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Abstract

The effect of magnetic field on the high-frequency breakdown of gases

has been studied. The presence of energy resonance and the modification
of diffusion are shown experimentally and explained theoretically. An
application is made of both the average electron theory and the Boltzmann
theory, and the correspondence between these two theories is discussed.
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THE EFFECT OF MAGNETIC FIELD ON THE BREAKDOWN OF GASES

AT MICROWAVE FREQUENCIES

The breakdown of gases by high frequency electric fields in the
presence of a constant magnetic field has been studied by Townsend and
Gill (1) and by A. E. Brown (2). It is the purpose of this paper to carry
the analysis further, including the effect of the magnetic field on both

the random diffusion of the electrons and their directed mobility.
Two approaches are available to such kinetic problems and, as there

are advantages to each, both will be used. In Part I, the average electron
theory will be given. In this method the orbit of a free electron in the
assumed fields is computed first, and from this one computes the displace-
ment and the energy gain in the time T = t - to elapsed since a collision.

These quantities are then averaged over the phase of the a-c field at the

time to of the last collision, over the direction in space of the velocity
after the collision, and over the free time up to the next collision. The
result is the mean square displacement and energy gain of the average elec-
tron between collisions. One can then discuss an average electron from its
initial low energy until it ionizes a gas atom or diffuses out of the tube.
The condition for breakdown is that these two final achievements shall be

equally probable. This method has the advantage that each step in the
analysis has a direct physical meaning.

In Part II the Boltzmann transport equation is expanded in spherical
harmonics in space, and in Fourier series in time. There results a differ-

ential equation for the distribution function which is integrated. Most of
the properties of a discharge follow directly from a knowledge of the dis-
tribution function.

I. Average Electron Theory

Velocity between Collisions

Consider the motion of an electron between collisions under the
influence of an electric field along the x-axis, E E pexp(jat), and a
constant magnetic field B along the z-axis, The equation of motion is

then
F 8 -eE - ev x B mv. (1)

The solution of this equation is the sum of a general and a particular
integral, which correspond to the superposition of a circular helical
motion and a plane elliptical motion. For the helical motion whose axis
is along the magnetic field, the velocity is
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V1x ' (a + Jb)exp(mbC) )

vly = (b - Ja)exp(J%~ ) (2)

Vlz C

and oscillates at the cyclotron frequency ob eB/m. Because the helical

motion contains the three arbitrary constants, the energy of this motion is

constant and is given in electron-volts by

2
my m 2 + b2 + 2

Ul = g- th e 2 (3)

ln" -Ia al11nf 4Al mntitn thA v lnntv ist

eE
2x m 2 exp(3CDt)

ob

eE C
2y ' m exp(jat)

2y m 2~~~~~~~~~~~~
(4)

and oscillates at the frequency of the applied field. The kinetic energy

of this motion is uniquely determined by the magnitude and frequency of the

applied field and is given by

u2 [ 1 + 1 2 2os 2t . (5)
b ) 2 + b @

The total energy u 2 (V1 + v 2)J will contain cross-product terms ul2

which are important but rather lengthy to write down. Their average value

will be given later. The three constants, a, b, and c, of the helical

motion are determined by the velocity v o v l(T 0) + 2 (t to ) immedi-

ately after a collision. As the time T has been used in Eqs. 2 one has

simply
\

eEp jI
a VOX - m ! exp(JCto )

eE o
b V _ xp(

c-v_OZ /

. (6)
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It is noted that the elliptical motion exhibits a resonance at frequen-

cies near the cyclotron frequency. Exactly at this frequency Eqs, no

longer hold and the solution corresponds to a spiral, but as collisions
interrupt the motion it will not be necessary to use this singular solution.

Diffusion

From the velocities one obtains the displacements xl, y, z, x 2, Y2
by integration. From these one can calculate the mean displacements xl,
etc. but these all vanish on averaging over orientations of vo, which is
assumed isotropic, and over collision times to. In the average, an electron
stays where it is in a high-frequency discharge.

