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Abstract

We prove existence of an equilibrium in a continuous trading economy with diffusion infor-

mation. Equilibrium asset price processes are Ito integrals. Under some regularity condi-

tions, equilibrium asset price processes and the vector of "state variable processes" generat-

ing information form a vector diffusion process. A martingale representation technique is

used to characterize agents' optimal portfolio rules in an equilibrium context.

1. Introduction and summary

In the Intertemporal Capital Asset Pricing Model, developed by Merton [34] and ex-

tended by Breeden [4], the story goes roughly as follows: Let there exist a (perhaps en-

dogenously determined) vector diffusion process (F(t)} that describes "states of the world".

Assume that prices for traded assets can be represented by stochastic differential equations

of the Ito type with coefficients that are functions of Y(t) and t at each time t, and as-

sume that the price processes and Y together form a vector diffusion process. Taking

asset prices as given, each agent maximizes his expected utility of life-time consump-

tion. Markovian stochastic dynamic programming is then used to characterize agents'

consumption-investment choices over time. Assuming that an equilibrium exists, restric-

tions on equilibrium asset prices are derived by inverting the "aggregate demand" for assets,

calculated by adding the first order optimality conditions for agents' dynamic programs.

The two main assumptions made above are the existence of an equilibrium in a con-

tinuous trading economy and the finite dimensionality of Y. The latter is an assumption

involving endogenous properties of an economic equilibrium. Cox, Ingersoll, and Ross [10],

in a production economy, identify the finite dimensionality of Y . They assume, however,

that there is a single representative agent in the economy and that an equilibrium exists in

which prices are "smooth" functions of Y . They also rely on Markovian stochastic dynamic

programming methods.

The purpose of this essay is three-fold. First, the existence of an equilibrium is es-

tablished in a Merton/Breeden-like economy. Equilibrium asset prices are Ito integrals

1





whose coefficients are "nonanticipative functionals". Furthermore, the equilibrium alloca-

tion will be shown to be Pareto efficient. Second, conditions are provided under which the

value of these "nonanticipative functionals" at each time t can be written as functions of

Z(t) and t, where {•£(<)} is a finite-dimensional vector of exogenously specified diffusion

"state variable processes" . In particular, the vector of equilibrium price processes for

traded assets and the vector of state variable processes Z together form a vector diffusion

process. Finally, a martingale-representation technique, similar to one proposed by Cox [9],

is used to characterize agents' optimal portfolio behavior. It is argued that this martingale-

representation technique is a more powerful tool for equilibrium analysis than Markovian

stochastic dynamic programming.

In Section 2 of this paper, a continuous-time frictionless pure exchange economy under

uncertainty with time span [0, T] is formulated. It is assumed that there is one perishable

consumption commodity in the economy, consumed only at times and T. Agents, finite

in number, are characterized by their endowments at times zero and T and by their

consumption preferences. Agents are endowed with a common information structure F

generated by an exogenously specified vector diffusion process Z. That is, Z describes the

evolution of the exogenous uncertain environment.

It is assumed that there are at most a finite number of traded long-lived securities in

zero net supply. Each agent's problem is to manage a portfolio of long-lived securities so

as to maximize consumption preferences. The equilibrium concept used is Radner's [37]

equilibrium of plans, prices, and price expectations.

Given the nice properties of F, a diffusion filtration, Section 3 shows that if we

select long-lived securities appropriately, an equilibrium exists and the equilibrium al-

location is Pareto efficient. Furthermore, markets are complete in equilibrium in the

sense that all contingent claims not traded can be replicated by trading on long-lived

securities. (Equivalently, all contingent claims are priced by arbitrage.) The equilibrium

price processes for all contingent claims are Ito integrals whose integrands are nonan-

ticipative functionals (Theorem 3.3.1 and its corollary). The existence proof exploits the

machinery developed in Duffie and Huang [13].
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If time T aggregate endowment is path-independent, 1
if agents have time-additive

utility functions which are C 3 with bounded derivatives, and if agents are at interior maxima

(Assumptions 4.2.1, 4.2.2), then the societal shadow prices for time T consumption are path-

independent (Proposition 4.2.1). Here we have exploited the fact that a representative agent

with a time- additive utility function which is C3 with bounded derivatives on an open subset

of the real line can be constructed to support the equilibrium at the aggregate endowment

point (Propositions 4.1.1 and 4.1.2). Since the equilibrium price of a contingent claim is,

very roughly, the product of its payoff and the societal shadow prices, it then follows that

the equilibrium price process of any contingent claim with a nice payoff structure has a nice

representation (Proposition 4.2.2), which can be described by a partial differential equation

with a boundary condition. Conversely, any contingent claim whose price process has a

nice representation must have a nice payoff structure (Proposition 4.2.3). The meaning of

nice in each context will be made precise. In addition, when a claim's payoff structure is

nice, and when some regularity conditions are satisfied, the equilibrium price process of

this claim forms, with Z, a diffusion process.

Markovian stochastic dynamic programming is a useful tool in characterizing an agent's

dynamic choice either in a purely microeconomic context under uncertainty (cf. Merton

[32,33]) or in an equilibrium setting with a representative agent (cf. Cox, Ingersoll, and

Ross [10]). Sufficient conditions for the existence of an optimal control are quite severe;

for example, the space of admissible controls is compact (cf. Bismut [3], Chapter IV). Cox

[8] recently proposed an alternative using a martingale-representation argument. (This

method is vaguely foreshadowed in the earlier literature. See, for example, Harrison and

Kreps [20, Section 3] and Kreps [26].) In Cox's work, however, the space of admissible

controls is a linear space. (This is implicit in Cox's setup.)

When Markovian stochastic dynamic programming is used in an equilibrium setting,

as in Merton [34] and Breeden [4], the purpose is both to depict agents' optimal dynamic

choices and to characterize equilibrium relations among asset prices. A finite dimensional

vector diffusion process Y is assumed to exist, one whose value at each time t along with an

'We say that time T aggregate endowment is path-independent if it is a function of Z(T).
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agent's wealth are sufficient statistics for this agent's dynamic program. In this approach, it

is shown that, in equilibrium, agents hold the market portfolio, the riskless asset, and those

portfolios most highly correlated with each component of Y, respectively. Equilibrium

relations among asset prices are then shown to be determined by Y and the market

portfolio. The above procedure is flawed, however. Before an equilibrium is established,

and equilibrium relations among asset prices are examined, it is not known whether such a

process )' exists. Thus, stochastic control of the Markovian type should be used to depict

agents' optimal dynamic choices after an equilibrium is established and characterized.

In Section 5, we fix a version of the equilibrium established in Section 3 and argue that

after an equilibrium is established and its stochastic nature characterized, the martingale-

representation technique proposed by Cox [9] seems to be a very useful way to describe

agents' optimal portfolio behavior. (The meaning of version is that we choose a particular

set of long-lived securities.) It is shown that agents hold pure hedging securities and

a numeraire security (Proposition 5.1). This characterization is valid when Markovian

dynamic programming is not applicable.

Recall that, in our setting, Z is the vector diffusion process that generates agents'

information. Denoting the price system for long-lived securities by 5, we show that the

state-price vector process (Z,S) is a diffusion process provided certain regularity conditions

are satisfied (Assumptions 4.2.1, 4.2.2, 4.2.3). If an agent's time T endowment is path-

independent (with respect to Z), the number of shares of a hedging security held by this

agent at each time t depends only upon Z(t). The number of shares of the numeraire

security held by this agent at each time t depends only upon Z{t) and S(t). Thus this agent's

optimal portfolio rule is path-independent with respect to Z and 5. The functional relation

between this agent's optimal portfolio rule for pure hedging securities and Z is described

by a system of partial differential equations with boundary conditions (Proposition 5.3).

Agents in the economy can all, however, have path-dependent optimal portfolio rules, with

respect to (Z, 5), without destroying the strong Markov property of (Z , S). Thus, summing

up agents' first order conditions from their dynamic programs to characterize equilibrium

asset price relations may be ineffective. Concluding remarks are given in Section 6.





2. The economy

In this section we present a model of a continuous-time frictionless pure exchange

economy under uncertainty with time span [0, 7"]. Let (ft, 7,P) be a complete probability

space. Each u £ ft denotes a complete description of the exogenous environment. The set

of trading dates is [0, T], where T is a strictly positive real number. Agents are endowed

with a common probability measure on the measurable space (ft, 7), denoted by P.

2.1. The information structure

We assume that there is defined on the basic probability space, (ft, T,P), an TV-

dimensional Standard Brownian Motion W = {VK(t);0 < t < T}. The component processes

Wi(t) W}v(<) are independent one-dimensional Standard Brownian Motions. Let 7J" be

the tribe
2 generated by {W(s);0 < s < t). We assume that 7^ — 7 and that Tf is

augmented by all P-negligible sets V t £ [0, T]. It is clear that 7$ is almost trivial and that

the filtration Fw = {7J";0 < t < T) is increasing, that is, 7? C 7", if t < e. For the

fact that F u
'

is a continuous information structure, see the piwviuus £say.-I o*f t-Ktahf [Z&\

If cr — (crm ,„) is a matrix, we write
|
a

|

2= tr (<ro'T ), where T denotes the inner product,

and "tr" denotes (race. Let

tr{y, t) : RN X [0, T] - RNxN and /*(y, : RN X [0, T] - RN

be given functions, continuous in y and t,
3 such that

\»(yJ)-fi(V,t)\<K \y-y\, \o-{y,t)-<j{y,t)\<K \y-y\ (2.1.1a)

(a Lipschitz condition), and

I MV.O |

2 < A'
2(l+

I y |

2
), |

a{y,t)
|

2 < AT
2
(1+

| y |

2
)

(2.1.1b)

Tribe" may be read as "sigma-field" or "sigma-algebra", but the former term seems simpler

and is more modern.
3This implies that a and n are measurable with respect to the product Borel tribe on RN X [0, T\.





(a "growth condition" ), for some constants K and K. We assume that the N X N matrix

cr(y,t) is nonsingular for each y and t. Let Z be a (measurable) process adapted to Fw

satisfying the Ito integral equation

Zm = Z(0)+ / tt(Z(a), s)ds + / <r(Z(«),«)dH^(«) (2.1.2)
Jo Jo

for < t < T, where Z(0) is a constant TV-vector.4 Theorem 9.3.1 in Arnold [1] ensures

that Z is the unique solution of (2.1.2) and is a diffusion process with drift vector ft(y,t)

and diffusion matrix a(y,t). Here we should note that the above statement implies the

conditions:

I
T

\lt{Z{t),t)\dt < oo a.s.,

and
rT

|2

/Jo \a(Z(t),t)
|

2
dt < oo a.s.

io

Let 7\ be the tribe generated by {Z(s);0 < 8 < <} augmented by all the P-negligible

sets of 7 . The filtration Tw
is at least as fine as F* since the process Z is adapted to F"\ In

fact, F r
is equivalent to Fw . For this point see Harrison and Kreps [20]. We shall therefore

use F to denote both F 1 and Fw from now on. Furthermore, unless it is clearly otherwise

from the context, all processes will be adapted to F.

