongly sug-

gest that homogeneity of the product mix is an important factor in the choice of

an appropriate heuristic for scheduling. These results demonstrate that while the

heuristic H4 gives good results with a "homogeneous" product, the quality of the

schedules degenerates with increase in heterogeneity. In these instances it is

necessary to use heuristics with more elaborate priority rules (such as HI, H2,

H5). However, the use of H4 is attractive from a computational and implementation

perspective for the following reasons.

1) The heuristics are computed very often in scheduling a dynamic shop.

2) The heuristic H5 requires solution of a quadratic program. While this

problem is easy to solve, it does introduce additional complexity.

3) The complexity of computation of A(k.i) in step 2(a) of the algorithm
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described in Section 2 is significantly larger for heuristics HI, H2 , and H3 than

for H4 . In H4 this computation is trivial, since job k will always be last and

this will not affect the jobs already assigned to reactor i. In contrast, this

is not true in the case of the other heuristics. It is necessary to determine the

position of job k and compute the increase in tardiness of the jobs which follow

it. Moreover, with H4 it is not necessary to define a priority for product

groups

.

In this section, we consider the problem of "homogenizing" the products. The

objective is to obtain a homogeneous set of products that would enable use of the

simpler algorithm H4. A preliminary step in this process is the identification of

independent shops within the facility. This would decompose the planning and

scheduling problems in the facilty and considerably reduce the computational re-

quirements at each stage. Identification of "independent" shops within a facility

is relatively straightforward and in many instances can be obtained by inspection.

In large facilities, such shops can be determined by constructing a bipartite

graph showing the product-reactor dependence. The nodes of the graph represent

products and reactors. Every feasible product-reactor assignment is represented

by an arc between the respective nodes. Each isolated subgraph in the resulting

network corresponds to an independent shop of the facility.

The "homogenization" of the products can be interpreted as a planning problem

in which reactors are assigned to the product groups. This has to be done consid-

ering the technical constraints that restrict each product group j to a feasible

set of reactors I(J). We propose to use the squared coefficient of variation of

the reactor indices as a measure of the variation, and the objective is to minim-

ize this measure. We consider a one-year horizon and assume that the demand is

deterministic. This is reasonable because at the aggregate (product group) level

the variance in annual demand is quite small. This is consistent with other ap-

proaches in aggregate planning, e.g., Bitran and Hax (1977), Hax (1978). We also
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observe that the demand for specialty wafers is not characterized by any season-

alities. The planning model is described in detail below.

Notation:

M = set of reactors.

m = number of reactors.

G = set of product groups.

g = number of product groups.

J(i) = set of product groups that can be processed on reactor i.

I(j) = set of reactors that can process product group j.

r = load assigned to reactor i.

p. . = proportion of load of product j assigned to reactor i.

x .
= indicator variable for assignment of reactor i to product j.

m. = number of reactors assigned to product j.

d. * total load due to product j (annual demand of product j).

1
m

r = average load per reactor = - T r.
m „ i

1 = 1

MS = make-span = max r . .

1 < i < m

[Ml] Z = min Z (r - r)
2
/ (mr

2
)

1 = 1

s.t. r, - Z (d./m.)x.. i = 1, 2, .;.. m (1)
1

j«J(I) J J 1J

n. = I x j = 1, 2 g (2)
J ieKj) J

x
ii

C {0.1}, i e I(j), j = 1. 2 g (3).

The constraints (1) in the model define the reactor loads and are based on the

assumption that the demand of a product group is distributed equally among the

reactors that are assigned to the product. This is consistent with the practice

observed in the wafer manufacturing facility which generated the data base and

corresponds to the reactor indices defined in the previous section. Observe that
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m g
the average reactor load r = £ r, /m = £ d. /m and is independent of the

i=l j=l J

reactor assignments. We make two additional remarks about problem Ml.

i) The model is a non-linear integer program and is in general difficult to

solve.

ii) In the absence of any restrictions on the sets I(j), the optimal solution

is obtained trivially by assigning all reactors to all the products, i.e. X. . = 1

for all i, j , and Z = 0.

Since Ml is difficult to solve, we formulate an alternative model, M2, and

propose to solve it instead of Ml. The model is described below.