We are interested in the mean square displacements x1, Yl, z1 because

these lead (3) to the diffusion coefficient. One finds that the cross-
product terms such as xlyi all vanish when averaged.

2 2 a2 2
x 1 + Y1

= 2 2( (1- cos bT)
b

z2 c 2 T2 . (7)

Averaging over orientations and times to, one finds that

a = b 3I ; au . . (8)

The cross terms between the helical and elliptical motions also vanish but

terms x2 and 2 do not vanish. However, these latter terms represent the

mean square displacements due to mobility in the applied a-c field and are
not wanted in calculating the diffusion.

The average of a quantity X over the free times Trc - /uc between
collisions is, by definition

-. X exp(-vT)udT * (9)

0

Applying this to the quantities in Eqs. 7 and defining the diffusion coef-
ficients in terms of the mean square displacements, we obtain

'2 2

Dyy xx - 2 3 +c

2 (10)

Dzz = 0
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This definition of the diffusion tensor is of necessity symmetric. We

shall see later that there are skew-symmetric terms which the random-walk
definition cannot give. Diffusion along the z-axis is not altered by the

magnetic field but in the plane at right angles to the field it is reduced
2! 2 2

in the ratio uc/(wb + ). For a given collision frequency, the diffusion

coefficient is proportional to the energy of the electrons in their helical
motion.

Energy Gain

The mean energy gain between. collisions is best obtained by consider-

ing the power input to an electron P = -eE v, As the velocity 2x is

out of phase with the field, the corresponding power P2 into this motion is
zero in the average and only the power P1 need be considered where

P1 - -eEp Cos ot(a cos (ObT - b sin %t) (11)

and the constants a and b are given by Eqs. 6. Averaging over orientations

of the initial velocity the terms in vo drop out. Averaging over to also
we obtain

e2E2 Lsin(m + b)t sin( - ]b)T
-P - - - + %-) (12)

4m co + co b CD - aS b

from which the average energy is obtained by integrating with respect to T

from 0 to .

eE221 - cos(a + b)T 1 - cos(@- -0b)T

U12 Tip ( + %+ ()2 + (C b) (13)

Averaging this quantity over collision times gives the mean energy

gain between collisions

e L13+ P + ( _ 2 + . (14)
U + = () + ) C (CU - Wb) + U ' I

This is a fundamental quantity in this theory. At low pressures (uc 0)
we see that it approaches twice the mean energy u2 of the elliptical motion
of an electron, and in no case does it exceed this motion. At higher
pressures, such that there are many collisions per oscillation, the energy

u2 loses its meaning and the collision energy becomes eE 2 2mv2 . One can
lm 
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use sq. 14 to aerline an errective
field Be which is the root-mean-square

field at high pressure. This concept
is useful when the collision frequency
o 1is independent of velocity since
this single function takes into account
the effects of frequency and magnetic
field on the energy.

At low pressures the effective

field has a maximum at resonance with
the cyclotron frequency as shown in
Fig. 1.

Fig. 1.
The effective field E as a function
nob +.ha fwantA·n~v ahhuerr te ^n9nnr

JW/Cb in the presence of a magnetic field.

Breakdown

The electrons produced by ionization have initially very little energy,

but this increases by steps of uc until the energy reaches a value ui, at
which ionization occurs. This is above the ionization potential V by an
amount which we shall neglect. Excitations are disregarded in the follow-

ing simple theory. The number N of free times to ionize is N - ui/uc when

1t is constant.

The electrons thus double their number by ionization every N collisions
and unless some equally effective process exists which removes electrons
their number will increase exponentially. In most cases diffusion to the

walls of the discharge tube is the balancing process. In absence of the

magnetic field, the random-walk theory (4) gives the mean square distance

A = N /3 reached in N free paths of mean square length , so that if the
average electron reaches the wall in a distance A the diffusion process

will Just balance ionization. This is the condition for breakdown and we
can write it

Uc (15)

ui 3A 3A c

where A is now a length characteristic of the discharge tube and known as
the diffusion length (5).

If there is a magnetic field u will be altered according to Eq. 14.