Agents in the economy are endowed with the common information structure F. By con-

struction, F is increasing and is a continuous information structure. The interpretation is

that the exogenous uncertain environment can be described by an ./V-dimensional Brownian

motion VV, which agents in the economy may not actually observe directly. Agents can,

however, observe a vector of "state variable processes" Z, whose evolution over time depends

upon W in an unpredictable fashion. That is, the information content of the vector of state

variable processes can only be less than that of W . The structure of the state variable

process, however, provides agents with the same information as if they could in fact observe

4 A vector random process Y = {Y(t);t 6 [0, T\}, is called measurable if, when viewed as a

mapping defined on n X [0,r], for all Borel sets B in its range, {(w,«) : Y(w,<) € B) € 7<g)B([0,r]),

where B([0,T]) is the Borel tribe of [0,T]. A vector (measurable) random process Y is said to be

adapted to Fw if for every t 6 [0,T] the random variable Y(t) is /("-measurable. For brevity, such a

random process will be denoted Y = {Y(t), 7f,t 6 [0,T]} anc* called F^-adapted or Donant/c/pat/ve.





the evolution of W directly, since Z and W generate the same information. The reader is

cautioned to note that the vector of state variable processes is exogenously specified.

2.2. The consumption space

It is assumed that there is a single perishable consumption commodity in the economy,

consumed only at times and T. The consumption space for agents is V = R X

L2
(P), where L?(P) denotes the space of square-integrable random variables defined on

(ft, 7 , P). Thus (r, x) G V represents r units of consumption at time zero and x(u>) units of

consumption at time T in state oj. We endow V with the product topology r generated by

the Euclidean topology on R and the L2(P)-norm topology on L?(P).

The set L2
+(P) is defined as {x G L?(P) : P{u G ft : x{u) > 0} = l}, while V+ denotes

the set {(r, x) G V : r G [0, oo), x G L\{P)}. For any x G L2(P), we will write x > if x G

L%(P); x > if x > and x ^ 0; and x » if x € £+(P) and PW € ft : x(w) > 0} = 1.

Similarly, for v = (r,x) 6 V we will write v > if v G V"+ ; v > if v > and v^O;

and i' 3> if r > and i»0. For v, z E V, the relation t; > z is taken to mean that

v — z > 0, and likewise for the other relations just defined on V.

2.3. Agents

There are a finite number of agents in the economy indexed by i = 1,2, ...,/. Each

agent i is characterized by a consumption set Vj-, endowments {>,• = (ri,ii) £ V{ C V",

and consumption preferences represented by a von Neumann-Morgenstern utility function

Ui : V, — R of the form:

Ui(r,x)= f u t{r,x{u))P(du).

We assume that for every 1 = 1,2,...,/:

(i)v; = y+;

(2) u;(r,y) : R+ X /?+ — R is continuous in r, concave and strictly increasing

in r and y, with finite right hand partial derivatives with respect to r and y

denoted ^ «i(r,y) and # u,(r,y), respectively, and ^ u,(0, z(w)) G L'(P)

VzG4(P).

(3) there exist (r,-, z,) G V+ and e,- > such that, for every («, y) G V and Jfc G i?+,

if Ui(r -kr + s,x-kx + y)> U{{r, x) then («
2 + /n y

2
(u;)P((/a;))2 > k^.





Note that (2) above implies that {/,• is r-continuous, and strictly increasing in the sense

that Ui(r + 8,x + y) > (/,(r, x) whenever («, y) > 0; and (3) implies that (/,• is proper.

(For a general definition of properness see Mas-Colell [30].) Note also that a sufficient

condition for (3) is that for all I, #- Ui(r,y) is bounded away from zero for all (r,y) £ J?+,

^
+

u,(0,x(u>)) € L2
(P), for all i 6 L%(P), and (2). We shall further assume that

(4) i'i > for every i = 1,2, ...,/, 2t
vt

- ^ °» aQd Ei=i ^•'(u; ) ^ £ f°r almost

every ui 6 fi, where c is a strictly positive real number; and

(5) there is at least one agent, say agent 1, such that lim „_oo §- Ui(r, y) > 0, for

all r 6 R+ .

We interpret (5) to mean agent l's marginal utility for time T consumption is bounded

away from zero.

2.4. Traded long-lived securities

There are a finite number of long-lived securities (cf. Kreps [25]) traded in the economy,

indexed by j = 1,2,..., J. Each long-lived security is represented by an element dj 6

L?(P). The holder of one share of security j is entitled to dj{ui) units of consumption at

time T in state w. The traded securities are in zero net supply. Agents have zero initial

endowments of these long-lived securities.

2.5. The admissible price systems and trading strategies

Before any discussion of the admissible price systems and trading strategies, some

technical definitions are in order.

A continuous random process 7 is called an ho process (relative to the vector Brownian

Motion W) if there exists a nonanticipative process c , and an TV-vector (row) nonanticipative

process <p, such that

p\j
o

\c(t)\dt <ool = l, (2.5.1)

Pj[ M*)|
2
d< <ool = l, (2.5.2)

and, with probability one for all t 6 [0,T],

/ c{s)d8+
/Jo Jo

l(t) = 7(0) + / c(e)dS + / <p(s)dvV(8). (2.5.3)





Returning back to economics, an admissible price system 5, is a ./-vector Ito process

S of the form:

Sj(t) = Sj(0) + I Si(a)da + / 0j{s)dW(a) V/- 1, 2, . . ., J,

with probability one for all t 6 [0, T], with S{t) representing the ./-vector of relative prices

of the J traded long-lived securities at time t.
b

Given an admissible price system 5, an admissible trading strategy $ is a ./-vector

(column) nonanticipative process such that

El
J

0{t)i0(t)0it]t${t)dt 1 < oo, (2.5.4)

where the j'-th row of is 0j, and the following conditions hold:

1. for every t £ [O.T
1

], the stochastic integral /„ ^(s)TdS(s) is well-defined in

the Ito sense, that is,

/ W)U(t)\dt
Jo

< oo, a.s.

anc
rT

< oo a. 8.;I \0(tW(tWY0(t)\
2
dt

Jo

2. for every t € [0,7],

$(t)i S(t) = 0{O)i S(0) + / 6(8JidS(s) a.s. (2.5.5)
jo

Let 0\S] denote the set of admissible trading strategies with respect to the price system

5. By virtue of (2.5.5), elements of ©[5] are all self-financing trading strategies. Equation

(2.5.5) says that the initial value of the trading strategy (portfolio) 6 plus the amount of

6
Since F is a Brownian filtration, from thn p»n«innn essay we know any equilibrium price system

can be represented as an Ito integral. Thus taking admissible price systems to be the set of Ito

processes is not restrictive at all, once we know that an equilibrium exists.
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capital gain or loss by any time t is equal to the value of the strategy (portfolio) at that

time. That is, after the initial investment, there is neither withdrawal of funds out of nor

investment into the portfolio. (This is the obvious budget constraint.) By the linearity of

stochastic integrals and a simple application of the Cauchy-Schwarz inequality, 0[S] can

easily be shown to be a linear space.

2.6. Equilibrium

Each agent's problem in the economy is to manage a portfolio of long-lived securities so

as to maximize preferences on consumption at times zero and T. An equilibrium of plans,

prices, and price expectations (of Radner [37]) is an admissible price system S, admissible

trading strategies {(0,) :_, f,
one for each agent, and a price a for the consumption good

at time zero (relative to the prices of the securities, given by 5(0)), such that, for all t =

1,2,...,/,
I

2>;<<) = o, v«e(o,n a.8.,

and (r,- - 0*(O)TS(O)/a, i, + e'(T^d) is 1/,-maximal in the set

{(u - *(o)Ts(o)/a, *i + ocrpd) evr.ee e\s}}.

3. The existence of an equilibrium

The continuous-trading model of financial markets formulated in the previous section

has been popular among financial theorists for more than a decade. It has always been

assumed in the literature that an equilibrium exists and that the equilibrium price system

is a vector Ito process (cf. Merton [34], Breeden [4], Cox, Ingersoll, and Ross [10]). Huang

[24] (Essay I) studied a similar model and showed that, if indeed an equilibrium exists in the

continuous-trading economy, then equilibrium asset prices are Ito integrals if information

is generated by (multidimensional) Brownian motion. The existence of an equilibrium for

an economy of one representative agent was demonstrated. In this section we use the

machinery developed in Duffie and Huang [12] to show that if the J traded long-lived
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securities are chosen appropriately, an equilibrium for our economy exists. Furthermore,

the equilibrium allocation will be Pareto efficient. The proof will be constructive in the

sense that a finite number of long-lived securities are selected, their prices are announced,

a trading strategy for each agent is assigned, markets are shown to be clear, and the

allocation is shown to be Pareto efficient. Before we carry out this proof, we analyze an

analogous Arrow-Debreu economy.

3.1. An Arrow-Debreu economy

Suppose that at time zero not only the spot market for the consumption good but also

markets for all "state contingent claims" 6 are open in an economy whose consumption

space and agents are as described in Sections 2.3 and 2.4. We will then show the existence

of an Arrow-Debreu equilibrium, defined as a strictly positive r-continuous linear functional

V' : V
r — R and an allocation {v, = (r,-, a;,-) 6 Vi,i = 1,2,.. .,/} such that

and v
i

is t/,-maximal in the set {v £ V, : ^(v) < i'(i>i)}, for each « = 1,2,...,/. The linear

functional gives Arrow-Debreu equilibrium prices. Here we should note that if L?(P) is

infinite dimensional, then an Arrow-Debreu style economy consists of an infinite number

of markets at time zero. There is no incentive, however, for markets to reopen after time

zero. (For this point in a finite dimensional commodity space, see Arrow [2].)

Proposition 3.1.1: Let £ = (Vj, t/,-, 0,-,i = 1,2, ...,/) be an economy satisfying

the conditions of Sections 2.2 and 2.3. Then there exists an Arrow-Debreu equilibrium

(to')U*).

Proof: Given the assumptions of Sections 2.2 and 2.3, the existence of a quasi-

equilibrium follows from Mas-Colell [30] 7 . A quasi-equilibrium is a r-continuous positive

linear functional $ : V —* R and an allocation {t;,- £ Vj-,i = 1,2,...,/} such that

6A state contingent claim is an element of L?(P).

Since V is a reflexive Banach space, the Closeness Hypothesis in Mas-Colell [30] is automatically

satisfied.
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YL\=i v
i
== H t=i *>i almost' surely and

Ui(v) > Ui(v') implies ^>(v) > V>(t>*).

To show that V and {f,-,t = 1,2, ...,/} form an equilibrium, we must show that ip is

strictly positive and that

Ui{v) > Ui(v]) implies i>{v) > ip(v') Vi.

By the assumption that Y2i=i i'i 3> ((4) in Section 2.3), we know V'(H,- »'») > 0, and

therefore v(t'i') > for some t' € {1,2, ...,/}. suppose v 6 V+, U{i(v) > t/i»(t/,i), and

V(t') = V'(t',')- By continuity of preferences, there exists < q < 1 such that

UP(tjv) > Ui.(v',).

Hence,

^M> i'(vl) = il>(v) >0.

