

DEW-*
HD28
.M414
no.

<?3

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

Quality Data Objects

December 1992 WP #3517-93

CISL WP# 92-06

Richard Y. Wang
M. P. Reddy

Sloan School of Management, MIT

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

Quality Data Objects

December 1992 WP #3517-93

CISL WP# 92-06

Richard Y. Wang
M. P. Reddy

Sloan School of Management, MIT

* see page bottom for complete address

Richard Y. Wang E53-322

M. Prabhakara Reddy

Sloan School of Management
Massachusetts Institute of Technology

Cambridge, MA 01239

- 1
3 1993

Quality Data Objects

Richard Y. Wang
M. Prabhakara Reddy

December 1992

CISL-92-06

Composite Information Systems Laboratory

E53-320. Sloan School of Management
Massachusetts Institute of Technology

Cambridge. Mass. 02139
ATTN: Prof. Richard Wang

(617)2530442

Bitnet Address: rwang@eagle.mit.edu

1992 Richard Y. Wang and M. Prabhakara Reddy

Acknowledgments Work reported herein has been supported, in part, by MIT's Total Data
Quality Management (TDQM) project. MIT's Productivity From Information Technology
(PROFIT) Consortium. MIT's International Financial Service Research Center (IFSRC) and MIT's

Center for Information Systems Research (CISR). In particular, the authors wish to thank Prof.

Stuart Madnick and Dr. Amar Gupta for their support to this research.

Quality Data Objects

ABSTRACT Needs for a quality perspective in the management of data

resources are becoming increasingly critical. This paper investigates how to

associate data with quality information that can help users make judgments of the

quality of data. Specifically, we propose the concept of quality data object and

investigate its structure and behavior. The structure of the quality data object

includes a description of the datum object, its corresponding quality description

object, and a mechanism to associate the datum object with its quality description

object. The behavior of the quality object includes a set of methods to measure

quality dimensions (such as timeliness, completeness, credibility). In addition, we

have developed a quality data object algebra that includes quality comparison

methods and an algebra that extends the relational algebra to the quality data object

domain. It allows for a systematic construction of retrieval methods for quality data

objects.

The concept of quality data object presented in the paper is a first step toward

the design and manufacture of data products. We envision that the quality data

object proposed in this paper can be used as basic building blocks for the design,

manufacture, and delivery of quality data products. It will enable users to measure

the quality of data products according to their chosen criteria; it will also enable

users to buy data products based on their quality requirements. In this manner, we

hope that the concepts of quality data objects and quality data products will help

improve data quality and data reusability.

1. Introduction 1

1.1. Related work 2

1.2. Research Focus 3

2. The quality data object 5

2.1. Structure of the quality data object 5

2.1.1. Semantics of the is-a-quality-of link 5

2.1.1.1. Difference between is-a and is-a-quality-of 6

2.1.1.2. Difference between is-a-part-of and is-a-quality-of 6

2.1.2. The quality data object schema 7

2.2. Behavior of the quality data object 8

2.2.1. Currency 9

2.2.2. Volatility 10

2.2.3. Timeliness 11

2.2.4. Accuracy 11

2.2.5. Completeness 12

2.2.6. Credibility 12

3. A quality data object algebra 13

3.1. Quality comparison methods in a quality-description object 14

3.1.1. i_deep_equal _method 15

3.1.2. q_equal _method 15

3.2. Quality algebraic methods 16

3.2.1. Selection Method 16

3.2.2. Union Method 16

3.2.3. Difference Method 17

3.2.4. Projection Method 17

3.2.5. Cartesian Product Method 18

4. Concluding remarks 19

5. Appendix A 20

6. References 22

Quality Data Objects

1. Introduction

The quality of data in a database implemented by a conventional data base management

systems (DBMS) has been treated, primarily, through functionalities such as recovery, concurrency,

integrity, and security control (e.g., Bernstein & Goodman, 1981; Bernstein, et al., 1981; Codd, 1970;

Codd, 1982; Codd, 1986; Date, 1981; Date, 1990; Denning & Denning, 1979; Fernandez, Summers, &

Wood, 1981; Hoffman, 1977; Hsiao, Kerr, & Madnick, 1978; Korth & Silberschatz, 1986; Martin, 1973;

Qian & Wiederhold, 1986; Ullman, 1982). Recovery restores the database to a state that is known to be

correct after some failure has rendered the current state incorrect. Concurrency control ensures that the

consistency of data is preserved when multiple users update the database concurrently. Integrity aims

at preventing invalid updates against the database from happening. Invalid updates may be caused by

errors in data entry, by mistakes on the part of the operator or the application programmer, by system

failures, even by deliberate falsification; the last of these, however, is not so much a matter of

integrity as it is of security; protecting the database against illegal operations, as opposed to those

that are merely invalid, is the responsibility of the security subsystem (Date, 1985).

These functionalities are necessary but not sufficient to ensure data quality in the DBMS from

the end-user's perspective (Johnson, Leitch, & Neter, 1981; Laudon, 1986; Liepins & Uppuluri, 1990;

Liepins, 1989; Wang & Kon, 1992; Zarkovich, 1966). Integrity constraints and validity checks, for

example, are essential to ensuring data quality in a database, but they are often just the beginning of a

continuing data-integrity program that will ultimately address the real needs of users for data that

can be used as an input to the user's decision making process (Maxwell, 1989). In general, data in the

DBMS may be used by a range of different organizational functions with different perceptions of what

constitutes quality data in terms of dimensions such as accuracy, completeness, consistency, and

timeliness (Ballou & Pazer, 1987; Huh, et al., 1990; Redman, 1992).

Consider the following example scenarios:

• A person's name is carried as J. F. Rockart in once place, John F. Rockart in another, and Jack

Rockart in yet another. All are technically "true" and would pass the integrity constraints

provided by the conventional DBMS, but which one should be considered as accurate and stored

in the database consistently?

