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Abstract

The influence of a transverse magnetic field on the conduction properties of thin

metallic films, of thickness comparable with the free path of the conduction electrons,

is investigated. It is shown that, owing to scattering of electrons at the boundaries of

the film, the Hall coefficient is increased, and the electrical resistance oscillates with

the strength of the applied magnetic field.





THE INFLUENCE OF A TRANSVERSE MAGNETIC FIELD ON

THE CONDUCTIVITY OF THIN METALLIC FILMS

1. Introduction

In the theory of metals it is usual to assume that the conduction electrons may be

treated as if they were free, with the energy proportional to the square of the wave-

vector. This assumption is sufficient to explain most of the conduction phenomena, but

it leads to a zero change of resistance in a magnetic field; and to explain the usual type

of magneto-resistance effect (1) it is necessary to employ more complicated models

which take into account the departure of the energy surfaces from spherical symmetry

(2). However, in proving that there is no magneto-resistance effect for the free-electron

model it is tacitly assumed that all the dimensions of the specimen considered are large

compared with the free path of the conduction electrons. This requirement is fulfilled

under ordinary conditions, but it may break down in the case of thin films or wires at

very low temperatures; and under such conditions, where boundary scattering of elec-

trons plays an essential part in determining the resistance, the alteration of the free

electron trajectories in a magnetic field may lead to a finite magneto-resistance effect.

This is a 'geometrical' effect which is of a totally different type from the ordinary

increase in resistance observed in the bulk metal, and, since it is essentially classical

in nature, it is much simpler to understand. The details of the phenomena observed in

any particular case depend, of course, upon the shape of the specimen and upon the

relative configurations of specimen, electric current and magnetic field.

An effect of this type was first observed by MacDonald (3) who found that the resist-

ance of a thin sodium wire at low temperatures decreased when a longitudinal magnetic

field was applied. In the present paper, we discuss only the case of a thin film placed

in a magnetic field which is perpendicular to the plane of the film. Although this is

perhaps not the simplest case to visualize, it is the easiest to analyze mathematically,

and an exact solution may be obtained, assuming only that the conduction electrons are

quasi-free and that a time of relaxation may be defined for their collisions with the ionic

lattice of the metal. These assumptions are sufficient to bring out all the essential

features of the phenomena; a more general model, which leads also to a finite magneto-

resistance effect in the bulk metal, will be examined in a later paper.

The increase in resistance of a thin metallic film in the absence of a magnetic field

has been discussed by Fuchs (4), and the present theory is a simple generalization of

Fuchs' analysis. General formulas for the electrical conductivity and the Hall coeffi-

cient in a magnetic field of arbitrary magnitude are derived in Sect. 2, both for the case

in which the electrons suffer diffuse reflection at the surface of the film and for the more

general case of partially elastic surface scattering. In Sect. 3 we discuss the Hall

coefficient in the limit of small magnetic fields, and we find that it shows an increase

above the bulk value analogous to the increase of the zero-field electrical resistance.

The field variation of the magnetic effects is considered in Sect. 4, and it is shown in
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particular that, for films whose thickness is small compared with the free path, the

resistance oscillates with the strength of the applied magnetic field. By measuring the

position of the resistance maxima and minima it is possible to obtain a direct estimate

of the momentum of the electrons at the surface of the Fermi distribution, and hence of

the number of conduction electrons per unit volume.

2. General Formulas for the Magnetic Effects

2.1. We consider a metal film of thickness a, with its surfaces parallel to the xy-

plane, which is subjected to an electric field (x, , 0) in the plane of the film and a

transverse magnetic field (0, 0, H). (For this particular' arrangement, the condition

curl e = 0 ensures that the electric field components are constant across the thickness

of the film.) The conduction electrons in the metal are regarded as free, in the sense

that the energy E is related to the wave-vector k by E = h 2 iki 2 /(81 2 m), where m is the

effective mass of an electron. The distribution function f of the electrons is written in

the form

f = f + fl ( v' z) (1)

where f0 is the Fermi function 1/ (e(E - )/kT + 1) (e is the Fermi energy level), v is

the velocity of an electron, and f is a function of v and z which has to be determined.

f0 depends on the absolute value of v only.

Under the combined action of the applied fields and the collisions of the electrons

with the lattice a steady state is set up, and the distribution function in the steady state

is determined by the Boltzmann equation (5)

f-- f0
_- ( + c vX H) gradk f+ v gradr f 0 (2)

where - E is the electronic charge and T is the time of relaxation of the conduction elec-

trons. f is regarded as a function of the wave-vector k and the space-vector r, and T

is assumed to depend on the absolute value of k only. The term v grad r f has to be

included to take account of the nonuniform space distribution of the elections in the

z-direction.