This implies that ij > 1, an obvious contradiction. Therefore ?/,•»(v) > f/i»(v,-) implies

V'(t') > V'(*',/)- Since U? is strictly increasing, i> is strictly positive. Then, by the assumption

that t», > 0, we know Hv i ) > for all t. We can repeat the above arguments to show

that r, is ^-maximal for all i. Therefore, V aQd { v % € K">* = 1)2, ...,/} comprise an

Arrow-Debreu equilibrium. |

In an economic equilibrium only relative prices are determined. We can therefore freely

choose any contingent claim having a positive price as the numeraire. In particular, the

following characterization is possible.

Proposition 3.1.2: Suppose the Arrow-Debreu equilibrium of Proposition 3.1.1 has

as numeraire the contingent claim paying one unit of the consumption good at time T in

every state. That is, V'(0, In) = 1. Then there exists a probability measure Q on (fi, 7)

12





uniformly absolutely continuous with respect to P,8 such that

4(0,x)~E\x), WxeL2
(P), (3.1.1)

where E (•) denotes expectation under Q.

Proof: Since $ is a r-continuous strictly positive linear functional on V, there exists

(a, ()efiX L?(P) with a > and £ > such that for all (r,x) € V

ll>(r,x) = ar+ z(w)S(u>)P(du),
Ja

= ar + <f>(x).

That is, <j>{x) gives the equilibrium price at time zero for a claim which pays x(u) at time

T in state u, and the price of one unit of consumption good is a. By assumption we know

that

V'(0, In) = / tW)P(du) - 1.

Defining

Q(A)= [ z(u)P(du), vie;,
JA

Q is a probability measure on (CI, 7) equivalent to P. It is a probability measure since it is

countably additive and Q(Cl) = E(£) = 1; Q is equivalent to P since £ is strictly positive.

Therefore,

V(o,x) = «£(*)= / ifuKMPfdu/)
Jn

= / x(w)Q(dw
)

= £'(*).

Now consider agent 1. We know v, = (r
l
,x

l )
must solve the following concave

programming problem:

max Ut(v)

Q is said to be uniformly absolutely continuous with respect to P if it is equivalent to P and
the Radon-Nikodym derivative dQ/dP is bounded above and below away from zero.
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s.t. ^(w)-^(wi) <0.

Since V,- = V+ and il>(i\) > for all i, we know that the Slater condition holds. (A good

reference for the Slater condition is Section 14E of Holmes [23].) It then follows from the

saddle-point theorem that v
l

is a solution for the above concave programming problem

only if there exists a nonnegative number Xi such that for any v £ V+

Ut (v) - Ui(v]) < X, 4<(v) - i>(v]) (3.1.1)

(For this point, see Section 14F of Holmes [23].) We claim that X! is strictly positive.

Suppose this is not the case. Take any vG^+ with v > 0. Since F+ is a positive cone, we

have t'j + t; £ V+. Since U\ is strictly increasing, we have Ui(v
l
+ v) — U\(v\) > 0. This

contradicts (3.1.1).

Now we proceed to prove that £ is bounded away from zero. Since V+ is a positive

cone, we know that {r
l
,x

1
+ kl A ) 6 V+ for all A 6 7 and k 6 R+- So we have,

Ux{r\,x\ + k\ A )
- C r

i(rJ,ari) < X,L*(rJ,xJ + k\ A )
- il>{r\,x\)

= Xi* / f(w
JA

)P(du).

Dividing both side of the above equation by k and letting k approach zero, we get, by (2)

in Section (2.3) and the Lebesgue convergence theorem:

jf ^ mo-;, *;m)p(<m < x, jT e(«)p(du;). (3.1.2)

Equivalent ly,

JA (^^)- fy

+
ui(r\,x\(u))y(d«,) > 0. (3.1.3)

Since (3.1.3) holds for every A 6 7, we can take A = (w € fi : Xi£(w)- ^-
+

Ui(r|,xJ(w)) <

0}. For (3.1.3) to hold it must be that P(A) = 0. That is,

*i£M > q- oifr,,*^)) a.«. (3.1.4)
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By (5) in Section 2.3, we know # Ui(rl ,zl (<*>))
is bounded away from zero. Dividing the

above expression by Xi, we have the desired result that £ is bounded away from zero.

Next we want to show that £ is bounded above. Recall the assumption ((4) in Section

2.3) that J2i *i ^ c » where c is a strictly positive constant. Let A,- = {w £ CI : x^w) >

c/I}. Then A, € 7 for all t and fi = |J, A- For any real numbers k G (0,c/7) and 567,

(r*,7* -^nglE^- So (3.1.1) implies that

Vfrlx'i-kl^J-Uiirlx^K-^k [ J(u,)P(du).

Dividing both sides of the above expression by —k and letting it approach zero gives

/ |- «,(r;,x;H)P(rfu;)>X./^ t(u)P(du) V B € 7,
.'Bfl-4 '

^y •'B no-

where ^ ~
U{(r, y) denotes the left hand partial derivative of U{(r, y) with respect to y. This

implies that

X,'£(w)<— «,-(r,*, x*(u;))

(3.1.5)

5 +
<— u,(''.-,0) for almost every w 6 A,-,

at/

the second inequality of which follows from concavity. Now let K = sup,-^- (r
t
-,0)/X,-.

By (2) in Section 2.3, K is finite. Since £ < if a.«.,the proof is complete. |

Proposition 3.1.2 states that Arrow-Debreu prices can be normalized so that the price

for any claim x £ L?(P) at time zero is given by E (x), its expected value under a probability

Q uniformly absolutely continuous with respect to P.

The uniform absolute continuity of Q with respect to P can be illustrated as follows.

Interpret £ to be societal shadow prices for time T consumption. In equilibrium, we know

£ must be greater than or equal to each agent's shadow prices for time T consumption,

or otherwise, agents can increase their utilities cheaply. In particular, £ must be greater

than or equal to agent l's shadow prices, which are constant multiples of his marginal

utilities for time T consumption. Since agent l's marginal utilities for time T consumption
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are assumed to be bounded away from zero, £ is bounded away from zero. On the other

hand, by the assumption that time T aggregate endowment is bounded away from zero, in

(almost) every state there is at least one agent who is consuming a nontrivial amount. For

an agent to consume a nontrivial amount in a particular state, it is necessary, roughly, that

his shadow price for consumption in that state be no less than the societal shadow price.

By the assumption that all the agents' marginal utilities are bounded above, we then know

£ is bounded above.

3.2. Some Theorems on the representation of square-integrable martingales

It is well known that any square-integrable martingale adapted to a Brownian motion

filtration can be represented as an Ito integral (Kunita and Watanabe [28]). We will make

use of the following result, originally developed by Fujisaki, Kallianpur, and Kunita [15],

in the context of non-linear filtering.

Lemma 3.2.1: Let there be defined on a complete probability space (Q',7',P') an

Ar-dimensional process Y. Let the filtration generated by Y be denoted by F y = {7\,t 6

[0, T\). Assumed that 7y
T = 7', that for every t 6 [0, T] 7\ is augmented by all the

P'-negligible sets, and that 7\ is almost trivial. Suppose that Y can be represented by an

Ito integral as

r(t) = r(o)+ / h( 8)d8 + w*{t),
Jo

where Wy is an N-dimensional standard Brownian motion adapted to Fv
, and where

{h(t), 7 y
t , t 6 [0, T]} is an N- vector F v-adapted process defined on (fi\ 7', P1

) satisfying

• / \h(t)\
Jo

EP, \ \h{t)\
l
At < oo, (3.2.1)

Jo

where Epi denotes the expectation under P*. Then any square-integrable martingale m

defined on (H', 7',P') adapted to F" can be represented as

lo

for some h satisfying (3.2.1).

Proof: See Theorem 3.1 of Fujisaki, Kallianpur, and Kunita [14]. I
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The process Y of Lemma 3.2.1 is a generalized diffusion on (ft*, 7',/"). (For the

definition of a generalized diffusion see Chapter 5 of Liptser and Shiryayev [29].) Lemma

3.2.1 states that any square-integrable martingale on (0*, T'yP1
) adapted to the filtration

generated by the generalized diffusion Y can be represented as a stochastic integral with

respect to the Brownian motion \Vy .

The information structure F for our economy is generated by an TV-dimensional Brownian

motion W defined on (Q,7,P). Therefore, any square-integrable martingale on (H, 7,P)

adapted to F can be represented as an Ito integral with respect to W (cf. Kunita and

Watanabe [28]). The next proposition shows that if we substitute for P the probability

measure Q constructed in Proposition 3.1.2, then any square-integrable martingale defined

on (Q, 7,Q) adapted to F can still be represented as an Ito integral with respect to N
independent Brownian motions on (f2, 7 ,Q) adapted to F. That is, the multiplicity of the

filtration F is invariant under a substitution of a uniform absolute continuous probability

measure. (For a discussion of multiplicity, see Duffie and Huang [13].)

Proposition 3.2.1: There exists an /V-dimensional Brownian motion W* defined on

(H, 7, Q) adapted to F such that any square-integrable martingale m on (fi, 7, Q) adapted

to F can be represented as

m(0 = m(0)+ / h{s^dW\a), a.s.
Jo

where {h(t),7t,t 6 [0, T]} is an TV-vector nonanticipative functional such that

E* I
\h(t)\

2
dt < oo. (3.2.2)

Jo

Remark: We will henceforth denote the set of F-adapted N-vector processes defined

on (H, 7,Q) satisfying (3.2.2) by H(Q). The analogous set defined under probability

measure P is denoted by H(P). Since Q is uniformly absolutely continuous with respect

to P, H(P) = H(Q).

Remark: Since P and Q are equivalent, we use a. a. to denote both P — a.s. and

Q — a. 8., unless a distinction is needed.
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Proof: For £ = dQ/dP, let us define

£(<) = £(£ | 3) as.,

where {£(<)} is taken to be a continuous version of {E((
\
7t )}.

9 Then there exists p G H(P)

such that

^(t) = 1 + / p(8?dW(8) (3.2.3)

(Kunita and Watanabe [28]). From Proposition 3.1.2 we know that £ is strictly positive

and bounded away from zero. It follows from Ito's Lemma that £(<) can be represented as

|^ V(s)ldW(s)-
l

-j
o

\ V(s)\
2
ds\,^(t) = exp

where 9(f) = l(0/f(0- Let

W\t) = W(t) - I V(s)d8, t E [0, T\. (3.2.4)
jq

Girsanov's Fundamental Theorem 1 ([17]) states that W is an ./V-dimensional Brownian

motion on (fl, 7 , Q). It is clear that W is adapted to F. By rearranging the last expression,

W(t) = / ti(s)dS + W*(t), t e [0, T] (3.2.5)
Jo

is a generalized diffusion on (H, 7, Q) and generates F. Furthermore,

It then follows from Lemma 3.2.1 that any square-integrable martingale {m(t), Tt
,t G [0, T]}

on (Cl, J,Q) can be represented as

m(t) = m(0) + / A(«)TdVy*(a), a.a.
•/o

This is possible since F is a continuous information structure. For details, see the prwwes
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for some h 6 H(Q). This was to be shown. |

Remark: Relation (3.2.4) defines W as an Ito process (under P) since

T

s isrsrW ^'"i
2
"" < °°

<
3 -2 -8

>

implies that

[ I
ti(t)

I

d< < rH jf k(«)|
2
d«

j

< oo P — a.«.

by the Cauchy-Scharwz inequality.