• A client workstation runs business applications using data downloaded from a database server

at the end of each day. Whereas, data in the server is updated instantly with changes and new

information through on-line transaction processing. Thus, data in the client workstation is

never current from the server and some user's viewpoint.

• Earning estimates for companies are stored in a database but who made these estimates, when,

and how are not, making it difficult to judge the credibility of the data by those who are not

familiar with the context.

In these and other similar situations, the quality of data managed by the DBMS is not so much

a matter of data validity but rather of its usag e. It would be useful to associate data with quality

information that can help users make judgments of the quality of data for the specific application at

hand. The research question here is how to structure and manage data in such a way that users can be

equipped with the capabilities to measure the quality of data they need and to retrieve the data that

conforms with their quality requirements.

LL Related work

An attribute-based research that facilitates cell-level tagging of data has been proposed to

enable users to retrieve data that conforms with their quality requirements (Wang, Kon, & Madnick,

1993; Wang, Reddy, & Kon, 1992; Wang & Madnick, 1990). Included in this attribute-based research

effort are a methodology for analyzing data quality requirements that extends the ER model proposed

by Chen (Chen, 1976; Chen, 1984; Chen, 1991; Chen & Li, 1987), an attribute-based model encompassing

a model description, a set of quality integrity rules, and a quality indicator algebra that extends the

relational model proposed by Codd (Codd, 1970; Codd, 1979; Codd, 1982; Codd, 1986). The quality

indicator algebra can be used to process SQL queries that are augmented with quality indicator

requirements. From these quality indicators, the user can make a better judgment of the quality of data.

The problem with this research is twofold: (1) In order to associate the application data with its

corresponding quality description through the join operation in the model, an artificial link needs to be

created through the concept of quality key. (2) In order to be able to judge the quality of data, it is

necessary to compute data quality dimension values and other procedure-oriented quality measures.

Although these could be accomplished using the relational approach, it is not as natural compared to

that of the object-oriented approach. Moreover, this research did not address issues involved in

measuring data quality dimension values.

In other related research efforts that aim at annotating data, self-describing data files and

meta-data management have been proposed at the schema level (McCarthy, 1982; McCarthy, 1984;

McCarthy, 1988); however, no specific solution has been offered to manipulate such quality

information at the instance level. In (Sciore, 1991), annotations are used to support the temporal

dimension of data in an object-oriented environment. However, data quality is a multi-dimensional

concept. Therefore, a more general treatment is necessary to address the data quality issue. More

importantly, no algebra or calculus-based language is provided to support the manipulation of

annotations associated with the data. Still other research efforts (Codd, 1979; Siegel & Madnick,

1991) have dealt with data tagging without either an algebra or a set of quality measures for data

quality dimensions.

Li Research Focus

In this paper, we advocate that data quality must be modeled as an integral part of a data

object rather than simply as a set of functionalities of the DBMS. More specifically, we propose the

modeling construct of quality data object in which each datum is associated with appropriate data and

procedures used to indicate the quality of the data object. We present a set of quality measure methods

that compute quality dimension values (such as accuracy, consistency, completeness, and timeliness),

and a set of quality algebraic methods that supports the manipulation of quality data objects.

Many concepts in the object-oriented paradigm can be applied to support the quality data object

(Banerjee, 1987; Snyder, 1986). They are fundamental in our decision to model the quality data object

via the object-oriented approach. The reader is referred to the Appendix for a detailed discussion of

how constructs in the object-oriented paradigm such as inheritance, method, polymorphism, active

value, and message can be applied to support the quality data object.

In this research, each datum is modeled as an object called a datum object. As shown in Figure 1,

the quality information corresponding to the datum is called a quality description object . The is-a-

quality-of link associates a quality description object with its datum object. The composite object

constructed from a datum object and its associated quality description object is called a quality data

object . Instance variables of a quality description object include descriptive data (qualityjndicatorj, i=

1, ..., n) and procedural data (quality_procedurej, j= 1, ..., m).

Figure 1: A Quality Data Object

A quality data object called Earnings-Estimate is exemplified in Figure 2. Note that Eamings-

Estimate-Qual and Source-1-Qual are quality description objects for Earnings-Estimate and Source-1

respectively. Note also that Source-1, an attribute of the quality description object Eamings-Estimate-

Qual, is itself a quality data object.

Earnings- Eatlmats

is-a-quality-of

Figure 2 The Quality Data Object Earnings-Estimate

Section 2 presents the quality data object. Section 3 presents a quality data object algebra that

allows for the construction of methods which conform with the user's quality requirements. Conclusions

and future directions are presented in Section 4.

2. The quality data object

In this section, the quality data object is presented in terms of its structure and behavior.

Included in the structure of the quality data object are a definition of the components of a quality data

object, the semantics of is-a-quality-of, and the quality data object schema. Included in the behavior of

the quality data object are a discussion of dimensions of data quality and quality measure methods and

messages.

2.1. Structure of the quality data object

Following the object structure defined in the object-oriented paradigm (Banerjee, 1987;

Khoshafian & Copeland, 1990; Zdonik & Maier, 1990), we define two object types for the quality data

object.

Let I denote the set of system generated identifiers. Let B denote the set of base atomic types

such as integer, real, string. Then

• An object is defined as a primitive object provided that its value belongs to B. The value of a

primitive object can not be further subdivided. In the context of the quality data object, every

datum object is a primitive object.

• An object is defined as a tuple object if its value is of the form <ai:ii, a2:i2, ..., an :in> where ai's

are distinct attribute names and i
4
's are distinct identifiers from I. In the context of the quality

data object, every quality description object is a tuple object.

As shown in Figure 1, the quality description object is associated with its datum object through

a is-a-quality-of link. The composite object resulting from this association is defined as a quality data

object which is a unit of manipulation. Thus every quality data object is a composite object. This

composite property can be nested in an arbitrary number of levels.

2.1.1. Semantics of the is-a-quality-of link

Note that there is no specific mechanism in the object-oriented paradigm to associate the

quality description object with the primitive datum object. More specifically, neither the

generalization (is-a) nor the aggregation (is-a-part-oft construct can be used to capture the semantics of

the is-a-quality-of link. The is-a link is used to associate a subclass object with its super class object;

and the is-a-part-of link is used to associate an object with its assembly object (Banerjee, 1987).