-5-
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At the same time the random-walk theory must be altered to take into
account the curved paths between collisions. This may be done by appropri-

ately decreasing or increasing A.
We shall adopt the latter and denote

the new length by A. Its value
will be given later.

When the mean free path is

much smaller than A, the inter-
collision energy gain u is corre-
spondingly smaller than the ioniza-
tion potential. From Eq. 15 we see
that breakdown should occur at the

same effective field if the ratio

of the mean free path to the effec-
tive diffusion length is the same,
that is, the effective field for

D0 hbAakdnwn Is function of nA

B,MAGNETIC FIELD IN GAUSS only.

Fig. 2. Combining Eqs. 14 and 15 we
Breakdown of helium in transverse get
electric and magnetic fields; 2 2 uu
diameter 7.32 cm, height - 4.60 cm. e (16)

e

Experimental data for breakdown in helium containing small admixtures
of mercury vapor are shown in Fig. 2. The result of using the effective
field with - 2.37 x 109p as given by Brode's (6) collision probability

measurements in place of the actual
loo _ 1 l 00| 30mml - field but without taking the vari-

p- =30mm

o _p - -_mation of Ae into account is shown
U _ p)18mm - in Fig. 3 for the same data. This

O _ shows that the resonance effect of
Z p8mm the magnetic field and the high

LIW P4mfrequency are removed by using the
>:-_ lo P=mm - effective field.

p-mm _In order to test formula 10 for
,. - - the diffusion coefficient, break-
@ down was studied in a flat cylin-

drical cavity whose length was

Fig. 3.
Representation of experimental

0 500 1000 1500 2000 2500 data of Fig. 2 in terms of the
B, MAGNETIC FIELD IN GAUSS effective field.
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Fig. 4.
Breakdown of helium in trans-
verse electric and magnetic
fields; diameter = 7.32 cm,
height 0.318 cm.

B, MAGNETIC FIELD IN GAUSS

very short compared to the radius. With the magnetic field placed trans-
verse to the axis most of the diffusion has to take place perpendicular to
the magnetic field and hence will show the full reduction. By Eq. 10 the
mean square of the distance travelled by an electron is proportional to
the diffusion coefficient D, and therefore the effective diffusion length

Ae appropriate to infinite parallel plates is

E

z
0

w

w

0w

w
bT

B, MAGNETIC FIELD IN GAUSS

Fig. 5.
Representation of experimental data
of Fig. 4 in terms of the effective
field.

2 + 2
Ae 2

c
(17)

The effect of a magnetic field is to

make the dimensions of the cavity

at right angles to the field appear

larger to an electron. By Eq. 16
this should reduce the effective
field for breakdown in the same pro-

portion. Figure 4 shows a set of

(o breakdown curves for helium in a
cavity 2 7/8 inches in diameter and

1/8 inch high. In Fig. 5 the effec-
tive field for the same data is
plotted. In this figure the reso-
nance peak has been removed as in

-7-
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Fig. 3, but now the curves are not horizontal because the magnetic field
is increasing the effective cavity size.

However, Eq. 16 does not correspond with experiment except when used
for comparative purposes. Equation 14 and the random-walk theory give the
number of free times for the average electron to ionize and reach the wall,

respectively. But in a discharge it is the "faster-than-average" electron
which ionizes and the "more-mobile-than-average" electron which leaves the
tube and these are not the same electron. The mean-free-path method must

therefore fail in predicting quantitative breakdown, and the failure should

be worst when there are many collisions and therefore the greatest devia-
tions from the mean.

II. Boltzmann Theory

Spherical and Fourier Expansions

The Boltzmann transport equation is given by

C + V . (vFP) - Vv m v m (18)

where C is the production rate due to collisions per unit volume in phase

space, V and Vv are gradients in configuration and velocity space, respec-
tively, and F is the distribution function. If F and C are expanded in
spherical harmonics and substituted into the transport equation, we obtain
two equations by equating the zero and first order terms

a F O!+4 eB a(v2 1)
cO -+5 V F 1 -e E av3mv

(19)
+ aF + e+F + 

+ 1 e - e B X F1Cl MW- + vVF0 - E - B x F

We consider separately the elastic and inelastic collisions. Let Cel
represent the elastic collision term. Morse, Allis and Lamar (7) have com-
puted the zero and first order components of this term:

+CO el +X M9 YaVT(o

Cl,el F1

where M is the mass of the gas molecule and the mean free path of the
electron.
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The inelastic term Cin shows no angular dependence and hence Clin 0

and only Cin is retained. Equation 19 then becomes

[ +m1F aF0 e a(v 2 E' F)
[o] CO,in + av( o3Fo) at + V F1 av

(21)

+ aF e + aF 0 +
[1] 0 F 1 + Y+ Vo m a m B x F 1 E o m av m

If the electric field is given by E = Epexp(Jcat), the Fourier expan-

sions become 1 + ep t)
Fl - F 1 + F 1 exp ( ja0t)

and, with due caution in multiplying complex quantities

E . F1 + Ep . F exp(jct)

where (l)r is the real part of F. These are now substituted into Eq. 21

and the Fourier components equated term by term. Only the constant term

of the first equation is needed but the d-c and a-c terms of the second

must be kept. In the steady state aF/at - 0.

oo] Coin + - cv3o 3 F1 + -- a -r Ep * (F)r o
v 3v

e + O [1,0] 1cF + vVF0 -- - B x 0 (22)

,1 ( 1 m Ep a x F 1

These are the necessary equations for handling breakdown problems, which

represent steady-state conditions for the electrons. The above equations

are applicable for any orientation of E and B. We shall only consider the

cases when they are perpendicular or parallel to each other.

Diffusion Tensor

Integrating the 0,0] equations over velocity space in spherical

coordinates, the second and fourth terms vanish at the limits. The first
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term gives the total production rate of electrons, uin, due to ionization.
This is because excitations merely withdraw fast electrons to replace them
by slow ones, whereas ionizations add an extra electron. The third term
gives the divergence of a flow vector r

r |- Fvd

0
so that

nll V r 

(23)

(24)

Solving Eq. (1,0] for F1 we find

2 -* 1)+ %%a . + ,,0xv c b0 v 0 +Cwb *+%CbXVF0F =--2
C 0 + 0U~2+~

(25)

and this must be substituted in Eq. 23 and, assuming that F0 can be written
as a product n(x,y,z)fo(v), we find that r is proportional to Vn but not
necessarily in the same direction. Accordingly it is possible to define a
diffusion coefficient but it must be a tensor.

(1 + b2 )

(D1J) J 2- (bb + bz)
3( + b)b

(bxbz - by)

(bxby - bz)

(1 + b2)

(bybz + bx)

(bxbz + by)

(bybz - bx) 4rv2fodv (26)

(1 + b2 )

ri _ 7 j D an ; i,j - x,y,z

where b ( and b b + b + b This expression reduces to thewhere bx - (b)xc. and b b + b2 + b2. This expression reduces to the
ordinary coefficient D v2 /3u with no magnetic field when b = 0. If the
magnetic field is taken along the z-axis, it reduces to

o 71 -b °\
i (1V +b2b ))1 + 4rv2f0dvij = 1 0L O 0do 3(l +. b2) 0 01 + b2

(27)
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which is equivalent to Eq. 10 except that the present tensor has skew-
symmetric terms which were not obtained by the random-walk definition.

Substituting in 24 we obtain the diffusion equation

a 2n a 2n a 2n
xx 7 + Dyy 2 + D + - 0 (28)ax a az

which determines the spatial distribution of the electrons. One can use
the normal diffusion coefficient D provided lengths are expanded at right
angles to the magnetic field n the ratio /1 + b

The solution of this equation depends on the boundary conditions.
One must define an effective diffusion length n for the whole cavity which
takes into account these expansions

+ ( T + )1. (29)
2 2 

( co b

The condition for the existence of a solution of Eq. 28 satisfying the
boundary conditions is

2
D = A1i (30)

where D is the ordinary diffusion coefficient. The effect of the magnetic
field is equivalent to expanding the cavity in the ratio 2 + b/uc in all
directions perpendicular to the magnetic field.