Remark: Let h 6 H(P). Then

m(t) = m(0) + / A(s)T(/Vy(s) a.«.,

jo

where r?)(0) is a constant, is a square-integrable martingale under P. Similarly, for h £

H(Q),

m(t) = m(0)+ / h{a)ldW\8) a.s.
Jo

is a square-integrable martingale under Q. See Chapter 4 of Liptser and Shiryayev [29].

3.3. A constructive proof of the existence of an equilibrium

In this sub-section we prove the existence of an equilibrium for our continuous-trading

economy. The proof is essentially that given as Proposition 5.1 in Duffie and Huang [13],

recast in an economy with diffusion process information. In that paper it was shown that

if the tribe 7 is separable, if an equilibrium in the Arrow-Debreu economy exists, and

if the equilibrium price measure Q is uniformly absolutely continuous with respect to P,

then the Arrow-Debreu equilibrium can be implemented by continuous trading of at most

a countable number of long-lived securities. We show here, however, that in our economy

an equilibrium with a Bnite number of long-lived securities exists.
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Theorem 3.3.1: An equilibrium exists in the continuous-trading economy formulated

in Section 2 with TV + 1 long-lived securities having payoff structures:

«j)J!Li-j[ ht)dw\t)

^n+i = In,

where : H X [0, T] — RNxN is any function that is nonanticipating, nonsingular for all

t £ [0, T] a.s. with £j/ \0(t)\
2 dt) < oo. A set of equilibrium price processes for these

TV + 1 long-lived securities is

Sj(t)=E\dj\Tt )

= jf ^(«)rfW'(«)

(3.3.1)

- y 0j(s)dW(s) -
J

£,(«)»/(«)</*, a.«. j= 1,2,..., TV,

S'.v+ifO — 1«

for all ( £ [0, T], where W and ij are defined Proposition 3.2.1 and equation (3.2.4),

respectively, and where 0j denotes the j-th row of fi. Furthermore, the equilibrium

allocation is Pareto efficient.

Proof: Let {(r,-,x,-) 6 V+;i = 1,2, ...,/} be an equilibrium allocation in the Arrow-

Debreu economy and V De the strictly positive and r-continuous linear functional on V

that gives equilibrium prices as in Proposition 3.1.2:

tl)(r,x) = ar + E'(z),

where a is the price for time zero consumption, and E (x) gives the equilibrium price at

time zero for claims x 6 L2(P). By the definition of an Arrow-Debreu equilibrium we know

that (r
i
,x

i ) is ^/.-maximal in the set

{(r,x)6V+ :V(r,x)<V(r,-,i,)}
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for every i = 1, 2, . . ., /. By the assumption that agents' preferences are strictly increasing,

it is obvious that

Equivalent ly,

^{r'i - r,-, x\ - it)

=a(r' - f.) + E\x] - ii) = 0. (3.3.3)

The price for x
i
— x\ at time zero is a{r{ — r,). That is, at time zero agent i pays (f,- — r,

)

units of consumption good to buy the claim x
i
— £,-. In what follows we show that an

equilibrium exists in our continuous trading economy with the Arrow-Debreu equilibrium

allocation {(r,-,Xi)€ V+ ;i = 1,2,...,/}. The proof is completed by the following program:

1. Verify that d is well-defined and lies in L?(P).

2. Show that 5 is an admissible price system.

3. Allocate an admissible trading strategy to each agent and show that markets

clear and the Arrow-Debreu allocation is attained.

4. Show there is no incentive for any agent to deviate from his or her allocated

trading strategy.

Now we proceed exactly as outlined above.

Step 1. We want to show that d is well-defined. Note that E(f \P(t)\
2
dt) < oo implies

E*(j \ft{t)\
2
dt) < oo, which in turn implies J |/?(t)|

2
</< < oo Q-almost surely, by the

uniform absolute continuity of P with respect to Q. Thus, d is well-defined under P and

Q. It follows from the second remark after Proposition 3.2.1 that d is square-integrable

under Q, and therefore square-integrable under P, again by the absolute continuity of P

with respect to Q.

Step 2. First we show that S is well-defined. The second line of (3.3.1) follows from

the second remark after Proposition 3.2.1 and 5 is well-defined under Q. The stochastic

integral in the third line of (3.3.1) is well-defined under P, since P{J |/?(<)|
2
<fr < oo} =

1. Finally, it follows from (3.2.8) and the Cauchy-Scharwz inequality that the Lebesgue

integral in the third line of (3.3.1) is well-defined. Thus the second and the third lines of
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(3.3.1) are equal from the definition of W . Therefore the second line is also well-defined

under P, and S is an admissible price system.

Step 3. We allocate an admissible trading strategy 6
% £ Q[S] to each agent i and show

that with the announced price system agents obtain their Arrow-Debreu allocations almost

surely and markets clear.

Denoting x, — i, by e,, we know from Proposition 3.2.1 that there exists an TV-vector

nonanticipative process {hl
(t),t 6 [0, 7]} with h* € H(Q) such that

H = E*(ti) + / h\tydW\t) a.s.,
Jo

since, by the fact that £ is bounded above, e,- £ L2
(Q). For every t £ [0, 7*], and j

1,2,.. .,7V, let

—i
where 0j denotes the j'-th column of the inverse of 0, and let

AT /•( N

*kn(0 = £*(«*) + £ / 9)(*)dSj(8)
- J2 0)(t)Sj(t).

* '0 .

We claim that the N + 1-vector process 6
l

is an admissible trading strategy. Let : Cl X

[0,7] - r(n+i)xn be such that 0j(t) = 0j(t) V t £ [0,7] o.«. for all j = 1,2,... ,7V, and

0N+i(l) = Q V < £ [0.7], where 0j(t) denotes the j-th row of 0(t), and where Q denotes an

N row vector of zeros. First we want to show that

m)dt\e[] {6\tV0(t)0{t

Note that

rT rT

/ *W£(W)T*W - / h\tf'0 \t)0(t)0(t)T0 \t)lhi
(t)dt

Jo Jo

= I hHtVkHtot = I \h\t)\
2
dt

Jo Jo





by construction. Because h 6 H(Q) we have

E
\L *W/W(')T'W<) < oo. (3.3.5)

Thus, (3.3.4) follows since £ is bounded away from zero. Next, we want to show that the

stochastic integral / 6
l
(t)^dS(t) is well-defined under probability measure P. Once we

show that the above stochastic integral is well-defined under probability measure Q, we

are done, since it follows from Memin [31] that the definition of a stochastic integral is

invariant under an equivalent change of measure. Under probability measure Q,

rT rT

/ *{t)US{t) = / h'Wfi \t)0(t)dW\t)
Jo Jo

(3.3.6)

= / hWdW\t),
Jo

which is well-defined, since h 6 H(Q). Therefore $' £ Q[S] since by construction it is also

self-financing.

Finally, by construction and relation (3.3.6),

*''(0)TS(0)+ / MtydSft)
Jo

=*}v+i(o) + / hWdw'w
Jo

fT
=£*(e t ) + / h i(t)UW'(t) = e i a.s.

Jo

Thus, for an initial investment of E (e,)/o units of consumption good, the admissible

trading strategy $' attains e, units of consumption good at time T almost surely. Let

0' thus chosen be agent i's trading strategy for i = 1, 2, ...,/— 1. For agent I, set

I-

1

*' = -£*••
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Since 0{S] is a linear space, O1 is admissible. Markets for long-lived securities then clear

by construction. Furthermore,

rT /-I

/ ^(0T«w(0 + 4v+i(o)--5>-ei
v .

/-I

by the fact that, in an Arrow-Debreu equilibrium, 5Z,-_i «i = 0, a.e.

If all agents follow these assigned trading strategies, each agent t at time zero consumes

f, - E'(ei)/a = f, + (r* - f.)

*

where the first line follows from (3.3.3). At time T agent i consumes

Xi + e,- = Xi + (x* - ii)

= z,- a.«.

Thus every agent gets his or her Arrow-Debreu allocation.

Step 4. Now we want to show that there is no incentive for agents to diverge from

their assigned trading strategies. First, let us note that for any h £ H(Q),

rt

I h(sydw\s) te[o,T]
Jo

is a square-integrable martingale under Q (cf. the second remark after the proof of

Proposition 3.2.1). It then follows from (3.3.5) that, for any 6 ©[5],

/ e(s)US(s) = I 9{s)ip(6)dW'{s)
Jo Jo

is also a square-integrable martingale under Q. Next suppose there is one agent, say agent

I, and (r,x) 6 V+, with 6 &[S] such that £/,(r,x) > C/,(rJ,a;*) and

x - Xf = 9N+ i{0) + / ${t)US(t

)

Jo

T
= o(r'-r)+ I 0(t)lJS(t).

Jo'0
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Taking expectations with respect to Q,

E\x - x]) = a(r] - r) + E*U 9(t)US(t)\

= o(u ~r),

the second line follows from the fact that J 0(s)T(/S(«) is a square-integrable martingale

under Q. But, in an Arrow-Debreu equilibrium, £/,(r,x) > t/,(r,-, x,) implies

a(r'-r) < E\x - x*),

a contradiction. Therefore there is no incentive for agents to diverge from assigned trading

strategies.

The equilibrium allocation is Pareto efficient since agents get their Arrow-Debreu

equilibrium allocations. |

Given an Arrow-Debreu equilibrium, we can find N + 1 long-lived securities which

"support" it in a continuous trading economy. It should be clear from the above proof that

in selecting securities, we can restrict our attention to selecting the nonanticipative matrix

process /?. As long as ft(u!,t) is nonsingular for all t £ [0, T] and for almost every u £ ft,

and satisfies the given regularity conditions, a continuous trading equilibrium exists with a

Pareto efficient allocation.

Corollary 3.3.1: Under the conditions of Theorem 3.3.1, the given TV + 1 long-lived

securities complete markets. That is, any contingent claim not traded can be replicated by

continuously trading on these securities. Let x 6 L2(P). Under the chosen price system,

the price of a claim to x at any time t is E (x
\ 7t ), which can be represented as an Ito

integral.

Proof: See Step 3 in the proof of the Theorem. |
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4. Properties of equilibrium price system when agents have von Neumann-

Morgenstern utility functions

In the previous section we demonstrated an equilibrium in our continuous-trading

economy and showed that the equilibrium allocation is Pareto efficient. The equilibrium

price system in equation (3.3.1) is an Ito process whose coefficients are nonanticipative

processes. That is, at any time t € [0, T], the values of tj and fi generally depend upon the

past history of the economy. The Intertemporal Capital Asset Pricing Model of Merton [34],

extended by Breeden [4], assumes, however, that the equilibrium price system analogous to

(3.3.1) is not only an Ito process but is of the form:

5(0-5(0)+ / ft(Z(8),a)dW(s)+ I s(Z(s), 8)d3,
Jo Jo

where Z is some vector of unspecified diffusion processes. It is further assumed that (Z,S)

forms a vector diffusion process, or that (Z,S) has the strong Markov property. We now

will show conditions guaranteeing that Z can be taken to be the "state variable process"

Z, implying that the values of nonanticipative processes and c at any time t € [0, T] can

be written as a (Borel measurable) functions of Z(t) and t. Furthermore, (Z,S) is a vector

diffusion process. More generally, we will exhibit conditions under which the price process

for any contingent claim having a certain payoff structure, adjoined to the state variable

process, forms a vector diffusion process.