2.1.1.1. Difference between is-a and is-a-quality-of

The is-a-quality-of link is conceptually different from is-a because the relation between a

datum object and its quality description object is not a super-class vs. subclass relation. It is

semantically different from is-a because the construct inheritance that is associated with is-a is not

applicable to the is-a-quality-of link.

2.1.1.2. Difference between is-a-part-of and i$-a-quality-of

The conceptual difference between is-a-quality-of and is-a-part-of is that is-a-part-of

represents the relation between the objects having part and assembly relation; whereas is-a-quality-of

represents the association between a datum object and its quality description object.

To present the semantic difference between is-a-quality-of and is-a-part-of, we first discuss the

semantics of is-a-part-of.

If there is a is-a-part-of link from object O, to object Oj, then O, is said to have composite

reference from Oj. The object Oj is called the parent object of O, and the object Oj is called the component

object of O,. Based on whether an object has a is-a-part-of link with only one object or more than one

object, and whether the existence of an object depends on the existence of its parent object, four types of

composite references have been formalized (Kim, Bertino, & Garza, 1989): (1) dependent exclusive

composite reference, (2) independent exclusive composite reference, (3) dependent shared composite

reference, and (4) independent shared composite reference.

The semantic difference between is-a-part-of and is-a-quality-of comes from the fact that is-a-

quality-of has only two composite references instead of four in the case of is-a-part-of. We refer to

them as dependent exclusive quality reference and dependent shared quality reference .

Specifically, let Od denote a datum object and O
q
a quality description object of Od . Let Q<O

q
)

denote the set of objects to whom O
q
has a is-a-quality-of link. Let del(O

q
) and del(Od) denote deletion

ofO
q
and Od respectively. Then,

• A dependent exclusive quality reference from Od to O
q
means that Q(O

q
) = {Od }, and del(Od)

implies del(O
q
).

• A dependent shared quality reference from Od to O
q
means that Q(Oq) 2 (O d). If Q(O

q
) = (Od)

then del(Od) implies del(O
q

). If Q(O
q

) D (Od) then del(Od) implies {Od } is deleted from Q(O
q

).

In dependent quality references the quality description object is treated as a weak object and its

existence depends on the existence of its corresponding datum object. Dependent exclusive quality

references increases storage overhead. Whereas, dependent shared quality references are beneficial

from the storage view point but causes problems during deletion and update.

2.1.2. The quality data object schema

Quality data objects are used as building blocks to construct a quality data object schema. For

exposition purposes, we first illustrate, in Figure 3, a composite object company in the object-oriented

paradigm, which has instance variables Company-Name, CEO-Name, and Earnings-Estimate (each of

the instance variables is a primitive object, hence the composite object company).

Company

Company-Name^ (CEO-Nam*} (^Earnings-Estimate

< >

Figure 3: The Object Company

Let us now suppose that out of these three primitive objects, the CEO-Name and Earnings-

Estimate are quality sensitive, and are converted into quality data objects as shown in Figure 4 below.

is-a-quality-of

L

Collection-ProcedureD>
Figure 4: The Quality Data Object Q-Company

The quality data object Q-company is encapsulated as a unit of manipulation. That is, other

objects communicate with it through pre-defined methods only. It behaves in the same way as an object

in the object-oriented paradigm. In addition, it has the capabilities to measure the quality of data and

to retrieve the data that conforms with users' quality requirements, as will be discussed in Section 2.2.

Using quality data objects as basic building blocks, more complex objects can be constructed

through other object-oriented constructs such as aggregation (is-a-part-of) and generalization (is-a). In

Figure 5, for example, the Directed Acyclic Graph (DAG) constructed with the quality data objects Q-

Company, Q-IT-Department, Q-Finance-Department, and Q-High-Tech-Company forms a quality

data object schema.

is-a-part-of

Q-fT-Department

Q-Company

is-a-part-of

Q-Finance-Department

is-a

Q-Hgh-Tech-Company

Figure 5: Quality of Object Schema

We have presented the quality data object in terms of its structure. Through the is-a-quality-of

construct that is unique to the quality data object and the other constructs in the object-oriented

paradigm, it is now possible to construct a quality data object schema. The next section presents the

behavior of the quality data object that will addresses the issues of how to measure the quality of

data.

2,2. Behavior of the quality data object

The multi-dimensional and hierarchical characteristics of data quality were investigated

(Wang, Reddy, & Kon, 1992; Wang & Strong, 1992). We illustrate these two characteristics here by

considering how a user may make decisions based on certain data retrieved from a database. First the

user must be able to get to the data, which means that the data must be accessible (the user has the

means and privilege to get the data). Second, the user must be able to interpret the data (the user

understands the syntax and semantics of the data). Third, the data must be useful (data can be used as

an input to the user's decision making process). Finally, the data must be believable to the user (to the

extent that the user can use the data as a decision input). Resulting from this list are the following four

dimensions: accessibility, interpretability, usefulness, and believability. In order to be accessible to

the user, the data must be available (exists in some form that can be accessed); to be useful, the data

must be relevant (fits requirements for making the decision); and to be believable, the user may

consider, among other factors, that the data be complete, timely, consistent, credible, and accurate .

Timeliness, in turn, can be characterized by currency (when the data item was stored in the database)

and volatility (how long the item remains valid) . These multi-dimensional and hierarchical

characteristics of data quality provide a conceptual framework for defining the behavior of the

quality data object.

In general, the behavior of an object is encapsulated in its methods and messages. In the context

of the quality data object, both datum objects and quality description objects will have methods and

messages meant for their creation, deletion, and update, just like objects in the object-oriented

paradigm.

Each message is described using the following syntax.

Message := (receiver) (message_nameX[(argument)])

The (receiver) part is an identifier denoting an object that receives and interpret the message.