Differential Equation for 0

The distribution function F is obtained by eliminating F1 and F
from Eqs. 22. One obtains in this way

2[ e2E2 a?0

n 0 <v2 0a v 17a cv3F + v2 (31)3','cA; v + 3---- '~"

where the effective field Ee is defined by Eq. 14 when E is at right angles

to B. Should E make any other angle with B, the component at right angles
is reduced by Eq. 14, and the square of this added to the mean square along
B. Introducing the energy variable u = mv2/2e and the inelastic ratio h
h --Co,in/ cFo, Eq. 31 becomes

1 c a 2m 2eE 3/2 au 2e (°
V-UUc 5U3/2F + 3'--c -au h+ 0 (3) )c~~c 0 3mu e/
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The four terms of this equation are readily interpreted: the first,

with 2m/M, represents energy lost to recoil of the atoms; the second, with

E2 is the energy gain due to the field; h gives the loss of electrons
e' 2
through inelastic collisions; and the last term, in 1/Ae, the loss through

diffusion to the walls. It is noted that the magnetic field and the fre-

quency are entirely contained in the effective quantities E e and Ae, The

pressure enters only in Dc and indirectly through into E e and A . The
c c e e

pressure cancels out of the first and third terms, and the only experimen-

tal parameters are thus Ep in the second term and pAe in the fourth. The

other quantities are universal constants such as e/m and m/M, and atomic

constants such as the excitation and ionization cross sections included in

h. It follows that all the breakdown data should plot on a single curve

when E Ae is plotted against Ee/p. This exact law is, however, of very

limited applicability. The effective quantities Ee and Ae depend on c,

which is a function of the electron's energy. It is therefore in general

Impossible to make the effective values the same at all energies as the

law requires. For helium and hydrogen the collision frequency oc is very

nearly constant so the effective values are significant as shown in Fig. 6.

Fig. 6.
Theoretical curve for
the effective breakdown
in helium.

VOLTSEe/P ( cm-mm )

Because inelastic impacts set in discontinuously at the excitation

potential ux, it is necessary to solve Eq. 32 in two parts: below ux,

h = 0 and above ux recoil and diffusion may generally be neglected. The

solution. of this equation in the completely analogous nonmagnetic case has

been carried out by MacDonald and Brown (8).

The Boltzmann theory can be compared with the simple average-electron

theory in the case of helium containing traces of mercury so that all

excitations result in ionizations. We must then neglect the recoil and

excitation terms. The solution of Eq. 32 is then expressible in terms of

Bessel functions of order + 1/4. etting the coefficients so that the

function vanishes at ui

-12-
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F0 - 1 Jl/4()J-/4(w) - J-/4()Jl/4(w)

where w = ju/AeEe

The breakdown condition then reduces to

(1/4)! Jl/4(Wi) - wi /

or

Ui 2.273 AeEe 

This corresponds to using for the mean energy in Eq. 16

i u i /3.44.

III. Nonuniform Fields

To study the effect of the magnetic field on diffusion alone the elec-

tric and magnetic fields are oriented in the same direction, and in order

to reduce diffusion along the magnetic field it is necessary to perform the

experiment in a cavity whose height is greater than the radius. In such a

cavity the electric field may no longer be considered uniform and a correc-

tion to the computations must be made in a manner which has been shown by

Fig. 7.
Breakdown of helium in
parallel electric and
magnetic fields in a
cylindrical cavity;
diameter = 7.32 cm,
height 4.60 cm. The
solid curves are theo-
retical and the points
are experimental.

UO 500 1000 1500 2000 2500 3000 3500 4000

B,MAGNETIC FIELD IN GAUSS
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Herlin and Brown (9). In the presence of the longitudinal magnetic field
the equivalent diffusion length of the cylinder, from Eq. 29 is

02
1 (2.405)2 + ( )222

Using this and the nonuniform field correction to the Boltzmann theory one
obtains the agreement with experiment shown in Fig. 7. This result con-
firms the predicted effect of the magnetic field upon diffusion.