From Essay I of Huang [24] the fact that equilibrium prices are Ito integrals is an

inherent property of diffusion/Brownian motion information structures. Conditions under

which (Z,S) is a vector diffusion process are not as naturally posed.

This section flows as follows. In a market equilibrium with a Pareto efficient allocation

in which agents have von Neumann-Morgenstern time-additive utility functions, we can

construct a representative agent with a von Neumann-Morgenstern time-additive utility

function who "supports" the equilibrium by consuming aggregate endowments. In that

case, the properties of the equilibrium price for a particular contingent claim will be

determined entirely by its payoff structure, the representative agent's preferences, and

aggregate endowments. When these "aggregates" have simple structure, so will equilibrium
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prices.

4.1. Construction of a representative agent

In a market equilibrium of either the Arrow-Debreu or Radner [37] type, one can always

design a representative agent who supports the equilibrium price system at the aggregate

endowment point (Kreps [26, 27]). This is almost vacuous, since the equilibrium prices

themselves give a "representative agent". The statement that there is a representative

agent takes on content (and has value) if one can show that this agent has nicely structured

preferences. When individual agents have preferences given by von Neumann-Morgenstern

time-additive utility functions and share given subjective probability assessments over states

of the world, and when the equilibrium allocation is Pareto efficient, the representative

agent can be chosen to be an expected utility maximizer having a time-additive utility

function. Prescott and Mehra [36] assert that this is so. In a model with a finite dimensional

commodity space, Constantinides [8] provides a detailed construction. The extension of

Const ant inides' construction to economies with infinite dimensional commodity spaces

(such as ours) is conceptually straightforward but needs to be formalized.

We assume that u, is separable. That is, there exist functions /,• : R+ — R and y,- :

/?+—>/? such that U{(r,y) = /,(r) + y,(y). Then Ui can be represented as

Ui(r,x) = fi(r)+ I gi(
X("))P(du).

Jn

Assumption (2) in Section 2.3 implies that for every t = 1,2, ...,/,

(a) /, and y, are strictly increasing, concave, continuous, and with finite right hand

derivatives everywhere.

We also assume that for every * = 1,2,...,/,

(b) /, is strictly concave and differentiate and y,- is strictly concave, three times

continuously differentiable with bounded derivatives, and the second derivative

of Q{ is bounded away from zero.
10

The assumption of bounded derivatives can be relaxed by assuming Lipschitz-like

conditions on the derivatives. See Theorem 3 on page 293 of Gihman and Skorohod [16].
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For every i = 1,2,...,/, we know (r,- , i,- ) solves the following concave program:

max UAr, x)
(r,*)€V+

(4.1.1)

s.t. a(r — f,) + <j>(x — ii) < 0.

By (4) in Section 2.3, ari + 0(i,-) > 0. That is, the Slater condition holds. By the saddle-

point theorem there exists a nonnegative real number X,- such that, for every (r,x) £ V+
and every 6 6 R+,

Mr*) + Jq gAx'^mdu) + b(a(u -r') + jn Zi^i^u) - x\(u))P(du)\

>MU) + jf tA*i(»))P(*a) + ^iUri - r,*) + jf f(wXi.<«) - *.-M)/w) (4.1.2)

>fi{r) + jn
gi{x(Lo))P(du) + x/a(f, - r) + jf fl^XM") - z(u))P(c/a;)\

Using the arguments following (3.1.1) in the proof for Proposition 3.1.2, we know X,- > 0.

Then (4.1.2) implies that

«(r; " r') + £ fl«X«Kw) " *!(«)VW = 0. (4.1.3)

From the arguments used to derive (3.1.4), we have

?'(*,V)) < Xt€(«) o.«., (4.1.4)

where g[ denotes the derivative of j,-. Let Bn be the set {u 6 H : a;*(w) > £}, let A 6 /,

and finally let (r,x) = (r'.z* - fcl^n^J G V+ for some strictly positive scalar k, with

k < 1/n. From the argument used to obtain (3.1.5) we get

/ n ^M)P(rfw) > X,-

/

f(a/)P(«M, n = l,2,... .

Since B = {u6n: z,*(w) > 0} = (J^ Bn , we have

/~ tt)W>^/ rt flw)P(<M V>ie7. (4.1.5)
*'/4

f ] B «M [IB
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Let fl
+ - Bf\{u> e n : ftzfa)) > X.£(w )} and B~ = ^DW e ft : rffoV)) < Xtfl«)}.

Applying the argument used to obtain (4.1.4) to the sets B+ and B~ we get P{B+ \J B~} =

0. That is, for those w£fi such that z'^uj) > 0,

l5(*J(«))— *.£(<") o.«. (4.1.6)

It is clear from the calculus that

/J(rJ) — X,o if r- > 0, and

(4.1.7)

fi(r]) < X,o if r* = 0.

Therefore (4.1.3), (4.1.4), (4.1.6), and (4.1.7) are necessary conditions for (r*,x*) 6 V+ to

be a solution to (4.1.1).

Now define F : #+ — i? and G : #+ — # by

'
1

F(r) = max £ r /,{j,,)

/

st. £y,<r, (4.1.8)

and
'

1

G(r)— max 5^7-0i(y,)

s-t. £y,<r.
(
41 -9

)

t'=l

One can easily verify that F() and G() are strictly increasing and strictly concave. Furthermore,

the following lemma shows that F(-) and G{) are differentiate.

Lemma 4.1.1: F(-) and G'() are differentiable. In addition,

F'(R) = o

(4.1.10)

G'(X(u)) - £(u>) a.«.,

where /? s J3,-_, f, and where X = X\=i *»'•
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Proof: Consider F() first. Let r of (4.1.8) be any strictly positive real number and

let (y,)f=I be the solution of the concave program of (4.1.8). Then there must exist j 6

{1,2,...,/} such that yj > 0. Let k be any positive real number. Then

F(r + k)- F(r) > f(ffa + *) - ffy,j)),

since giving the "extra amount" k to agent j is certainly feasible. Dividing both sides of

the above expression by k and letting k approach zero, we get

D+F(r) > ^fjiVj),

where D+F(r) denotes the right hand derivative of F at r, which exists since F is concave

and r > 0. When k lies in (0,j/,), we have

F(r -k)- F(r) > Uf} ( yj -k)- ffa)).

Dividing both sides of the above expression by —k and letting k approach zero, we get

IT F[r) < J-fjivj),
A
;

where D~F(r) denotes the left hand derivative of F at r. Thus,

Ay A
;

Therefore D+ F(r) = D~F(r) = £fj{yj), and so F'(r) exists. Thus, F() is differentiate

on (0, oo). Suppose the right hand derivative of F{) at zero does not exist. Then, by strict

concavity of F(-), there exists a sequence of strictly positive real numbers {kn }, with kn J 0,

such that

F(kn )-F(0)
;

> n, Vn = l,2,...

Now it follows from monotonicity and concavity of /,• that

,<!M5<f;

' /W Vn = l,2

30





which contradicts the fact that /$(0) is finite for all t. Therefore F(-) is differentiable at

zero. Identical arguments show that G(-) is also differentiable.

Next we show that F'(R) = a and that G'(X(ui)) = £(u>) a.s. By strict concavity of /,-,

we know (r, )'= , is the unique set of positive real numbers such that

ft*) -E f#r«>-

t=l
A»

Since R > 0,

F'(R) - i-yjfrj)

for some j £ {1,2,...,/} with r- > 0. Substituting from (4.1.7) gives

F'(R) = a.

Similar arguments show G'(X(u>)) — £(a>) a.s. |

The concavity and differentiability of F() and G(-) also imply that F'() and G'(-) are

bounded. Now we are ready to prove the main results of this subsection:

Proposition 4.1.1: (R,X) is the unique solution of the following program:

max F(r)+ / G(x(oj))P(du)

s.t. ar + <f>(x) <ak + 4>(X).

Proof: This assertion follows directly from (4.1.10). |

Proposition 4.1.1 implies that the equilibrium established in the previous section can

be supported by a representative agent whose preferences are represented by the functional

V(r,i) = F(r) + fQ G(x(u>))P(duj), and whose consumption is constrained by aggregate

endowments.

If each agent's time T equilibrium consumption is in the quasi-interior 11 of L\{P) and

if time aggregate endowments satisfy a regularity condition, we can say a bit more.

11
L,\(P) has an empty interior. The quasi-interior of L+(P) is the set {x 6 L+(P) : x > 0}.
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Proposition 4.1.2: Suppose a:, 2> for every i = 1,2, ...,/. Let c = ess inf X. If

P{X > s] = 1, then G'() is three times continuously differentiable on (c, oo) with bounded

derivatives. Furthermore, there exist C2 functions with bounded derivatives c,- : (c, oo) —

R+, t = 1,2,...,/, such that z,-(u;) = c,(X(w)) for almost every u> € Q.

Proof: By the assumptions x,- » V i 6 {1,2, ...,/} and P{X > e} = 1, we know

the solution of

I

lies in the interior of R+ if r > c, for otherwise there exists a i' 6 {1,2,...,/} such that

X: = on a set of strictly positive probability measure. Suppose r > c Necessary and

sufficient conditions for (y,)f=1 to solve the above program are:

1

/_1

;ff'(j/.)= rV/(»--X!y.)x t

. X,

for i = 1,2,...,/- 1. Now let

1 1

/_1

x, x 7 £j

for »== 1,2, ...,/— 1. Since each y, is three times continuously differentiable on /?+, each

]/j is twice continuously differentiable on /?+
-1

. Let J be the Jacobian of (]/,)[=' with

respect to the first / — 1 arguments. It is easy but tedious to check that the determinant

of J is non-trivial from the fact that each y,- is strictly concave. It then follows from the

implicit function theorem (see, for example, Hestenes [22], p. 172) that there exist / — 1

twice continuously differentiable functions c,- : (c, 00) — /?+, 1 = 1, 2, ...,/— 1 such that

J/»
= ^i(r). That is,

z-g'i(c i(r))=^g'I(r-^2c i(r)). (4.1.11)
X, X, £-

Define cj : (c. 00) —» R+ by cj(r) = r — ^Zi=\ c »'( r )> clearly twice continuously differentiable.
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For r 6 (c, oo), we have

G(r) = £ ^,(c,(r)).

We want to show that G is three time9 continuously differentiable with bounded derivatives

on (c, oo). From Proposition 4.1.1, G() is differentiable on (c, oo) and

i=i
A*

-f**»!>)
(4I12)

= ^;(c,(r)).

The second and the third lines of the above expression follow from (4.1.6) and the fact

that J2l=\ c
'i(
r ) — 1) respectively. Equation (4.1.12) reconfirms (4.1.10) and is the so called

"envelope condition". Now the thrice continuous differentiability of G on (c, oo) follows

from the thrice continuous differentiability of j,- on R+ and twice continuous differentiability

of c, on (r, oo).