The (message_name) gives the name of the message which helps the receiving object to associate the

message with a particular method. The (argument) part of the message carries data which is required

by the method in the receiving object. A message can have zero, one, or more than one arguments, as the

brackets " indicate.

Each method is described using the following syntax.

Method_name: (name of the method)

Invoked_by: (messaget, message])

Method_action: (procedural description of the method)

Only those methods and messages related to the data quality aspect are presented in this

paper. Below we define key methods that measure data quality.

2-2.1. Currency

The currency dimension is solely a characteristic of storage of the data. We propose to measure

currency on a continuous scale from to 1. The state would be assigned to data that are as current as

possible, state 1 to the oldest stored data. Let C represent the measure for currency (0 £ C £ 1). The

value of C is computed dynamically using the creation time of the instance. Creation time is a quality

indicator value tagged to every instance. Depending on the message, the currency method can:

• determine the currency of an individual instance,

determine the average currency of the instances of the class,

determine the percentage of instances whose currency meets one of the following conditions

(referred to as 6) when compared to the total instances of the class available in the database:

(1) below or above a user-defined currency level, (2) in between a user-defined currency interval.

A description of the method is given below.

Method_name: Currency_method

Invoked_by: (receiver) currency(instance_variable)

(receiver) average_currency(instance_variable)

(receiver) 8-currency(instance_variable, 9)

Method_action: For the message currency, the method returns a pairwise value, (instance value,

currency), for all the instances satisfying the qualification. For the message

average_currency, the currency method returns the average currency of all

instances of the instance variable. For the message 9-currency, the currency

method returns the percentage of the currency values of the instances that

satisfy the condition 8.

2,2.2. Volatility

The volatility of data is an intrinsic property of the data which is unrelated to its storage

time. For example, the fact that George Washington was the first president of the United States

remains true no matter how long ago that fact was recorded. On the other hand, yesterday's stock quote

may be woefully out of date. We propose to measure volatility on a continuous scale from to 1 where

state refers to data that are not volatile at all (they do not change over time) and 1 refers to data

that are constantly in flux. The volatility is measured via the coefficient of variation, denoted by V.

Let Xj denote a random variable, i = 1, 2, ..., N, then V is computed as follows (Kazmier, 1976):

V=4
X

where S=

£ X? - NX3

i=l

N-l

N

andX= J^Xi

10

A description of the method is given below.

Method_name: Volatility_method

Invoked_by: (receiver) volatility(instance_variable, qualification_for_instances)

Method_action: The system monitors updates to the value of an instance variable that is being

modified and simultaneously computes the following three required parameters

in order to compute the coefficient of variation: (a) N, the total number of

N
updates, (b) X, the average of all updated values, and (c) 2^ X; , the sum of

i=l

squares of updated values. These three parameters are stored as quality

indicators in the quality description object corresponding to each instance

variable. The method returns a pairwise value, (instance value, volatility), for

all qualified instances.

2.23. Timeliness

Timeliness is defined as a function of currency and volatility of a data value. The most stable

situation is to have data for which the currency is (entered very recently) or the volatility of

(unchanging) or both. For such data there is no timeliness problem. The worst situation arises when

data are old (currency = 1) and highly volatile (volatility = 1). We propose to measure timeliness by

combining currency and volatility via their root-mean square: T= VCV where 5 T < 1 with

representing the best and 1 the worst case.

A description of the method is given below.

Method_name: Timeliness_method

Invoked_by: (receiver) timeliness(instance_variable, qualification_for_instances)

Method_action: The method returns a pairwise value, (instance value, Timeliness), for for all

qualified instances to the message sender.

2.2.4. Accuracy

In general, a user can test the accuracy of the data present in a database with a set of sample

data considered to be accurate by the user. For example, a user who wants to check the accuracy of a

payroll database can first check whether his salary (known data) is recorded correctly or not. On the

basis of this test, the user makes judgment whether to query the database or not. We propose to measure

accuracy on a continuous scale from to 1 where state refers to best (all accurate) and 1 the worst (none

accurate) case.

11

Invoked_by:

Method action:

A description of the method is given below.

Mithod_name: Accuracy_method

(receiver) accuracy(instance_variable, list_of_known_instances)

The first argument in the parenthesis gives the name of an instance variable

whose accuracy was required. The second argument gives a list of instances

that were known to the message sender. This known list of instances is

considered as true values. The method computes the percentage, denoted as p,

of match between the true values and the recorded values and returns (1-p) to

the message sender.

2.2.5. Completeness

Following Ballou and Pazer, we define completeness as all values for a certain variables are

recorded (Ballou & Pazer, 1987). We propose to measure completeness on a continuous scale from to 1

where state refers to the best and 1 the worst case. For a given instance variable, the completeness

measure implies that it has no null instances in the database, whereas the measure 1 implies all the

values recorded for the instance variable are null. Using this, a user can measure the degree of

completeness of the database regarding an instance variable.

Invoked_by:

Method action:

A description of the method is given below.

Method_name: Completeness_method

(receiver) completeness(instance_variable)

The method measures the percentage, denoted as p, of empty instances of the

instance variable when compared to the total instances of the instance variable

available in the database and returns p to the message sender.

2.2.6. Credibility

The credibility of a datum in a database is computed based on (1) the quality indicator values

present in the quality description object of the datum and (2) the set of specifications given by the user.

Let x be an instance. Let q(
be the quality indicator of x and let "J' be the number of quality indictors

the user wants to use to compute the credibility of x. Let uv, be the user's specified value for qt and let rv
(

be the recorded value of the quality indicator q4
for x in the database. Let w

(
be the credibility weight

assigned to the quality indicator q 4
by the user. Let 8(be a binary variable defined as follows: 8i =1 if

uv, =rv, else 5j =0. The credibility of x is computed by the following expression:

12

I wi*5j.

A description of the method is given below.