[M2] Z = min £ (r - r)
2
/ (mr

2
)

* i=l
1

s.t. r = Z d,P, , i = 1. 2 m (4)

jeJ(i) J J

EPH = 1 j - 1. 2 g (5)

iel(j) 1J

Pj. > o i e Kj). j = l. 2 g (6).

The model M2 not only determines the optimal assignments of reactors to prod-

uct groups but also provides the optimal loading pattern (allocation of load from

a product group to different reactors). Thus M2 provides a more "homogeneous"

product mix than Ml. It may be observed that M2 is a convex program and hence

easy to solve. Some properties of this problem are described below. The proofs

of some of these propositions can be found in Appendix 2.

Proposition PI : Let LM1 denote problem Ml with the integrality constraints

relaxed, i.e.

" -2-2
[LM1] min £ (r. - r) / (mr )

i = l
l

s.t. conditions (1), (2), above, are satisfied, together with:

< x.j < 1. it I(J), j = 1. 2 g (3').
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Then , M2 and LM1 are equivalent. It follows that Z > Z .

Proposition P2 : Any optimal solution to M2 will also minimize the make-span

for the problem.

Proposition P3 : There exists an optimal solution to M2 such that at most m

products are assigned to more than one reactor.

The above proposition suggests that there exists an optimal solution to M2

which is nearly feasible in Ml. The following propositions provide a method to

obtain a feasible solution to Ml.

Define R(j) = set of reactors assigned to product j

- { i
I P

Xj
> }.

Proposition P4 : In any optimal solution Y* = (p*,r*) to M2, for any

J - 1. 2 g, if i. k e R(j) then r* = r*.

Given a feasible solution Y = (p.r) for M2, let M , M , . . . , M. be a partition
1 C. K

of M such that reactors within each partition are equally loaded, i.e.,

K

M= \J M.; M C\ M . » if i^j;
i=l

X 1 3

if Jt.s e M. then r = r , for i = 1, 2 K;
l X s

if I t M. , s e M. , i i j, then r + r .

l j X s

Corollary 1 : There exists an optimal solution Y* = (p*,r*) with the

following property.

Let A be any subset of products that share at least one reactor in the

assignments given by Y* . Then \J R(j) C H. for some i. ,

JEA *

Corollary 2 : Let n. denote the number of products with fractional p. . and

assigned to reactors in M. in the solution Y*. Then n < |M. |

.

Corollary 3 : There exists an optimal solution Y* = (p*.r*) with the follow-

ing property. Let A' be any subset of products with fractional p , . . Then

|A'| < | U R(J)|.
jeA'
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Algorithm for obtaining a feasible solution to Ml:

We assume that a Y* = (p*,r*). optimal for M2 and satisfying Proposition P3

and Corollaries 1, 2, and 3, is the initial solution for obtaining a feasible

assignment for Ml. Without any loss of generality assume that the product groups

are ordered such that d > d > . . . > d .Id g

Step 1: Construct a bipartite graph (V,E) as follows.

a) one node for each reactor (sink node)

b) one node for each product with fractional p* (source node)

c) (i,j) e E if and only if < p* < 1.

Step 2: Obtain a maximum cardinality matching for the network in step 1.

From Corollary 3, and Theorem 8.7 of Hu (1969), it follows that the cardinality of

such a matching is equal to the number of products or source nodes.

Step 3: A feasible solution to Ml is obtained as follows.

x..=l if < p*. < 1 and nodes i, j are matched in Step 2;U ij

=0 if < p* < 1 and nodes i, j are not matched in Step 2;
ij

x.. = p* . for the pairs (i,j) not in the graph;
ij ij

r. = r* + T (x. .
- p*.)d., where the summation is over products

i £j\ ij
PU J

with fractional allocation in the optimal solution to M2 , i.e.

J'={j| < p* < 1 for some i}.

Proposition P5 : The increase in the reactor load r. by the application of

the above algorithm is less than d , the product with the highest demand.

Corollary 4 : The make-span of the solution given by the algorithm is within

d
1

of the optimal, i.e., MS* < MS* < MS < MS* + d < MS* + d

where MS is the make-span of the solution from the algorithm and

MS* and MS* are the minimum make-spans for problems Ml and M2

.

Proposition P6 : The relative worst-case error bound on the make-span is given

by
MS - MS* m d

1

g
MS* Z d

j = l
J
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The following proposition provides a bound on the deviation of the objective

from the optimal value and demonstrates that in some sense it is asymptotically

optimal

.