Next, we want to show that G has bounded derivatives on (e, oo). Given Proposition

4.1.1, we only have to show the boundedness for G" and Gm . If we can show that each c,-

has bounded first and second derivatives, then the boundedness of G" and G'" on (c, oo)

follows from the chain rule for differentiation. From (4.1.11),

£'_, »5(<v(r))/»JMr))

Therefore c'- is bounded since it is clear from (4.1.13) that 1 > cj- > for all i €

{1,2,...,/}. (Recall that g"
{
< for all i.) Differentiating (4.1.11) with respect to r again,

the boundedness of e" follows from the boundedness of g^, g", g'", and the fact that g" is

bounded above away from zero. |

The fact that the price system (3.1.1) completes markets makes the above charac-

terization possible. As should be clear from Section 3, every complete markets equilibrium
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in our continuous trading economy corresponds to an Arrow-Debreu equilibrium. In an

Arrow-Debreu economy, equilibrium prices are determined by agents' preferences and (the

distribution of) endowments. Thus, equilibrium prices in the continuous trading economy

should depend only upon the distribution of endowments and not on the distribution of

wealth over time. In the construction of the representative agent, (4.1.8), the weights

on agents, ^, i = 1,2,...,/, are constants reflecting the distribution of endowments. If

the distribution of wealth over time were important, then these weights would be random

variables, and the representative agent's utility function would be state dependent.

The usefulness of a representative agent is apparent from (4.1.10). Societal shadow

prices can be linked directly to aggregate endowments. In our pure exchange economy,

aggregate endowments are exogenously specified. We can therefore derive useful properties

of £ by making assumptions about X. This in turn allows us to deduce conclusions about

asset price behavior and optimal portfolio choice.

4.2. Equilibrium price processes and "state variable process" form a vector

diffusion process

In this subsection we show a set of conditions ensuring that the price process for a

contingent claim, adjoined to the vector of state variable processes, forms a vector diffusion

process.

We adopt the notation:

QO, 0Oi+O2+...+O„

^"tfp" dy?...dy°»> l«l=«i+°2 + ... + a„

for positive integers a,, a2 , . . ., an . If g : RN X [0, T] — R is C 1
, the vector (dg/dt/i,

.

. ., dg/dyn )

is denoted by Dyg or by gy . The following assumptions are made throughout this subsec-

tion.

Assumption 4.2.1: In equilibrium, x] > for every »' = 1,2, ...,/. Furthermore,

P{X > c} = 1, where we recall c from (4) of Section 2.3.

Assumption 4.2.2: There exists a C2 function L : RN — R+ with bounded partial

derivatives, such that X = L(Z(T)) a.8.
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Assumption 4.2.3: D
y
fi(y,t) and D

y
(r(y, t) exist and are continuous for

|
a |< 2, and

there exist constants Ko and K\ such that

|
D°p(yj)

| + |
Da

y
a(y,t) \< K (l+

| y \

K
>), \<*\<2.

Assumption 4.2.3 is a regularity condition. Assumption 4.2.2 says that the time T

aggregate endowment is path-independent: The value of time T aggregate endowment

depends only upon the value of the state variable process at that time. This latter

assumption can be relaxed to some extent by enlarging the state space (cf. Section 4.3), but

some sort of path-independence is needed. The first half of Assumption 4.2.1 is the least

satisfactory part of this essay. In Section 3, we used the fact that each agent's consumption

set is the positive orthant of V to establish the existence of an equilibrium. In the first

half of Assumption 4.2.1, however, we assume that in the equilibrium, the constraint that

agents' consumption lies in the positive orthant of V is not binding. The second half of

Assumption 4.2.1 is a technical assumption.

Assumptions 4.2.1 and 4.2.2 together imply that £, which we interpret to be societal

shadow prices at time zero for time T consumption, is path-independent and a smooth

function of Z(T). A more useful result is actually possible:

Proposition 4.2.1: There exists a function 6 : RN X [0, T] —* R such that 8y and D
y
6

are continuous and bounded in y and t; bt exists; and f>(y,t) satisfies the following partial

differential equation and boundary condition:

6lfi + 6 t + -tr(Jyy
<T<rT) = o,

\jm6(y,t) = G'(L(y)).

(4.2.1)

In addition,

£(*) = 6{z(t),t)

(where {£(<). t £ [0, T]} is the martingale defined in the proof of Proposition 3.2.1.). Finally,
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Z(t) can be represented as:

flf) = expU rt(Z{8),s)UW{8)-
1

-^ \
r,(Z(s),e)

\

2 dsla.s. Vte[0,T],

where t](y,l) is continuous in y and t, satisfying the Lipschitz and growth conditions:

\v(y,t)-*l(v,t)\<K\y-y\,

(4.2.2)

h(lM)|
2 <A-2(l+|j,| 2

)

for some positive constant K, and

6y(Z(t),t)MZ(t),t)
*(z(<) '' )

=
mtu)

• (423)

Proof: From (4.1.10), Assumptions 4.2.1 and 4.2.2, and Proposition 4.1.2, there exists

a twice continuously differentiable function § : RN —> /? with bounded partial derivatives

such that, redefining £ on a null set, we have

Z(u}) = 9(Z{u,T)) v w ea (4.2.4)

It follows from Assumption 4.2.3 and Theorem 9.4 in Chapter 2 of Part II of Gihman and

Skorohod [16] that there exists a function h(y,t) such that h
y , D

y
h are are continuous in y

and t; hi exists; hy , D
y
h are bounded; and

t(t) = 6{Z(t),t).

It also follows from Theorem 8.4 in Chapter 2 of Part II of Gihman and Skorohod [16] that

£(0 can be represented as

£(t) = h(Z(t),t)=l+ I p(Z(a),8YdW(8) a.8.,
Jo

where

P(Z(t),ty = hy(z(t),ty<7(z(t),t), (4.2.5)
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'T

El \p{Z(t),t)\
i
dt < oo

'o

and where S(y,t) satisfies (4.2.1). It is clear that

Jo

since £ is square-integrable. Ito's Lemma then yields

fl<) = exP n r,(Z(s),syd\V(s)-
l

-j
o

\r,(Z{s), 8)\
2 ds\ a.8. V t 6 [0, T],

whcT6
ri(z(t),ty=p(z(t),t)y6(z(t),t)

by
{Z(t),t)ta(Z(t),t)

6(Z(t),t)

The fact that tj(y,t) is continuous in y and t follows from the continuity of 6(y, t), 6
y{y,t),

and cr(y,t). Finally, (4.2.2) follows from the fact that £(t) is bounded above and below

away from zero, the fact that a(y,t) satisfies (2.1.1a) and (2.1.1b), and the boundedness of

Sy{Z{t),t). |

If we interpret £(<) as the societal shadow prices at time t for time T consumption,

then Proposition 4.2.1 shows that the shadow prices for time T consumption over time is

path-independent. It follows that the payoff structure of a claim determines whether or

not the equilibrium price process forms, with the state variable processes, a vector diffusion

process.

Proposition 4.2.2: For any contingent claim x £ L?(P) satisfying

x = E*(x) + I K(Z(t),t)ldW*(t) a.s., (4.2.6)
Jo

where it(y,t) : RN X [0,7] — RN is such that E(j
T
\n(Z(t), t)\

2
dt) < oo, the equilibrium

price process for a claim to x, denoted {ar(<)}> can be represented as

x(t) = E'(x)+ I k{Z(s), eydW'( 8
)

Jo

= £*(*)" / K(Z(s),8)^(Z(s),s)d8+ I k{Z(s),8)UW(s) 0.8.
Jo Jo

(4.2.7)
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Furthermore, suppose that K(y,t) is continuous in y and t, and that both n(y,t) and

K(y,t)rv(y<t) satisfy Lipschitz and growth conditions. Then {(Z(t),x(t)),t G [0, T]} is a

diffusion process under P.

Proof: First we note that by uniform absolute continuity of P with respect to Q,

E'lJo \K(Z(t),t)\~dt) < oo. It then follows from the corollary after Theorem 3.3.1, the

second remark after the proof of Proposition 3.2.1, and Proposition 4.2.1 that the equi-

librium price for x at time t is

E\x
I

7t ) - E\x) + Elj
o

«(Z(«),«)W(«)
|
7t

J

= E'(x)+ I K(Z(s),8)ldw\s)
Jo

= E\x)- I K(Z(s), Syri{Z{s),8)ds+ I K(Z(s), 8ydW(s) a.s.
Jo Jo

Now suppose that k(j/, t) and k(j/, t^tjd/, t) satisfy Lipschitz and growth conditions. Theorem

6.2.2 in Arnold [l] ensures that {(Z(t),x(t)),t € [0, T]} is the unique solution for the system

of stochastic differential (integral) equations (2.1.2) and (4.2.7). Finally, by the continuity of

/i(i/,/), (r{y,t), ti(y, t), and K(y,t), Theorem 9.3.1 of Arnold [1] ensures that {(Z(t),x(t)),t G

[0,T]} is a vector diffusion process under P. |

As an immediate consequence, we have:

Corollary 4.2.2: If the random matrix 0(u>,t) (cf. Theorem 3.3.1) can be written

as 0(Z(lj,1), <), if Hy< { ) ' s continuous in y and t, and if 0{y,t) and fl(y,t)J il(y,t) satisfy

Lipschitz and growth conditions, then the equilibrium price system for long-lived securities,

S, can be represented as

5(<) = 5(0)+ / 0(Z{s),a)dW(a)- / p{Z{a), e)t){Z{8), e)ds a.s.,
Jo Jo

and forms, with the state variable process, a vector diffusion process. (Recall that the

N + 1-th row of fl(t) is a vector of zeros.)

Proposition 4.2.2 states that if the payoff structure of a claim is nice, then its equi-

librium price has a nice representation. (Here we use nice to mean of the forms (4.2.6) and
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(4.2.7), respectively). On the other hand, the fact that the equilibrium price process of a

claim has a nice representation does not necessarily imply that adjoining to that proces the

state variable processes forms a vector diffusion process, unless some Lipschitz and growth

conditions are satisfied. One natural question to follow is whether a claim's payoff structure

is nice whenever its price proces has a nice representation. The following proposition is a

little stronger than the converse of Proposition 4.2.2.

Proposition 4.2.3: Suppose the equilibrium price for a claim to x 6 L2(P) can be

represented as

x{t) = x(0) + J s(a)d8 + J K(Z(8),sydW(e) a.*., (4.2.8)

where f is a nonanticipative process, and where n(y,t) : RN X [0, T] —» RN is Borel

measurable with E(f \it(Z(t),t)\
2
dt) < oo. Then ?(u>,<) can be written as $(Z(w,t), t)

(Borel measurable) for almost every t 6 [0, T] and almost every w £ H , and

x = E*(x)+
J

K(Z(t),t)UW*(t) a.s.
Jo

Proof: First let us rewrite (4.2.8) as

x{t) = x{0) + / ( f («) + K(Z(«),«)TirtZ(«), «))</«+ / K{Z(8),a)tdW'(a) a.s. (4.2.9)
Jq Jo

Arguments in Step 2 of the proof of Theorem 3.3.1 show that the above expression is well-

defined under Q. By Corollary 3.3.1 we know that, under probability measure Q, {x(t)}

is a square-integrable martingale. Next note that E(f \n(Z(t), <)|
2^0 < oo implies that

E (J \K(Z(t),l)\ 2
dt) < oo by the fact that £ is bounded above. It then follows from the

second remark after the proof of Proposition 3.2.1 that the stochastic integral of (4.2.9) is

a square-integrable martingale under Q. Thus the Lebesgue integral in (4.2.9) is a square-

integrable martingale under Q as well. Furthermore, as a function of t, it is absolutely

continuous. Now note the following: Any continuous martingale is either of unbounded

variation or is a constant throughout (cf. Dellacherie and Meyer [12]). Therefore, we must

have c(u;,e) = -k(Z(u>, t), tyt](Z(uj,t), t) for almost all t € [0, T] and almost every w 6 f2.
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Substituting into (4.2.9) we have

z(t) = z(0) + / n(Z(e), aydW"{e) a.a.
Jo

Finally note that x(T) = x a.a., so x(0) = E*(x). |

Propositions 4.2.2 and 4.2.3 together imply that for the equilibrium price of a claim

to have a nice representation it is necessary and sufficient that its payoff structure is nice.