On combining Eqs. 1 and 2, using the relation hk = 2irmv which holds for free elec-

trons, and neglecting as usual the product of Ewith f but retaining all the terms

involving H, f is found to satisfy the equation

a+ f_ eH af + af0 (3)
TV mcv /m xy z z x y z x y

2.2. To solve this equation we put

af

fl = (Vx Cl + y c2) v (4)
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where v is the absolute value of v, and where cl and c 2 are functions of v, v and z

which do not depend explicitly on vx and vy. From Eqs. 3 and 4 we obtain the following

simultaneous equations for c1 and c2:

ac 1 C1 EHE ()
+ T+ vC (5)

z TV mcv mvv Y
Z Z Z

TV mcv mvv y 

z z z

The general solution is

E TY [+ F(v) exp i(l + 1E HT Z

mv(l + i HT) [( mc TV (8)

where F is an arbitrary function of v and vZ.

The boundary conditions which are used to determine F depend on the nature of the

scattering at the surface of the film. If we assume, as we shall do for the present,

that the electrons are scattered entirely at random, with complete loss of their drift

velocity, the distribution function of the electrons leaving each surface of the film must

xP( m TV m - Zbe indepThe current denction ofJ , 0) can now be alculated. For example, we have

2F(v) = -1 for all v dvsuch that v > O (9)

x (2~ y z

Using Eqs. 1 and 4, introducing polar coordinates (v, 0, ) in the v-space (withr= v cos ) and integrating over , this becomesJ h n a in cl ls f dv d

F)V 4 sin= C1 fyr dv dO
F~v)= -·· exp(· ( (1 + H 
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There is a corresponding expression for Jy with c replaced by c .

Introducing the complex current = Jx - iJy, and integrating over v by means of

the formula

af0
-, (V) a dv = +()

which holds for a degenerate electron gas, v being the velocity at the surface of the

Fermi distribution, we obtain

Zr ( -) v4 I sin 30 g d .(11)

0

For comparison with experiment we require the mean current , averaged across

the thickness of the film. Combining Eqs. 8, 9, 10 and 11, we obtain after some calcu-

lation

a KS v (12)

where

1 -3 + 3 X I - st dt (13)
8s 2s + t

and where s is a complex variable defined by

s = K + i (14)

with

K = , (15)

I = TV being the free path of the conduction electrons, and r = mvc/EH being the radius

of the circular orbit of an electron in a magnetic field H. We have also used the

expressions

_ nE = 8 (m (16)
-_ n=- () (16)

my

for the conductivity of the bulk metal and for the number of electrons per unit volume.

The formal similarity between Eq. 12 of the present paper and Eq. 17 of Fuchs'

paper (4) should be noted.

2.4. Equation 12 contains all the results required for comparison with experiment.

The electrical conductivity a, for example, is measured by applying an electric field

in say the x-direction and observing the current in this direction, no electric current

being allowed to flow in the transverse direction. We therefore have = i(l)/R(j)
with o9(~) = 0, where and tQ denote the real and imaginary parts respectively. Using
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the expression (12) for and eliminating i, we obtain for the ratio of the resistivity

1/cT to that of the bulk metal 1/cr)

-0 = (S)} .(17)
cr K

The Hall coefficient is defined by AH = y/HJx =-()/H(j)}, where 6y is the trans-

verse electric field set up under the above experimental conditions, and we easily

obtain

AH , 0 W
A H.O p (18)

where p is defined by (15), and where AH, = - 1/(nec) is the Hall coefficient of the bulk

metal. The ratios o0/ o-and AH/AH, O are therefore functions of the two dimensionless

parameters K and p only. Note that K and p are both proportional to the thickness of

the film; also that K depends upon the temperature (its temperature variation being the

same as that of the bulk electrical resistance), whereas [3 is proportional to the strength

of the magnetic field but is independent of the temperature.

2.5. The theory is easily extended to apply to the more general case of partially

elastic surface scattering, where a fraction p of the electrons arriving at the surface

of the metal is supposed to be specularly reflected, retaining its drift velocity, while

the rest are scattered diffusely. The analysis is formally identical with that given by

Fuchs (4) for the case of zero magnetic field and will not be presented here in detail.

(Note that our notation differs somewhat from that used by Fuchs, a, I and p being used

instead of t, X0 and E.) It is found that all the results of the preceding sections apply,

0o

1 1 3 1 1- e t
;es dt (19)

p 2s t 1- pe

This reduces to Eq. 13 when p = 0, and to the bulk metal value 1/s when p = 1.