Method_name: Credibility_method

Invoked_by: (i) (receiver) credibility-a(instance_variable

[, (quality_indicator, quality_indicator_value, credibility_weight)])

(ii) (receiver) credibility-b(instance_variable

[, (quality_indicator, quality_indicator_value)])

(iii) (receiver) credibility-c(instance_variable

[, (quality_indicator, quality_indicator_value, credibility_weight)],

desired_credibility)

Method_action: For the message credibility-a, the method returns values of the

instance_variable and their associated credibilities. If weight for each

quality_indicator is not specified (message credibility-b) then the method

assumes equal weight for each quality indicator specified by the user and

returns values of the instance variable and their associated credibilities. For

credibility-c, the method returns only those values of the instance variable,

whose credibility is more than or equal to the desired_credibility.

We have presented the methods and messages that measure the key dimensions of data

quality. They define an important part of the behavior of the quality data object. The other critical

behavioral component of the quality data object is the capability to retrieve data that conforms with

the user's quality requirements. In the next section, we present an algebra for the quality data object

that allows for a systematically construction of retrieval methods for the quality data object.

3. A qualify data object algebra

In order to retrieve quality data object instances from a database, it is necessary to identify

those quality data object instances that conform with requirements for both the datum portion and the

quality description portion. This requires a set of methods to perform the comparisons and an algebra to

perform the operations such as selection, projection, and join of quality data objects. Section 3.1 presents

quality comparison methods. Section 3.2 presents an algebra that extends the relational algebra to the

quality data object domain.

13

3.1. Quality comparison methods in a quality-description obj ect

In this subsection two different quality comparison methods are discussed in detail and some of

the methods which are special cases of these two methods are also discussed, based on equality

definitions provided in (Khoshafian & Copeland, 1990). We first define the concepts of 0_deep_equal,

i_deq?_equal, M_deep_equal, and 0_equal that underlie these two comparison methods.

Two primitive objects are defined to be QjLeep_equa\ if their values matches.

Two tuple objects are defined to be l_deq>_equal if they have the same set of attributes and if

the values they take on the same attribute are 0_deep_equal. Two tuple objects are defined to be

2_deep_equal if the values they take on same attributes are 1_deep_equal. Similarly, two tuple

objects are defined to be i_deep_equal if the values they take on the same attribute are (i-

l)_deep_equal. Let O] =* 02 denote two tuple objects Ot and 02 that is i_deep_equal.

In the context of the quality data object, two quality data objects are defined to be

0_deep_equal if their datum portions are identical. Two quality data objects are l_deep_equal if their

datum values and the corresponding quality indicator values at the first level are identical.

Similarly, two quality data objects are i_deep_equal if their datum values and the corresponding

quality indicator values up to the
j

1" level are identical. If 'V is the maximum depth of both o-[and 02,

and if O] and Ojare _deep_equal, then this relation is defined as M_deep_equal, denoted by Oi =M 02

We illustrate the above concepts through Figure 7. In order to do it, we first exemplify the

notation used in Figure 7 via Figure 2. Let o-[be a quality data object in Figure 7. In Figure 2, earnings

estimate would correspond to 01, and the value of earnings estimate would correspond to vo- Source-1

would correspond to qi] , and the value of souree-1 would correspond to vj . Source-2 would correspond to

qill, and the value of source-2 would correspond to v\-[.

In Figure 7, let o-i and 02 be two quality data objects. The quality data object Ot is 0_deep_equal

to the object 02 because both have the same datum value, v . Object c^ is 1 _deep_equal to 02 because the

values they take on qi^qi^qiaare all the same. However, Ot is not 2_deep_equal to 02 because the

values they take on qi31 are different (v31 vs. x31 >. Since the maximum number of level of Oj is 2, it

follows that 0] is not M_deep_equal to 02.

14

(qi,.v,) (qi
2
.v

2)
(qi

3
, v

3)|,v,) (qi
2
.v -

/\ \
(4iV v

1l) («"
1
2'

v
12)(q,2r V

21)

OfcCo) ^

("VV Wj'ty W3.V3)

\ \ \
(q'

3 r
v
3i> (^11^11) (q'

12
. v

, 2
) (q j

2 r
v
2i>

(qi3r
x
3i>

Figure 7: Quality Description objects : o, and 02

We now present the two comparison methods: i_deep_equal and 9_equal.

3.1.1. i_deep_equal .method

A description of the method is given below.

Method_name: i_deep_equal _method

Invoked_by: (receiver) i_deep_equal(object
1 ,object2, no_of_levels)

Method_action: This method compares object and object2 and then returns True if object! and

object2are i_deep_equal, where 'V is the no_of_levels specified by the user,

else returns False.

3.1.2. 6_equal .method

Two quality data objects are 0_equal, if the values they take on the attributes in 9 are

0_deep_equal. If two objects o, and 02 have 9_equal then relation is denoted by Oi =e 02.

For example, consider 9 = {qi,, qi2/ qin, qi2il- The quality description objects o, and 03 are

9_equal. Similarly one can define 9_i_deep_equal_method and 9_M_deep_equal_method. If two

objects Oi and 02 are 9_i_deep_equal, then relation is denoted by o, =6 (>) oj If two objects o, and 02 ha ve

9_M_deq>_equal, then relation is denoted by 01 =e<M)
02. For example, 9 = { qii } then o, and 02 have

9_M_deep_equal.

A description of the method is given below.

Method_name: 9_equal .method

(receiver) 9_equal(objecti,object2 , 9)

This method compares object! and object2 and then returns True if object, =9

object2 where 9 is the set of quality indicators specified by the user, else returns

False.

Invoked_by:

Method action:

15

These two quality comparison methods are used to define the following quality algebraic

methods.

3.2. Qua lity algebraic methods

In this section, we introduce quality algebraic methods to operate on quality data objects.

3.2.1 Selection Method

Selecnon_method selects only a subset of objects from an object collection such that each object

selected must satisfy the selection criterion. Let O be a collection of n objects of type T. Let p and q be

first order predicates. This operation creates m (where m <, n) objects of type T from the members of

collection O, which satisfy the predicates p and q. The predicate p is a constraint on the datum object

and the predicate q is a constraint on the quality description object. The selection_method

symbolically denoted as a^(0,p,q), is defined as follows:

aq (O, p,q) = (o I (o e O) a p(o) a q(o))

A description of the method is given below.