S g 2
Proposition P7 : < Z - Z < Z. ~ Z, < min{2md /[ d , (n - l)(id / [ d f }12

j=l J
J=l

J

where Z is the objective value for the approximate solution obtained from the

algorithm.

The Models M2 and AP :

We briefly comment about problems M2 and AP described in Section 2. Both are

convex programs with essentially the same structure and are designed to determine

the allocation of reactors to product groups. In fact, as the following proposi-

tion makes it clear, if the availability factor av(i) is the same for all

reactors, the set of optimal solutions is the same for both problems.

Proposition P8 : Consider problems M2 and AP. Assume that the availability

factor av(i) is same for all reactors (say 1.0). Then any optimal solution to

AP is optimal in M2 and vice versa, i.e., Y* = (x*,r*) is optimal in AP if and

only if Y* = (p*,r*) is optimal in M2 (where x*(i,j) = d.pf. defines the

relation between x*(i,j) and p*
.

)

.

lj

The essential difference between the two models is in the emphasis and

applica-tion. Observe that while the structure of the two problems is similar,

the data used is quite different. In M2 we use aggregate annual demand data while

the data for AP is dynamic and reflects the shop load at that time. M2 is

essentially a planning problem and the focus is on reactor product assignments.

The allocations p determined by this problem are not very meaningful at the

ij

operational level due to the dynamic character of the shop.

Problem AP, on the other hand, is part of the scheduling heuristic and is

solved periodically on a rolling horizon basis. The product-reactor load alloca-

tion is meaningful in the short run and should be consistent in the long run with
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the assignments determined at the planning stage.

Finally it should be remembered that the objective of the planning models Ml

and M2 is the "homogenization" of the product. If this is successful (indicated

by a small value for the objective function), the scheduling of jobs can be done

by heuristic H4 . If the heterogeneity still persists, we recommend the use of H5

for the make-span objective, and if necessary the use of HI or H2 for the

tardiness criterion.

5.0 CONCLUSIONS:

In this paper we have focused on two aspects that are important for the suc-

cessful design and implementation of a class of scheduling systems, and we have

described an application in the semiconductor industry. Typically the scheduling

literature on parallel machines considers a single objective and a single product.

In contrast, more realistic situations are characterized by multiple objectives

and a range of products with varying resource requirements. We analyzed a sched-

uling application with two different objectives and proposed five heuristics. The

results of the computational experiments suggest that the two-phase hierarchical

approach (referred to as heuristic H5) gives reasonable results under a variety of

circumstances. In this method we first solve a quadratic program to determine the

allocation of work among machines at an aggregate level so as to minimize make-

span. In the second phase individual jobs are assigned to the reactors. This

heuristic has, in general, performed well for both make-span and tardiness related

criteria. Based on the computational results, we have identified some conditions

when this method does not give good results for the tardiness objective. In these

cases we recommend an alternative algorithm.

The computational results also suggest that priority based on product groups

leads to significantly better schedules when the products are heterogeneous. We

propose a reactor index to detect the presence of heterogeneity in the product
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mix. A wide variation in these measures would suggest that the products are not

homogeneous, and in these cases algorithms which discriminate between products

(e.g. heuristics HI. H2 ) perform better than the traditional approach (heuristic

H4) .

We also described a planning model to assign reactors to product groups to

achieve a homogeneous set of products. This can be interpreted as an attempt to

reduce the complexity of the problem by creating smaller, independent shops with

homogeneous products. A successful effort at the planning stage would enable the

use of a simpler algorithm and reduce the complexity of the scheduling system. In

this context, we showed that an approximate solution obtained by solving the eas-

ier problem (M2) instead of the nonlinear program Ml can be expected to give reas-

onably good results in many cases of practical interest. The performance of the

bounds show that the assignments given by the approximation are such that the

worst-case error for the objective function of Ml (proposition P7) and the relat-

ive error for the make-span (proposition P6) are small. Also the solution is

asymptotically optimal.
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APPENDIX 1

Proposition Al : Any optimal solution to AP will also minimize the make-span of
the problem.
Outline of proof . Let Y* = (x*,r*.MS*) be an optimal solution to AP. Then
there exist multipliers X*. a* which together with Y* satisfy the following
Kuhn-Tucker (KT) conditions (note that AP is a convex program with linear
constraints)

:

a) Y* solves the problem DAP with' X = X* and a = a*.