3. The Hall Coefficient in Small Magnetic Fields

When p = 0, Eq. 17 combined with Eqs. 13 or 19 leads at once to expressions for

the conductivity of a thin film in the absence of a magnetic field which have already been

given by Fuchs (Eqs. 18 and 22 of his paper). By expanding Eqs. 13 and 19 in ascending

powers of p and retaining only the linear term, corresponding expressions may be

obtained for the Hall coefficient in the limit of vanishingly small magnetic fields. In

this limit AH/AH, 0 is independent of , and the resulting expression (for arbitrary p)

may be written in the form
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AH rn- m)K 1p XpmmlK Ei(-mK)_emK mK± mK 3K3 )}
=e2 2 (20)0 3 (1- p) 3 (1- p)2 pm-1 Ei(-m )-e m-mK 2 1 )]AH TR 7K m= (1 J)VH, 0 X43 p) 

where co
-ut

- Ei(-u) e dt (21)

t

When p = 0, Eq. 20 reduces to

AH _ 1 - K3 Ei(-K) 3 -K -K K K 

[1 -Ei(-K)(K )-K(1- e - K) e-K( + K _ )]22

Equations 20 and 22 are to be compared with Eqs. 22 and 18 of Fuchs' paper.

Figure 1 shows AH/AH, 0 as a function of K for three values of p, and should be compared

with Fig. 1 of Fuchs' paper. It is seen that the Hall coefficient of thin films shows an

increase above the bulk value analogous to, but smaller than, the increase of the elec-

trical resistivity*. For very small
_s Tr -L- - an 4-o

Valudes U Ua , A {. U.V ICUUCb LU

AH _41-p 1
A - 3l+p (23)

H,0 Kog 1
K log )

the corresponding expression for the

electrical resistance is**

-0 4 -p ( 1 AH: :°K (log o
or ~ p~K A-1

Klog ti, 

(24)

To my knowledge there are at
o . . . . . m . . t a i . e . u 1 . s w . ,.

present no experimenal results wn

which to compare the theoretical
Fig. 1 The Hall coefficient of thin metallic

films in the limit of small magnetic predictions outlined above.
fields.

* As K decreases from large values, AH at first actually decreases slightly below the
bulk value before increasing in the expected manner; the effect is very small, and
is of no practical importance.

**The expression given by Fuchs for 0 /c in the limit of small K (Eq. 23 of his paper)
differs from Eq. 24 and is incorrect.
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4. The Field Variation of the Conduction Phenomena

4.1. The field dependence of orand A H is obtained from Eqs. 13, 17, 18 and 19 by

keeping K constant and varying P. Various methods have been used to evaluate the

theoretical expressions numerically. Considering for the present the case p = 0 only,

we find that, for small Is (that is, for K + p2 << 1), (s) is most conveniently evalu-

ated by means of the power series m

1 3 1 1 n
,- = 4 (1 -y - log s) + s- -192 s (31- 12y- 12 log s) + 3 (-l )n(n -)n(n+2)!

n=3
(25)

where y is Euler' s constant. For sufficiently large s , the asymptotic series

co

1 1 3 1 -s 7-,n (n + 4)(n- 3)(n- 1)! (26
+Ts7 - v - e , (- -) n (26)8s sn=4

may be used. For intermediate values of I s , neither of these series is of practical

utility, and numerical integration is necessary. The integrals required are of the form
00 co

( 1 ) eKt cos t dt and (-1) e Ktsinptdt(- -t-- ) sin 3t dt1 t t t

and cannot, in general, be expressed in terms of tabulated integrals. For small values

of K, approximate values may be obtained by replacing e-Kt by 1 - Kt + 2 Kt2 and

expressing the integrals in terms of the sine and cosine integrals for the argument .

For non-zero values of p the calculations become very laborious. It is possible to

write down expansions corresponding to Eqs. 25 and 26, but in general it is simplest

to evaluate the real and imaginary parts of Eq. 19 by direct numerical integration.

4.2. The results of the calculations are shown in Figs. 2 to 5 for some typical

values of the parameters, sufficient to illustrate the general behavior and to show the

effect of varying K and p. The curves of Fig. 2 show a-0/cr as a function of p for p = 0

and for three values of K, while those of Fig. 3 show /cr as a function of for K = 0.02

and for three values of p. Figures 4 and 5 give the corresponding curves for AH/AH, 0

The most interesting result of these calculations is that the resistance of a thin

metallic film oscillates with the strength of an applied transverse magnetic field. In

the absence of a magnetic field the resistance is given by Fuchs' value; as the magnetic

field is increased, the resistance increases initially and reaches its first maximum for

a magnetic field such that is approximately unity. The higher oscillations are of

roughly constant spacing (successive maxima occurring for = 1, 7, 13, 19, ... approxi-

mately) but decrease rapidly in amplitude, and in very strong magnetic fields the resist-

ance tends to the constant asymptotic value

( ) = + (-p) . (27)
C--0= co+ 8--
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The oscillations die out and the resistance approaches the bulk value as K tends to

infinity or as p tends to unity; the position of the maxima and minima is not appreciably

affected.