Note also that, in the above characterization, the equilibrium price of a claim at any time

t may depend upon the past realizations of the state variable process, even if it has a nice

representation. The following proposition formalizes the intuitive notion that if the payoff

structure of a claim is path-independent, then its equilibrium price process must also be

path-independent.

Proposition 4.2.4: The equilibrium price, at each time t £ [0,T], of a consumption

claim whose payoff is a Borel measurable function of Z(T), can be written as a Borel

measurable function of Z(t).

Proof: The arbitrage value for a claim x £ L2(P) at time t is E (x
\ It) almost surely.

By the definition of conditional expectation we have

E\x\7t) = E{xi\7t)IZ{t) a.a.

(For the above fact see, for example, Harrison [19].) If x depends only on Z(T), it then

follows from the definition of the Markov property (see Chung [7], p.2-3.) and a monotone

class argument (see Chapter 2 of Chung [6] or see Williams [38], p. 122) that

E(xi\7t )
= E{xi\Z{t)) a.a.,

since by Assumptions 4.2.1 and 4.2.2, £ also depends only upon Z{T). Finally, it follows

from the Lemma on page 299 of Chung [6] that there exist two Borel measurable functions

c^ and f such that

E{xl\Z(t)) = <t>(Z{t)) a.a.
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and

S(t) = <p(Z(t)) O.8.

Thus the assertion follows from the fact that the ratio of two Borel measurable functions

is Borel measurable, and the fact that £(t) is strictly positive. |

Special cases of the above proposition are (multiple contingency) options written on

the final values of the state variable process. The equilibrium prices of these call options

at each time t are Borel measurable functions of the value of the state variable process at

that time.

Remark: If the payoff structure of a claim is not only path-independent but is C2

with bounded partial derivatives, then this is a special case of Proposition 4.2.2.

In this subsection we have shown that under some conditions the equilibrium price

system S together with the "state variable process" Z forms a vector diffusion process. In

continuous trading models of financial markets it has always been assumed that the equi-

librium price system together with certain unspecified processes, which may be endogenous,

forms a vector diffusion process. Here, however, we have provided a set of conditions under

which those unspecified processes are identified as the vector exogenously specified "state

variable processes" Z.

The results of this subsection depend crucially upon Assumptions 4.2.1, 4.2.2, and

4.2.3. As mentioned earlier, Assumption 4.2.2 can be relaxed to some extent while main-

taining characterizations of equilibrium prices of the same flavor. When time T aggregate

endowments are not path-independent neither are societal shadow prices for time T con-

sumption. In that case, the equilibrium price of a consumption claim with a nice payoff

structure will not have a nice representation. Here we still use nice to mean of the forms

stated in Propositions 4.2.2 and 4.2.3. In the next subsection, we show that if time T

aggregate endowment is not path-independent but can be represented in a certain form,

then, by enlarging the state space, we can make everything nice again.
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4.3. An augmented system

Let us first suppose that the aggregate endowment X at time T is of the form:

X = X +
J

fi(Z(t),t)dt
+
J &(Z(t),t)lJW(t) a.s., (4.3.1)

where ft(y, t) : RN X [0, T] — R and a(y, t) : RN X [0, T] -* RN are continuous in y and

t, satisfy Lipschitz and growth conditions, Dyii{y, t), D°&(y, t) exist and are continuous if

|
q |< 2 with

| D°fty,t) |
+

|
Da

y
a(y,t) |< A' (l+

| y \

Kl
), \ a |< 2,

where A'o, A'o, and A'i are positive constants. Now define the process {X{t),t € [0, T}} by

X(«) = A'(0) + / ii(Z{s), s)ds + I &{Z(s), 8)dW(s). (4.3.2)

Thus, X(T) = A' a.s. Then Ux(t), Z(t)\te [0,T}\ is the unique solution for the system

of stochastic differential (integral) equations (2.1.2) and (4.3.2), and is a vector diffusion

process (Theorem 6.2.2 and 9.3.1 of Arnold [l]). We have the following result, analogous

to Proposition 4.2.2.

Proposition 4.3.1: For any contingent claim x £ L2(P) of the form:

;*(x)+ / »c

Jo
x = E(x)+ / K(Z(t),X(t),tydW (t) a.8.,

Jo

where K(y,t) : AN+1 X [0, T) - RN satisfies E(J
T

\

K(Z(t), X(t),t)\ 2
dt) < oo, if in equi-

librium the assumptions of Section 4.2 hold, then the equilibrium price process of a claim

to x, {x(()}, can be represented as

x{t) = E\x)+ I s{Z(s),X(8),8)ds+ I k(Z(s),X(8),8)UW(s) a.s.,
Jo Jo

where f(y,0 : fl
N+1 X [0, T] — R is Borel measurable. If, in addition, ?(j/,*) and n(y,t)

satisfy Lipschitz and growth conditions, then {Z(t), X(t), x(t)} is a vector diffusion process.

Proof: The proof is similar to those for Propositions 4.2.1 and 4.2.2, so we omit it. I
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The above proposition once again signifies that, with complete markets (or when the

equilibrium allocation is Pareto efficient), it is the nature of aggregate endowments that

determines the properties of societal shadow prices, which in turn, together with the payoff

structure of consumption claims, determine the properties of equilibrium prices.

5. The characterization of optimal portfolio rules

In intertemporal portfolio theory, where price processes are taken as primitives, agents'

optimal trading strategies are typically computed using stochastic dynamic programming

(cf. Merton [32,33]). Merton [34] and Breeden [4,5] characterized agents' optimal portfolio

behavior in an equilibrium context by summing up agents' first order conditions from

their dynamic programs. Cox [9] recently proposed an alternative using a martingale

representation argument. (This method is vaguely foreshadowed in the earlier literature.

See, for example, Harrison and Kreps [20, Section 3] and Kreps [26].) We will illustrate, in

our equilibrium setting, a technique similar to that proposed by Cox. Properties of agents'

optimal trading strategies which are difficult to come by using dynamic programming will

be established. We contend, and hope herein to demonstrate, that the technique using

martingale representation is not just an alternative to the dynamic programming; it is a

better technology.

In establishing the existence of an equilibrium in our continuous-trading economy, we

picked TV + 1 long-lived securities, TV of which could be characterized by an TV X TV

nonsingular matrix process, /?, satisfying certain regularity conditions (Section 3.3). We

mentioned that any such process would do the job. For this section, to simplify things,

we analyze a particular version of the equilibrium by choosing to be the identity matrix.

(The (TV + l)-th long-lived security is still a claim to In) It then follows from Theorem

3.3.1 that the equilibrium price system is

Sj(t) = Wj(t)- I Vj(s)d8 a.s. y = l,2,...,TV,
Jo'0

SN+1 {t) = 1
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for all t 6 [0, T\. Once again the above set of long-lived securities completes markets, and

a claim to x € L2(P) has a value at time t of E (x
\ It) almost surely.

Some prelimenary definitions and remarks are in order. Let m and m be two square-

integrable F-adapted martingales under Q. They are square-integrable semimartingales

under P by the uniform absolute continuity of P with respect to Q. (See Meyer [35]

and Duffie and Huang [13].) Let (m,m) denote the unique F-adapted process of bounded

variation vanishing at time zero which satisfies

m(t)m(t)-(Tn,rh)t te [0,T\,

is an F-adapted square-integrable martingale under Q. (See Dellacherie and Meyer [12].)

The joint variation process [m,rh] is equivalent to (m,fn) when m and m are continuous

(Meyer [35]). Since F is a continuous information structure, any F-adapted martingale is

continuous (cf. the previous essay). We will therefore always use [m,m] to denote [m,rn).

It is known that the joint variation process is invariant under a substitution of an equivalent

probability measure (Memin [31]). Therefore, under P, [m,rh] is the joint variation process

for the two square-integrable semimartingales m and m.

Recall the notation from Theorem 3.3.1 e,- = x
i
— i,-. That is, e,- is the difference

between agent t's time T equilibrium allocation and endowment. We know from the same

proof that, given the price system S, agent i pays E (ei)/a units of consumption at time

zero in exchange for the portfolio #'(0), where a is the unit price of time zero consumption,

zero Arrow-Debreu allocation at that time. By following the trading strategy {0'(<),< €

(0, T]}, which is budget feasible throughout, he gets e,-(u;) units of consumption at time T

in state u in exchange for the portfolio he is holding at that time and consume z,-(w).

In the proof of Theorem 3.3.1, we demonstrated / optimal trading strategies, one for

each agent. They were chosen from a set of "admissible trading strategies" which forms a

linear space. The primary tool used is martingale representation (Proposition 3.2.1). Using

the theory of optimal control, however, sufficient conditions for the existence of optimal

trading strategies usually involve compactness of the admissible set of controls (cf. Bismut

[3], Chapter IV).
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Now define a continuous process {e,'(t)> ?t,t € [®>T]} by

c'(t) = E\ ei \Tt ) a.s.

This is the value process for agent t's time T optimal net trade. It is clear that the above

defined F-adapted process is a square-integrable martingale under Q and tht e,(T) = c,-

almost surely. The following proposition shows that the optimal trading strategies have

hedging properties.

Proposition 5.1: For any agent in the economy, say agent i, we have for all t E [0, T],

#}(«)« 4&wJ]i/<ft

(5.1)

= d\elWj] t
/dt j=l,2,...,N,

and
N

W0==«.!(0-£'}(0S/(0- (5.2)

Proof: The first line of (5.1) follows from Theorems 5.4 and 5.5 and the note after

them in Liptser and Shiryayev [29]. In fact, it defines 6j. The second line in (5.1) follows

from the fact that the joint variation process of a continuous process and a continuous

bounded variation process is zero throughout, the fact that the joint variation process is

invariant under a substitution of an equivalent probability measure (Memin [31]), and the

definition of W .

Equation (5.2) follows from the construction in Section 3.3. |

Remark: Since we have taken to be the identity matrix, (0
l
j)ji=1 = h* for all i in

the proof of Theorem 3.3.1.

Roughly speaking, we could say that the price process for the j-th (j < N) long-lived

security is locally perfectly corrected with the j-th underlying source of uncertainty, Wj,

since d[VV-, Wj]
t
/dt = 1 for all ( £ [0, 7*]. The number of shares of the j-th (j < N) security

that agent i optimally chooses to hold at time t is equal to, again roughly speaking, the

local joint variability of e,- and Wj at that time. If at time t, e, is negatively correlated

with Wj (that is, d[e it Wj]/dt < 0, which means, roughly, that if Wj goes up in the next
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instant, ceteris paribus agent i would like the value of his optimal net trade to go down)

agent i holds a negative amount of security /, and vice versa.