Method_name: Selection_Method

Invoked_by: (receiver) selection(object_class, data_constiaint, quality_constraint)

Method_action: This method checks each instance of the object_class to see whether they

satisfy data_constraint and the quality_constraint, and returns all object

instances of the object_class which satisfy both of these constraints.

\2-2 Union Method

In union_method / the two operand quality data object collections must be of the same type. Let

O] be the collection of n objects of type T and O2 be the collection of m objects of type T. The result of

this method is a collection of p objects (where n <, p <, n+m) of type T. This method selects all instances

from the collection 0\ and selects only those instances from the collection O2 which are not duplicates

when compared to the instances of Oi. The logic of the union_method, which is symbolically denoted

as u^ (Oi, O2, 9) is defined as follows

^q (Oi , O2 , 6) » {o I Voe Oi) u { o I V02 € O2 3d e Oi a (o =
M

02) a -, {(o 1 =°o2) a (o,=
6
02)) }

In the above expression, " -. (ot= 02) a (01= 02)} " is meant to eliminate duplicates. Objects 01

and 02 are considered duplicates provided that their datum portions are the same and they are

0_deep_equal with respect to all quality indicators in 9. Note that the above definition for the union

16

is commutative from the view point of the user who defined 9. In general it is not commutative because,

9 u
c»i= 02 does not mean (oi^cc).

A description of the method is given below.

Method_name: Union_method

Invoked_by: (receiver) union(Oi,C>2,9)

Method_action: Let resultl be the set of all instances in the object collection 0\. Let result! be

the subset (need not be strict subset) of instances of O2 such that any instance

from result! is not 0_deep_equal and not 9_equl to any instance in resultl. Let

result =resultl u result!. This method returns the set result.

3.23 Difference Method

In difference_method, the two operand object collections must be of the same type. Let O] be a

collection of n objects of type T and O2 be a collection of m objects of type T. The result of the difference

method is a collection of p objects (where p 5 n) of type T. The result consists of objects only from Oi

which are not 0_deep_equal to objects in O2 with respect to all quality indicator specified in 9. The

logic of the difference_method, denoted as

—

" (0\ , O2 , 9) is defined as follows

—q (Oi,02,9) = {olVo,60i 3o2e02,(o=M o,) a^ {(o1 -°oa) a(o,-
8
02)}}

A description of the method is given below.

Method_name: Difference_method

Invoked_by: (receiver) difference(Oi, 02/9)

Method_action: Let result be the set of all the instances of Oi except those that are

0_deep_equal and 9_equal to any instance of O2. This method returns the set

result.

3.2.4 Projection Method

Let O be an object collection of m objects of type T. Projection_method generates p (where p < m)

objects of typeT from the object collection O. Let o be an object in the collection O. The function f returns

an object o' of type T from the object o. The projection method also eliminates duplicate objects from the

q
result. The logic of the projection_method, which is symbolically denoted as fl (O, f:T', 9) is defined

as follows

n
q
(O, f:T', 9)=((n (O, f:T)}— [oj I ovo2 € n (O, f:T'), {(o^Oj) a (o^Oz)} 1

17

where n (O, f:D = (f(o)l 0€ O)

A description of the method is given below.

Method_name: Projection_method

Invoked_by: (receiver) projecrion(0, 8)

Method_action: Let O7

be the object type whose instances variables are a subset of the instance

variables of O. Let f be a function which takes an instance of O and instantiates

0\ Let resultl be the set of instances of (J. Let result C resultl be the set of

instances generated by eliminating duplicates from the set resultl. The method

returns the set result.

3.2.5 Cartesian Product Method

Let Oi be an object collection of n objects of type Ti, and let O2 be an object collection of m objects

of type T2. Let o, be an object in the collection 0\ and let 02 be an object in the collection O2. The method

constructs a new object 01 © 02 of type T3
/
from 01 and 02. Objects of type T3 consists of instance variables

q
from both Ti and T2. The logic of the cartesian_product_method, denoted as n (O, f:T', 0) is defined as

follows

q
X (Oi,02) = (o I Vo, e Oi V02 e 02,0 = 0, ©02)

A description of the method is given below.

Method_name: Cartesian_product_method

Invoked_by: (receiver) cartesian_product(Oi , O2)

Method_action: Let O3 be a new object type which will have all the instance variables of 0\

and of 02- Let f be the function which take instances of Oi and instances of O2

and with these instances, the function f instantiates the object type O3. This

method returns the set of instances of O3.

Other algebraic methods such as Intersection_method and Join_method can be defined using the

above defined five algebraic methods.

18

4. Concluding remarks

In this paper, we have investigated how to associate data with quality information that can

help users make judgments of the quality of data for the specific application at hand. Our research

question was how to structure and manage data in such a way that users could be equipped with the

capabilities to measure the quality of data they need and to retrieve the data that conforms with their

quality requirements.

Toward this goal, we have proposed the concept of quality data object in which each datum

object is associated with appropriate data and procedures used to indicate the quality of the datum

object. Specifically, the is-a-quality-of link is proposed to associate a datum object with its

corresponding quality description object. The composite object constructed from a datum object and its

associated quality description object is called a quality data object. It provides methods which can

access object instances which matches users' quality requirements. It also provides a set of quality

measure methods that compute quality dimension values including currency, volatility, timeliness,

accuracy, consistency, and completeness. In addition, we have developed a quality data object algebra

that includes quality comparison methods and an algebra that extends the relational algebra to the

quality data object domain. It allows for a systematic construction of retrieval methods for quality

data objects.

The concept of quality data object presented in the paper is a first step toward the design and

manufacture of data products. We envision that the quality data object proposed in this paper can be

used as basic building blocks for the design, manufacture, and delivery of quality data products. It will

enable users to measure the quality of data products according to their chosen criteria; it will also

enable users to purchase data products based on their quality requirements. In this manner, we hope

that the concepts of quality data objects and quality data products will help improve data quality and

data reusability.