The Hall coefficient, on the other hand, does not oscillate, and, as 3 increases from

zero to infinity, AH decreases steadily from the value of Eqs. 20 or 22 to the bulk metal

value *.

4.3. It is interesting to compare Eq. 24 for the conductivity of a thin film when

H = 0 with Eq. 27 for the conductivity when H = . The logarithmic dependence of a on

the ratio /a when I >> a is due to the fact that, in the absence of a magnetic field, the

dominant contribution to the current arises from electrons which, after reflection at the

surface of the film, move in directions so nearly parallel to the surface that they do not

travel freely to the opposite surface but make their next collision in the bulk of the metal.

Equation 27 shows that the contribution of these ' anomalous ' electrons is eliminated in

a strong transverse magnetic field, and the conductivity is given by an expression of the

ordinary type, Eq. 16, with a length of the order of the thickness of the film playing the

part of an effective free path of the conduction electrons.

The oscillations in conductivity which occur for intermediate values of the magnetic

field are connected with the oscillations in speed of an electron moving in perpendicular

electric and magnetic fields, as pointed out by Chambers (6). If we put = 0 and
Y

regard as the resultant of the applied electric field and the Hall field, kinetic argu-

ments may be used to show that the distribution function is given by (compare Eq. 28

of Chambers' paper)

F. V 8 a f 0
f(v, ) = f + m w sin + (28)

-Z

where vx = v sin 6, vy = -vo cos 6, and the remaining symbols have their usual

meaning. This expression is easily shown to be equivalent to the expression for f

obtained by combining Eqs. 1, 4, 8 and 9 of the present paper and putting = 0. The

integrand of Eq. 28 represents the contribution to f of electrons which have traveled

freely to the point considered from a distance away in the z-direction, the limit of

integration - z corresponding to electrons which have traveled from the surface of the

metal. The fluctuations in f as a function of z/r are due to the presence of an oscil-

lating integrand in Eq. 28, and to the presence of the metal surface which provides

an upper limit to the distance from which electrons can come to contribute to the current

at z. In a metal of infinite extent the limit of integration in Eq. 28 may be replaced by

-, and f is then independent of z and no longer fluctuates.

* More precisely, AH decreases to a value slightly below the bulk value, passes
through a minimum and finally increases towards the bulk value. This behavior is
similar to that of AH for H = 0 as a function of K.
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4.4 Observations on the resistance oscillations predicted by the present theory

may be used to estimate the momentum mv of the electrons at the surface of the Fermi

distribution and hence the number n of conduction electrons per unit volume, which is

related to mv by Eq. 16. It should be noted that this estimate may be made without any

accurate knowledge of the values of K or p, since the values of for which the maxima

and minima occur are almost independent of the values of these parameters. It must,

however, be borne in mind that a correction will have to be applied for the ordinary

bulk magneto-resistance effect which is superimposed on the effect discussed above,

and which will not be negligible at the low temperatures and high fields required to

observe the oscillations even in the case of metals like the alkali metals for which it

is most likely to be small (7). To estimate this correction theoretically it would be

necessary to employ a more general model than the free-electron model used in the

present theory, since this leads to a zero bulk effect. It is hoped to return to this

question in a later paper.

The values of n obtained directly as explained above may be used to check the validity

of the free-electron theory by comparing them with the values of n obtained by combining

estimates of I obtained from the increase in resistance of a thin film in the absence of a

magnetic field (assuming some value for p) with estimates of n2/31 obtainable according

to Eq. 16 from the bulk conductivity %0 . Alternatively, the direct estimates of n may

be used together with values of o-0 to obtain , and hence to obtain an estimate of the

surface reflection coefficient p from the observed increase in resistance in the field-

free case (which depends sensitively on the value of p)(reference 4).

Finally, we give an estimate of the orders of magnitude which may occur in an actual

experiment; these indicate that the resistance oscillations should be observable, though

the experiment would probably not be easy. Note that the film thickness must be chosen

to be neither too large, since it must be made small compared with the free path of the

electrons, nor must it be too small, since otherwise it would not be possible to obtain

sufficiently large values of with the magnetic fields that are obtainable in practice.
-4

If we choose a = 10 cm, then a sufficiently large free path may be obtained by employing

very pure unstrained specimens and liquid helium temperatures, Also, if the metal

used is sodium, we have n = 2.5 x 1022, and we estimate that I = 1 in a magnetic field

of 60, 000 gauss. Smaller magnetic fields would be required in the case of metals with

a smaller number of conduction electrons.
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