£DAp J : .m „ b m

L(\,a) = min £ (MS - rj/av(i)r + I Xj[ri - Ix(i.j)] + £ 04 [ (rj/av( i ) ) - MS]

i=l i=l jeJ(i) i=l

s.t. I x(i, j) = d , j = 1, 2 g;

iel(j) J

x(i,j) > 0, i e l(j), j = 1, 2 g.

b) ct*(r*/av(i) - MS*) =0, i = 1, 2 m.11
c) a* > 0, i = 1, 2 m.

Let AP' be the problem AP with minimizing MS as the objective function. A feas-

ible solution Y = (x, r, MS) is optimal in AP' if and only if there exist multi-

pliers X, a satisfying the following KT conditions.

d) Y solves the problem DAP' with X = X and a = a.

m m

L'(X.a) = min MS + £ Xjtrj - £x(i.j)] + I aj [ (rj/avt i) ) - MS]

i=l jeJ(i) i=l

s.t. Z x(i,j) = d . j - 1. 2 g;

iel(j) J

x(i,j) > 0, i c I(j), j = 1. 2 g.

e) a.(r./av(i) - MS) = 0, i = 1, 2 m.

f)ot.>0, i = 1 , 2 m.

Let Y = Y*. a = a*. X = X*. Note that this solution satisfies (e) and (f).

The second and third terms in the objective function of DAP' are equal to zero by

feasibility and complementary slackness, respectively. Also note that

L'(X*,ct*) = MS* = max r* , since Y* is feasible in AP' . It follows by weak

1 < i < m

duality that Y* solves AP' .

APPENDIX 2

Define X = set of feasible solutions to Ml

X„ = set of feasible solutions to M2
2

X = set of feasible solutions to LM1

.
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Proposition PI : M2 and LM1 are equivalent.

Outline of Proof: (a) Let Y = (x. m, r) e xj .

Consider the solution Y = (p, r) constructed as follows:

p. . = x. ./m ., i e I( j) , j = 1, 2 g;

r.= r,, i = l,2 m.
l l

It can be shown that Y e X

Therefore for every Yj e X 1 there exists a Y2 e X2

•

(b) Similarly let Y2 = (p. r) c X2

and consider the solution Yj = (x, m, r) defined as follows:

Xjj = Pij , lcl(j). J-l. 2 g

m j =1 . j = 1 , 2 g

and rj = r^ , i = 1 , 2 m.

Clearly Yj c X . Hence for every Y2 e X2 there exists Y^ e X.

Since the value of the objective function is identical for corresponding solutions

Yj and Y2 , the equivalence between M2 and LM1 follows.

LEMMA LI : Let Y = (p, r) be a feasible solution to M2. Define a partition of

the reactor set M as follows.

M' = {i
I

rj = MS} , and M' = (i
!

rj < MS} where

MS = make-span of the solution Y = max rj

i

Let J' = {j
I p A j > for some i e M'}.

Then if MS > MS* there exists at least one product j e J' such that I(j)/^M' + $ ,

where MS* is minimum make-span for M2.

Proof : Assume that there exists a solution Y = (p,r) such that MS > MS* and

Kj)f,M' = $ for all j £ J' where J', M' , M' are defined as above. Then in

any feasible solution Y - (p,r) we have. £ r. > £ d. = |M'| MS
ieM'

1
jeJ' J

,

since
|
M* | MS > £ rj it follows that ^MS > MS. In particular this

ieM'

is true for a solution which minimizes make span and hence MS* > MS. This

contradicts the assumption that MS* < MS and the Lemma follows.

PROPOSITION P2: Any optimal solution to M2 will also minimize the make-span of the

problem

.

Kuhn-Tucker conditions can be used to prove this proposition. The proof would parallel

that of proposition Al. We provide an alternative proof based on incremental analysis.
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Proof : Suppose the proposition is false. Then there exists an optimal solution

Y = (p, r) for M2 with a make-span MS larger than MS* By Lemma LI. there

exists a product jeJ' and reactors i. k such that i.k e I(j). i e M' . k e M' and

Pij > where J', M' and 3T' are as defined in Lemma LI for the solution Y.