Since the first N long-lived securities can hedge against the underlying uncertainty

perfectly, we will henceforth call them hedging securities. The (N+l)-th long-lived security

will be termed the numeraire security. The above analysis then implies that agents hold

hedging securities purely for hedging motives and use the numeraire security to transfer

wealth across time. If we define the market portfolio to be the aggregate value of the

long-lived securities, then the value of the market portfolio is zero throughout by the fact

that long-lived securities are in zero net supply. Our results are thus largely consistent

with previous characterizations of agents' optimal trading strategies made with Markovian

stochastic dynamic programming: Agents, in equilibrium, hold the market portfolio, the

riskless asset, and portfolios most highly correlated with the variables which together with

agents' wealth, are sufficient statistics for agents' Markov dynamic program (cf. Merton

[34], Breeden [4, 5]). In our present setting, Markovian stochastic dynamic programming

may not be applicable. Neverthless, Proposition 5.1 illustrates the hedging properties of

agents' optimal trading strategies. Even if Markovian stochastic dynamic programming

can be applied in our present setting, the number of hedging portfolios (securities) held

by agents as characterized by dynamic programming may be substantially larger than TV.

This last point will soon be clarified.

In the above analysis we have characterized hedging properties of agents' optimal

trading strategies without the assumptions made in Section 4.2. We will now re-adopt

Assumptions 4.2.1, 4.2.2, and 4.2.3 and ask the following question: Can $
%
(t) be written

as a function of Z{t) and S(t)? (Equivalently, is (Z(t), S(t)) a sufficient statistic at time

t for agents' dynamic choice problems?) If this is true, what is the functional relation?

If not, what additional assumptions are required to develop such a relationship? Before

proceeding, we take note of the following fact.

Proposition 5.2: Given Assumptions 4.2.1, 4.2.2, and 4.2.3, and equals the identity

matrix, (Z,S) is a vector diffusion process.

Proof: Since the identity matrix is certainly continuous and satisfies Lipschitz and
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growth conditions, the assertion follows from the fact that rj{y, t) is continuous and satisfies

Lipschilz and growth conditions, and from Proposition 4.2.2. |

Note that agent i's optimal net trade at time T is itself a contingent claim, with a

value at time t of e,(f). If e
i
meets the conditions of Proposition 4.2.4, then (Z,e*) is a

vector diffusion process. It may then follow that $*(t) is a function of Z(t) and S(t) alone.

The following proposition formalizes this.

Proposition 5.3: Suppose there exists a C2
function 7r,- : RN — R with bounded

partial derivatives such that £,-(u/) = 7r,(Z(u;, T)) a.s.. Then

(W)H -(WM))H
(5.3)

uy(Z{t), t)l<7(Z(t), t) v(Z(t), t)6y(Z(t), t)MZ(t), t)

6(Z(t),t) 6 2(Z(t),t)

where S(y,t) satisfies (4.2.1); v{y,t) : RN X [0,T] — R is such that D\v and Dyv exist and

are continuous in y and t; t/< exists; and v(y,t) satisfies the following partial differential

equation and boundary condition:

v\\i + Vi + -tr(i/
yj

,<7<7
T

) = 0,

(5.4)

lim i'(y,t) = (c
l(L{y))-ni(y))g(y),

t\T

where c
s

is as in Proposition 4.1.2, L as in Assumption 4.2.2, and § as in (4.2.4). As for

the numeraire security,

Proof: From Proposition 4.1.2 we know that for almost every u6[), ar,(w) is a C2

function of X(w) with bounded derivatives. Assumption 4.2.2 together with the assumption

that ii(uj) is almost surely a C2 function of Z(u>, T) with bounded partial derivatives implies

that e,(cj) = x^u))— i,-(u;) is almost surely a C2 function of Z(ui,T) with bounded partial
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derivatives. Ignoring a null set we can write

ti = k{Z{T)),

where jr, : RN — R is C 2 with bounded partial derivatives. By the definition of conditional

expectation and arguments similar to those in Proposition 4.2.1, we have

t\{i)=E\ti\7t )

= E(tji\7t)

m
v{Z(t),t) . (5-5)

6(Z(t),T)

_ E(Cii) + /q v
y
(Z(s), 8)l(T(Z(8),s)dW(s)

l + Ji6y(Z(s),s)^(Z(s),s)dW(s)

where 6(y,t) satisfies (4.2.2), and v{y,t) is such that Dyv, D^is exist and are continuous in

y and t, v
t
exists, and v(y,t) satisfies (5.4). The numerator and the denominator of (5.5)

are diffusion processes. By Ito's Lemma we have:

d#- ^dw- V
^fdw^ "«*£**,)

dt _ «*l°f*,) dL (56)
0' 0* b i

Substituting (4.2.5) into (5.6) yields

where we recall that W is an F-adapted TV-dimensional Brownian motion under Q. Equivalently,

, r't »-i f
T
(
»y(Z(t),tV<?(Z(t),t) „(Z(t),t)6y(Z(t),tMZ(t),t)\„ ir,,^

It is now obvious that the row vector (6
,At)W_

1
can be chosen to be

(vy(z(t),t)wz(t),t) i>(z(t),t)6y(z(t),tMZ(t),ty

HZ(t),t) 6 2(Z(t),t)
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or (5.3).
12 The characterization of 6%+i follows from Step 3 in the proof of Theorem 3.3.1.

I

Proposition 5.3 states that if agent t's endowment is path-independent and smooth,

then under the assumptions of Section 4.2, knowledge of (Z(t),S(t)) is sufficient for his

dynamic choice problem at time t. His "indirect utility function" at t will be a function of

only Z(t), S(t), and t, with Z(t) being a sufficient statistic for the value of his net trade.

(This follows since E (e,-
|
Tt ) is a function of Z(t) and t (cf. (5.5)).)

When the t'-th agent's time T endowment is not path-independent, $*(t) will, in general,

depend on the historical realizations of Z or S even when (Z, S) forms a vector diffusion

process. That is, the fact that (Z,S) is a vector diffusion process may not render past

history irrelevant for agent i's portfolio decisions. Conversely, the fact that agents have

path-dependent optimal dynamic decision rules may not destroy the Markovian nature of

(Z,S). A simple example illustrates how this might come about. Imagine an economy with

two agents identical except that they have different time T endowments. One agent's time

T endowment, x\, equals the minimum of value attained by some state variable, say Z\,

over the interval [0, T]. The second agent has time T endowment equal to the difference

between some smooth function of Z(T) and the first agent's time T endowment. (Note that

implicit in the above two statements are the conditions: (i) The minimum value of Z\ is

positive and nonzerod, and (ii) time T aggregate endowments are strictly greater than the

minimum of Z\.) Thus the aggregate endowment at time T is path-independent, implying

{Z,S) forms a diffusion process (provided certain regularity conditions are satisfied). But,

in equilibrium, each agent must hedge against his or her time T endowment realization

which varies in ways that depend upon the entire path of Z\. Each consumes an amount

that depends on Z(T) only, but their net trades are much more complex.

In our exchange economy, aggregate endowments at time T are the essential deter-

minants of asset price dynamics, rather than properties of agents' optimal portfolio rules.

Agents in the economy may all have path-dependent decision rules, but so long as Assumptions

The / optimal trading strategies, (#')'_,, one for each agent, are unique over the measure
dt X dP (Chapter 5 of Liptser and Shiryayev [29]). But elements of a particular equivalence class

over this measure may not be indistinguishable processes.
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4.2.1, 4.2.2, and 4.2.3 hold, (Z,S) obeys the strong Markov property.

Given Proposition 4.3.1, the following is easy to prove.

Proposition 5.4: Suppose that agent t's time T endowment £,• satisfies the Ito integral:

rT rT

ii {
(Z(t),t)dt +

'0 JO
x, = i,(0)+/ iii(Z(t),t)dt+ J

&i(Z(t),t)TdW(t), a.8., (5.7)
Jo Jo

where M,(lM) : KN X [O.rj - R and a{{y,t) : RN X [0,T] -* RN are continuous in y

and t; satisfy Lipschitz and growth conditions; and D^fi^y, t) and Dy&{(y,t) exist and are

continuous for
|
a |< 2, with

|
DQ
y iit{y,t) | + |

Da
y &i(y,t) |< K (l+

| y |

Kl
). I

« l< 2,

where x,(0), A'o, and A'j are positive constants. Furthermore, suppose the process (i,(<), t G [0, T}}

is defined by

£,-(*) = i,(0) + / fi i
(Z(8),s)da+ I bi(Z(8),8)UW{s) a.s. (5.8)

Jo Jo

Then !
(f) can be written as a function of Z{t), S(t), and £,(*), and {(Z(t),S(t),Xi(t)),t E

[0,T]} is a diffusion process.

Proof: The arguments are similar to those of Propositions 4.3.1 and 5.3. |

When agent t's time T endowment is well-behaved, the path-independence of his

decision rule can be revived by augmenting (Z,S) with the process defined in (5.8). In

that case, agent t's indirect utility for net trade is a function of Z(t), S(t), and &i(t), which

are sufficient statistics for agent j's dynamic choice at that time. Using the traditional

characterization of equilibrium asset prices and optimal portfolio rules, we would have

concluded that the x^t) is important in the price formation process, and that agent i faces

N + 1 sources of uncertainty to hedge against.

In this section, we have characterized properties of agents' optimal portfolio rules in

an equilibrium setting, primarily using martingale representation techniques. Some results

have been derived in an environment where Markovian dynamic programming cannot be
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applied. Even when Markovian dynamic programming is applicable, summing up agents'

first order optimality conditions may not give the right answer. We contend, along with

Kreps [26], that the stochastic control machinery "is not really necessary in the portfolio

management problem". The martingale connection of equilibrium asset prices developed

by Harrison and Kreps [20] makes available a rich theory of martingales to financial

theorists. The martingale representation technique demonstrated in this section is not only

an alternative to stochastic control, as suggested by Cox [9], but also a more powerful one,

especially in an equilibrium setting.

6. Concluding remarks

This paper addresses three issues: First, can we prove the existence of an equilibrium

in a Merton/Breeden-like continuous-trading economy? Second, under what conditions

do the vector price process and the vector state variable process together form a vector

diffusion process? Third, is dynamic programming an appropriate tool in characterizing

agents' optimal portfolio rules in an equilibrium setting? Answers are provided for the first

two questions. With respect to the third one, it is argued that martingale representation

techniques might be more powerful. Dynamic programming has not yet been shown to yield

a consistent characterization of heterogeneous-agent equilibrium asset prices. It seems from

our work that dynamic programming is indeed an inappropriate tool for this problem.

The economy considered in this paper is a continuous time Radner economy in which

agents consume only at two time points. Questions related to the Consumption Capital

Asset Pricing Model, such as whether agents would optimally choose their consumption

rates to be Ito integrals when information is generated by diffusion process, cannot be

addressed here. When there is no intermediate consumption, the behavior of equilibrium

asset prices is totally determined by the arrival of information (cf. ourprev iom c»ay ).

When agents are allowed to consume continuously, it seems that prices would be determined

jointly by how agents choose to consume over time and by the way information is revealed.

This is ongoing research of the authors.
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