19

5. Appendix A

Many concepts in the object-oriented paradigm can be applied to support the quality data

object. They are fundamental in our decision to model the quality data object via the object-oriented

approach. In this Appendix we discuss how constructs in the object-oriented paradigm such as

inheritance, method, polymorphism, active value, and message can be exploited to support the quality

data object.

We present features of the object-oriented paradigm and relate them to the quality data object.

Modeling Paradigm In the object-oriented paradigm, all conceptual entities are modeled as

objects (Kim, 1989; Kim, 1990). This paradigm is particularly interesting to us because both data and its

quality can be represented as objects, as Figures 1-2 illustrate. It eliminates the dichotomy of

representation schemes for data and its quality. In Figure 2, for example, the datum object Earnings-

Estimate is modeled as an object and its quality description attributes such as Source-1 and Reporting-

Date are also modeled as objects.

Inheritance Objects in an object hierarchy can inherit both the data and methods from their

parent objects in the object hierarchy (Banerjee, 1987; Snyder, 1986; Zdonik & Maier, 1990). In the

context of the quality data object, whenever a quality data object is inherited by its child object, the

quality information is automatically inherited. Therefore, both quality indicators and quality

procedures can be reused just like data and methods in the object-oriented paradigm.

Method The behavior of an object in the object-oriented paradigm is encapsulated in methods

(Banerjee, 1987; Zdonik & Maier, 1990). A method consists of code that manipulates and returns the

state of an object. In the context of the quality data object, mechanisms used to determine data quality

dimension values are procedure-oriented, and are difficult to express declaratively. Therefore, the

procedural capability in the object-oriented paradigm can be used effectively to define quality

procedures in a quality data object. For example, timeliness of a quality data object is procedure-

oriented and can be encapsulated as a method. As another example, since objects are instantiated,

deleted, and modified by the methods of the object, the corresponding quality integrity constraints

(Wang, Reddy, St Kon, 1992) can be embedded in the definition of these methods.

Polymorphism In the object-oriented paradigm, the same method name can be used in different

objects to define different procedures, and the same method can take different types or different number

of arguments (Zdonik & Maier, 1990). This feature is important in the context of the quality data object

because data quality measure methods can be defined differently in different objects with the same

20

name. Moreover, the evaluation of a procedure depends on the type and number of arguments passed to

the procedure which, in turn, depend on the quality requirements of a user. For example, the method

believability can be invoked with different sets of arguments: One user may believe the Earnings-

Estimate if the immediate source (e.g. the Wall Street Journal) is credible whereas another user may

consider additional quality indicators such as source of source (e.g., the Wall Street Journal quoted

Zacks Investment Research which is considered very credible by the investment community) as

important in determining the believability. Using polymorphism, both of the users can use the same

method but with different sets of arguments.

Active values In the object-oriented paradigm, the values of active instance variables are

computed at run time based on values of other instance variables (Zdonik & Maier, 1990). This feature

is useful in computing data quality dimension values dynamically. Since data quality, in a sense, lies

in the eyes of the beholder (Wang, Kon, & Madnick, 1993), some quality dimensions of a quality data

object need to be computed dynamically based on (1) user requirements and (2) data and procedures

encapsulated in the quality data object. For example, timeliness of a quality data object can not be

stored as a value. It must be computed dynamically upon demand, as discussed in Section 2.

Messages In the object-oriented paradigm, objects can communicate with one another through

messages (Maier & Stein, 1987). Messages, together with any arguments that may be passed with the

messages, constitute the public interface of an object. This feature is handy in the context of quality

data object because the extra complexity introduced in a quality data object can be encapsulated by the

interface of an object which is nothing but a collection of messages.

21

6. References

HI Ballou, D P. & Pazer, H. L. (1987). Cost/Quality Tradeoffs for Control Procedures in Information

Systems. International lournal of Management Science, ii(6), pp. 509-521.

|2| Banerjee, J., et al,. (1987). Data Model Issues for Object-Oriented Applications. ACM Transactions

on Office Information Systems. £(1).

|3] Bernstein, P. A. & Goodman, N. (1981). Concurrency Control in Distributed Database Systems.
Computing Surveys, 11(2), pp. 185-221.

[4| Bernstein, P. A., et al. (1981). Query Processing in a System for Distributed Databases (SDD-1).

ACM Transactions on Database Systems, 6(4), pp. 602-623.

[5] Chen, P. P. (1976). The Entity-Relationship Model - Toward a Unified View of Data.

ACM/TODS, L pp- 166-193.

[61 Chen, P. P. (1984). An Algebra for a Directional Binary Entity-Relationship Model. Los Angeles,

CA. 1984. pp. 37-40.

[71 Chen, P. P. (1991). Entity-Relationsip Approach to Database Design . Wellesley, MA: Q.E.D.

Information Sciences.

[8] Chen, P. P. & Li, L. (1987). The Lattice Concept in Entity Set. In S. Spaccapaietra (Ed.), Entity-

Relationship Approach North-Holland.

[9] Codd, E. F. (1970). A relational model of data for large shared data banks. Communications of the

ACM, 11(6), pp. 377-387.

[10] Codd, E. F. (1979). Extending the relational database model to capture more meaning. ACM
Transactions on Database Systems, i(4), pp. 397-434.

Ill) Codd, E. F. (1982). Relational database: A practical foundation for productivity, the 1981 ACM
Turing Award Lecture. Communications of the ACM, 25(2), pp. 109-117.

[12] Codd, E. F. (1986). An evaluation scheme for database management systems that are claimed to be

relational. The Second International Conference on Data Engineering, Los Angeles, CA. 1986. pp.

720-729.

[13] Date, C. J. (1981). Referential Integrity. The Proceedings of the 7th International Conference on

Very Large Data bases, Cannes, France. 1981.

[14] Date, C. J. (1985). An Introduction to Database Systems . Reading, MA: Addison-Wesley.