Consider a solution Y = (p. r) defined as follows

Pis = P*s + A •
if * - k, s = j

= Pis - A . if X - i, s- j

= Pj s otherwise

r *
= r X * A d

j
if 1 = k

- r4 - a dj if i = i

= r^ otherwise

where a is some suitably chosen small positive fraction such that

< a < min (Pij, (rj - r]<)/2dj)

By construction Y is feasible in M2 and attains a lower objective valine than Y

since
m m

Z (rx -7) 2 - E (rx -~r) 2 = (r d
-~) 2 + (rk - T) 2 - (rj - r) 2 - (rk - F) 2

X = l X=l

= - A dj (r i + r i -r]< -rk)<0

This contradicts the assumption that Y is optimal and the proposition follows.

REMARK : Note that M2 is a convex program. The objective function is convex and

the constraints are linear. Therefore, Kuhn-Tucker (KT) conditions are necessary

and sufficient for optimality. Let (Y*) and (\*) be respectively a primal and a

dual pair of solutions which satisfy the KT conditions.

PROPOS ITION P3: There exists an optimal solution to M2 with at most m products

with fractional Pjj.

Outline of Proof : Consider the partial dual Dl of M2.

m m

Dl: L(\) = min £ (rj -~r) 2 / m~r2 * [ Xj (r] - £ djPij)
i=l i=l jeJ(i)

s.t. (5) and (6)

m m
= min Z [ (rj - r) 2 / mr2 + X^ ] - £ Z M^jPij

i=l 1=1 jeJ(i)

s.t. (5) and (6)

Let r^(\), and Pij(X) be optimal in Dl for a given X. We make the following

observations regarding problem Dl

.

(1) For a given X, rj(X) = ~r - Xj mr 2/2
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(2) For a given \. Pij(X) solves the following linear program

m

min Z Z (-Xi dj) pij
i=l jeJ(i)

s . t . ( 5 ) and ( 6

)

From (1) and (2) it follows that there is a pair Y* = (p*, r*) and X* of primal and

dual solutions such that p* solves the linear program LP1

.

m

[LP1] min £ £ (-X* dj) pj

j

i = l j£J(i)

s . t . ( 5 ) , ( 6 ) and

Z dj Pi j = r - X* mr 2/2, i = 1, 2, ... m

JeJ(i)
l

From LP theory we know that there exists an extreme point solution to LP1

.

At most m+g Pij's are positive at an extreme point. Since for each product

at least one pj j > 0, we have at most m products with fractional py at an

extreme point. Hence there exists an optimal solution with at most m products with

fractional Pij-

PROPOSITION P4 : Let Y* = (p*. r* ) be an optimal solution to M2 and let R(j),

j = 1, 2, ... g define the corresponding reactor assignments.

If i.k c R(j), then r* - r* , j - 1. 2. ... g.
X K

Outline of Proof : Let Y* be an optimal solution to M2 and let X* be the corresponding

multipliers such that Y* , X* satisfy the KT conditions. Then by arguments similar to

those in the proof of proposition P3, we can show that p* solves the following linear

program

in I E (-X* d )p
i=i jeJ(i) J J

s.t. (5) and (6)

This implies that if pf . > 0, p.*. > i.e., i, k e R(j)r
ij ^kj

then X* = X* and r* = n* .

COROLLARY_1 There exists an optimal solution Y* = (p*, r*) to M2 with the

following property.

Let R(j), j = 1. 2, ... g be the corresponding reactor assignments and

let Mj , i = 1 . 2 . . . . K be a partition of the reactors so that for each

1*1,2, ...K, Mj is a set of reactors with the same load. Let A be any subset of

products that share at least one reactor in the solution Y* .' Then [_J R(j)Q.Mj

„ JGA
for some l

.
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Proof: follows from proposition P4 and definition of Mj .

COROLLARY 2 Let n^ denote the number of products with fractional pjj and assigned

to reactors in M^ in the solution Y*. Then nj < | M ^ | .

Outline of Proof : Note that p* decompose the problem LP1 into K subproblems and

solve them optimally.

Subproblem l: LP1(I): min £ £ (- \*dj)pij
ieMt jeJ'(Jt)

s.t. £ Pij = l , jeJ'U)
itMzn I(j)

£ dj py = r - \* mr 2/2 , itM t
jeJ'U)

Pij > .
• iel(j)n Mjt • jeJ'U)

where J'(X) is the set of products assigned to reactors in M% in the solution Y*.