The breakdown measurements shown in Fig. 4 were made in a flat cavity
with the magnetic field transverse to the axis. The effect of the latter
is to require the solution of the diffusion equation in an elliptical
cylinder whose diffusion length is then given by

1
[ E(L) + 2(405, + 2 240)2

Using this and the nonuniform field correction gives the theoretical curves
shown in Fig. 8.

Fig. 8.
Breakdown of helium at 1-mm
pressure in a cylindrical
cavity; diameter 7.60 cm,
height 0.318 cm. Solid
line is obtained from the
Boltzmann theory and points
are experimental.

B,MAGNETIC FIELD IN GAUSS

IV. Experimental Apparatus and Procedure

The block diagram of the experimental equipment is shown in Fig. 9.
The source of microwave energy is a 10-cm tunable c-w magnetron whose fre-
quency is monitored by a calibrated wavemeter. The power fed into the
cavity is varied by a balanced power divider and measured through a

-14-
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directional coupler by a bolometer, consisting of a thermistor and a bal-

anced power bridge. The slotted section and detector are used to determine

the electrical constants of the cavity (10). The cavity, which is vacuum-

tight, is loop-coupled to the transmission line on either side. The out-

put loop feeds into a variable calibrated attenuator, a crystal detector

and a sensitive microammeter, which are adjusted to measure the power fed

into the cavity at resonance. The magnetic field across the cavity is

applied by an adjustable electromagnet. The magnetic field for a given

gap size is calibrated as a function of the current through the coils by

the use of a snatch coil and a ballistic galvanometer or by a compensated

torque type fluxmeter. The pressure in the cavity during the experiment is

measured by a McLeod gauge.

MICROAMMETER

(TAL
DETECTOR

Fig. 9.
Block diagram of the apparatus.

The breakdown experiment was performed at fixed values of pressure

while the current through the coils and hence the magnetic field was set

at different values. The power fed into the cavity was increased from

nearly zero until the needle on the microAmmeter rose to a maximum and

then suddenly dropped. This occurred at breakdown since the sudden increase

in electron density detuned the cavity and produced a mismatch in the line.

The setting of the calibrated attenuator and the maximum reading of the

microammeter measured the power fed into the cavity. The breakdown field

was then calculated from the measured constants and geometrical dimensions

of the cavity.
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V. Conclusions

The two principal effects of a magnetic field on high-frequency break-

down of gases, the energy resonance with transverse fields and the reduc-

tion of diffusion, have been demonstrated experimentally and explained
theoretically. The diffusion effect was shown to exist by itself when the

electric and magnetic fields were parallel. The resonance phenomenon could

not be separated because of the presence of diffusion at all times. Never-
theless this effect was brought into major prominence in breakdown by

reducing the diffusion loss in a large cavity.

The development of the diffusion tensor in the presence of a magnetic

field resulted in a more general diffusion equation. This led to the con-

cept of the effective diffusion length, which together with the effective

field, extended here to include the magnetic field, served to generalize

the theory. The correspondence of the Boltzmann theory and the average

electron theory was shown.

References

1. J. S. Townsend, E. W. B. Gill: Phil. Mag. 26, 290 (1938).

2. A. E. Brown: Phil. Mag. 29, 302 (1940).

3. E. H. Kennard: Kinetic Theory of Gases, p. 286 (McGraw-Hill, New York,
1942).

4. E. H. Kennard: Kinetic Theory of Gases, p. 271 (McGraw-Hill, New York,
1942).

5. M. A. Herlin, S. C. Brown: Phys. Rev. 74, 291 (1948).

6. R. B. Brode: Rev. Mod. Phys. , 243 (1933).

7. P. M. Morse, W. P. Allis, E. S. Lamar: Phys. Rev. 48, 412 (1935).

8. A. D. MacDonald, . C. Brown: Phys. Rev. 75, 411 (1949).

9. M. A. Herlin, S. C. Brown: Phys. Rev. 74, 1650 (1948).

10. S. C. Brown et al: Methods of measuring the properties of ionized
gases at microwave frequencies, Technical Report No. 66, Research
Laboratory of Electronics, M.I.T. (1948).

-16-

!



I