(15) Date, C. J. (1990). An Introduction to Database Systems (5th ed.). Reading, MA: Addison-Wesley.

[16] Denning, D. E. & Denning, P. J. (1979). Data Security. ACM Comp. Surv., U(3).

[17] Fernandez, E. B., Summers, R. C, & Wood, C (1981). Database Security and Integrity . Readings,

MA: Addison-Wesley.

[18] Hoffman, L. J. (1977). Modern Methods for Computer Security and Privacy . Englewood Cliffs, NJ:

Prentice Hall.

[19] Hsiao, D. K., Kerr, D. S., & Madnick, S. M. (1978). Privacy and Security of Data Communications

and Data bases. Proceedings of the 4th International Conference on Very Large Data Bases, 1978.

[20] Huh, Y. U., et al. (1990). Data Quality. Information and Softvmre Technology, 32(8), pp. 559-565.

[21] Johnson, J. R., Leitch, R. A., & Neter, J. (1981). Characteristics of Errors in Accounts Receivable and

Inventory Audits. Accounting Review, 5JH April), pp. 270-293.

[22] Kazmier, L. J. (1976). Business Statistics . New York, N.Y.: McGraw Hill Company.

22

[23

[24

[25

[26

[27]

[28

[29

[30

[31

[32

[33

[34

[35

[36

[40

[41

[42

[43

Khoshafian, S. N. & Copeland, G. P. (1990). Object Identity. In S. B. Zdonik& D. Maier (Ed.), (pp.

37-46). San Mateo, CA: Morgan Kaufmann.

Kim, W., Lochovsky, Frederick H. (1989). Object-Oriented Concepts, Databases, and Applications

(1 ed.). New York: Addison-Wesley.

Kim, W. (1990). Object-Oriented Databases: Definition and Research Directions. IEEE
Transactions on Knowledge and Data Engineering, 2(3).

Kim, W., Bertino, E., & Garza, J. F. (1989). Proceedings of the 1989 ACM SIGMOD Internaltional

Conference on the Management of Data. ACM SIGMOD, Portland, Oregan. 1989. pp. 337-347.

Korth, H. & Silberschatz, A. (1986). Database System Concepts . New York: McGraw-Hill Book
Company.

Laudon, K. C. (1986). Data Quality and Due Process in Large Interorganizational Record Systems.

Communications of the ACM, 220), pp. 4-11.

Liepins, G. E. & Uppuluri, V. R. R. (1990). Data Quality Control: Theory and Pragmatics (pp. 360).

New York: Marcel Dekker, Inc.

Liepins, O. E. (1989). Sound Data Are a Sound Investment. Quality Programs, (September), pp. 61-

63.

Maier, D. & Stein, J. (1987). Development and Implentation of an Object-Oriented DBMS .

Cambridge, MA: MIT Press.

Martin, J. (1973). Security, Accuracy, and Privacy in Computer Systems . Englewood Cliffs, NJ:

Prentice Hall.

Maxwell, B. S. (1989). Beyond "Data Validity": Improving the Quality of HRIS Data. Personnel, ,

pp. 48-58.

McCarthy, J. L. (1982). Metadata Management for Large Statistical Databases. Mexico City,

Mexico. 1982. pp. 234-243.

McCarthy, J. L. (1984). Scientific Information = Data + Meta-data. U.S. Naval Postgraduate

School, Monterey, CA. 1984.

McCarthy, J. L. (1988). The Automated Data Thesaurus: A New Tool for Scientific Information.

Proceedings of the 11th International Codata Conference, Karlsruhe, Germany. 1988.

[37] Qian, X. & Wiederhold, G. (1986). Knowledge-based integrity constraint validation. The Twelfth

International Conference on Very Large Data Bases, 1986. pp. 3-12.

[38] Redman, T. C. (1992). Data Quality: Management and Technology . New York, NY: Bantam Books.

[39] Sciore, E. (1991). Using Annotations to Support Multiple Kinds of Versioning in an Object-Oriented

Database System. ACM Transactions on Database Systems, l£(No. 3, September 1991), pp. 417-438.

Siegel, M. & Madnick, S. E. (1991). A metadata approach to resolving semantic conflicts.

Barcelona, Spain. 1991.

Snyder, A. (1986). Encapsulation and Inheritance in Object-Oriented Programming Languages.

OOPSLA-86, 1986. pp. 38-45.

Ullman, J. D. (1982). Principles of Database Systems . Rockville, Maryland, USA: Computer
Science Press.

Wang, R. Y. & Kon, H. B. (1992). Towards Total Data Quality Management (TDQM). In R. Y.

Wang (Ed.), Information Technology in Action: Trends and Perspectives Englewood Cliffs, NJ:

Prentice Hall.

23

[44| Wang, R. Y., Kon, H. B., k Madnick, S. E. (1993). Data Quality Requirements Analysis and

Modeling in Data Engineering, in the Proceedings of the 9th International Conference on Data

Engingeenng, Vienna. 1993.

[45] Wang, R. Y., Reddy, M. P., & Kon, H. B. (1992). Toward Quality Data: An Attribute-based

Approach, to appear in the journal of Decision Support Systems (DSS), Special Issue on

Information Technologies and Systems,.

[46] Wang, Y. R. & Madnick, S. E. (1990). A Polygen Model for Heterogeneous Database Systems: The

Source Tagging Perspective. Brisbane, Australia. 1990. pp. 519-538.

[47] Wang, Y. R. & Strong, D. (1992). Dimensions of Data Quality: Beyond Accuracy. Submitted for

Publication.

[481 Zarkovich. (1966). Quality of Statistical Data . Rome: Food and Agriculture Organization of the

United Nations.

[49] Zdonik, S. B. & Maier, D. (1990). Readings in Object Olriented Database Systems (pp. 629).

California: Morgan Kaufmann Publishers, Inc.

(I A ~t

24

Date Due

Lib-26-67

MIT LIBRARIES

3 TOflO 00flMb55E 5