By Corollary 1, J' (I ) f\ J' (s) = 6 if I * s

An extreme point solution to LPl(Jt) will have at most
| M^ |

products with

fractional p^j (by arguments similar to those in proposition P3). This proves the

corollary.

The proof of Corollary 3 parallels that of Corollary 2.

PROPOSITION P5 : The increase in reactor load rj, by the application of the

algorithm is less than dj .

Outline of Proof : By step 2 of the algorithm, at most one Xjj is set at 1 for each

i and jeJ'={j!0<p*. <1 for some i)
ij

ri = r* Z Uij - Pfj) dj < r* + Z Xij dj < r* + d x

jeJ' J jeJ*

PROPOSITION P6 : The relative worst case error bound on the make-span is given by

the following.

g
(MSj - MS*) / MS* < md x / Z dj

j = l

where MSj = make-span of the solution obtained by the algorithm

MS* = minimum make-span for Ml

Proof : From propositions P5 and P2, MSj < MS* + dj

From proposition PI MS* > MS?

g
Since MS* > £ dj/m ,

j = l

g
we have (MSi - MS*) / MS* < (MSi - MS*) / MS* < mdi / £ dj

* 1 1 2 d ._. J
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PROPOS_I TI 0N_P7 : Let Y* =
(
p*

. r*) be an optimal solution to M2 satisfying

proposition P3 and let Y = (x.r) be the corresponding approximate solution to Ml by

using the algorithm.

Then Z
1

- Z 2 < Z! - Z 2 < min {2 mdj/d , (m - 1) (md^d) 2
}

S
where Zj is the value of the objective function for Y and d = £ dj .

J
= 1

m m

Outline of Proof: E (rj - r) 2 - £ (r* - r) 2

i=l i=l

= E (rf - r* 2
)

i=l

m

= E (rj - r*) (rj, * r?)
1=1

m

< d l Z"
("
r i * Pi*) = 2 d l d

i = l

Hence Zj - Z 2 < 2 djd / (mr 2
) = 2 md 1 /d (a)mm m

Also E («f
- rf 2 ) = E (ri - r.*) 2 + E 2 "ffrj - r.*) .

i=l
x 1

i=l i=l

Since r* is a constant for i £ Mk and E (rj - r.*) =

iCMk
a

n K

E r*(rj - rf) - E E r*fri
i=l k=l ieMk

m

and
i=l i=l

P 2 2
E (r 2 - r * 2 ) = E (ri - r*) 2 < (m - 1 ) qT - (m - 1 )

2
d7 = m(m - 1) cj

The last inequality follows from the fact that at worst dj is added to m-1 reactors

and (m-ljdj is subtracted from the m tn reactor.

Hence Z
1

- Z 2 < m(m - 1) d^/ (mr 2
) = (m - 1) (md

1 /d)
2 (b)

From (a) and (b) and noting that Zj > Z 2 . we have

< Z 1
- Z\ < Zj - Z 2 < min {2 mdj/d . (m-1) (mdj/d) 2

}
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PROPOSITION P8 : Consider the problems M2 and AP . Assume that the availability

factors av(i) are the same for all reactors, (say av(i) = 1). Define the

corresponding solutions Y = (p,r) , Y = (x,r) for M2 and AP as follows.

x(i,j) = dj pjj , i e I(j) , j = 1. 2. ... g

r j = rj i = 1 , 2 , . . . m

Then Y is optimal in AP if and only if Y is optimal in M2

.

Outline of Proof : Clearly Y is feasible in AP if and only if Y is feasible in M2.

m

Note that £ (MS - r^ 2

i = l

= Z (ri -r + F - MS) 2

i=l

= I (ri - r) 2 + m(r - MS) 2

i = l

Also observe that the reactor loads rj , rj are identical for Y and Y by definition.

Hence the make-spans are identical for corresponding solutions. By propositions P2

and Al , the optimal solutions for M2 and AP also minimize the make-span MS.

Therefore ZAp and mr2 Z2 differ by the constant m(F - MS*) 2
. Consequently, Y is

optimal in AP if and only if Y is optimal in M2.
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