

LIBRARY
OF THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

RETAIL OUTLET LOCATION:
A Model of the Distribution Network Aggregate Performance

$$
642-73
$$

Philippe A. Naert*, and Alain V. Bultez**
January, 1973

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY 50 MEMORIAL DRIVE CAMBRIDGE, MASSAGHUSETTS 02139

RETAIL OUTLET LOCATION:
 A Model of the Distribution Network Aggregate Performance

642-73
Philippe A. Naert*, and Alain V. Bultez** January, 1973

* Assistant Professor of Management Science, Sloan School of Managenant, M.I.T.
** Chargé de cours suppléant, Faculté Universitaire Catholique de Mons (F.U.C.A.M.)

The authors wish to thank Professer J. J. Lambin who provided them with the data base. They are also indebted to the National Bureau of Economic Research (N.B.E.R.) and the Sloan School of Management for computer funds allocated.

1. INTRODUCTION

Location of sales outlets is of major concern to such organizations as oil componies, banks, etc. The problem is often approached in two steps. The total market is divided into regions, and the first stage amounts to deciding in wrich regions to expand or to contract. Thus for example in period t, the company (i) will add $n_{i}^{1 t}$ outlets in area $1, n_{i}^{2 t}$ in area 2, etc. We wil? refer to the first step as the aggregate location prohlem. The second stage consists in choosing snecific sites for these now cutlets. In practice, these decisions are regarded as rather indapendent, especially because they are macte at different levels in the organization. The number of new outlets is a corporate decision, whereas specific sites are selected at the repional level, subjert however to approval by the corporate headouerters. Many crmpanies feel that, at least for the time heing, hierarchical linting of the aggregate and detailed problems is nejther worth the effort nor the cost. ${ }^{1}$

In this paper our sole crncern will be with aggregete location. Qur procedure will be closely related to a model developed by Hartung and Fisher 171 . However, their work lacked rotustness, and suffered trom a variety of deficiencies jn the estimation of the model parameters. In section 2 we will review the Harturg Fisher (hereafter H-F) model and the various weaknesses associated with it. In section 3 the estimation froblems will be examined. In section \uparrow we will propose various changes to tre madel which wjll
(anc)
make it rohust, and we will use data from a major oil company in a European country to estimate the parimetcrs and validate cur approach.
2. THE HARTUMG-FISHEP MODEL ${ }^{2}$

The market is reduced to a quasi duopoly, that is, we consider our brand, 1 , versus competitive brands taken topether, c. Buying behavior z s described as a first order Markov chain. The transition protabilities are defined as follows :

$$
\begin{aligned}
\lambda_{i}= & \text { probability that a person who usuallu buys brand } i \\
& \text { in period } t-1 \text {, will usuallu buy brand } i \text { in period } t .
\end{aligned}
$$

Adding the word "usually" braadens the definition used by $H-F$ because it allows for incidental purchases of a competitive brand. This is important for a product such as gasoline. Take a person who usually buys hrand i. On a given day he is running out of gas on a thruway and tanks at the next service area. If the brand is not i, we should not conclude yet that brand switching has occurred

The other transition probabilities are similarly
defined :

```
\sigmai
    \mp@subsup{\lambda}{c}{}}=\mathrm{ probability of remaining a buyer of a competitive brand
    \sigma
```

(a)

And, $\lambda_{1}+\sigma_{c}=1, \lambda_{c}+\sigma_{i}=1$.

Market share of brand i in period t is

$$
\begin{equation*}
m_{i, t}=\lambda_{i} \cdot m_{i, t-1}+\sigma_{i} \cdot m_{c, t-1} \tag{1}
\end{equation*}
$$

In steady state, $m_{i, t}=m_{i, t-1}=m_{i, e}$, and thus

$$
\begin{equation*}
m_{i, e}=\sigma_{i} /\left(1-\lambda_{i}+\sigma_{i}\right)=\sigma_{i} /\left(\sigma_{i}+\sigma_{c}\right) \tag{2}
\end{equation*}
$$

The transition probabilities will be functions of the decision variables of company i. such as advertising expend itires a_{i}, the number of sales outlets d_{i}, price p_{i}, and the coresponging competitive decision variables $a_{c},{ }_{c}{ }_{c} p_{c}$. That is, for example,

$$
\begin{aligned}
& \lambda_{i}=1_{i}\left(a_{i}, d_{i}, p_{i}, a_{c}, d_{c}, p_{c}\right) \\
& \sigma_{i}=s_{i}\left(a_{i}, d_{i}, p_{i}, a_{c}, d_{c}, p_{c}\right)
\end{aligned}
$$

H-F consider only the number of sales outlets as determinants of the transition probabilities. The following functions were postulated, k_{1} and k_{2} are positive constants.
(3) $\lambda_{i}=k_{i} \cdot d_{i} /\left(d_{c}+d_{i}\right)$
(4) $\quad \sigma_{i}=k_{2} \cdot d_{i} /\left(d_{c}+d_{i}\right)$
(an

For a given value of d_{c}, both λ_{i} and σ_{i} are increasing with α_{i}, and show decreasing returns. The limits of λ_{i} and of σ_{i} for $d_{i} \rightarrow \infty$ are k_{1} and k_{2} respectively. However, k_{1} and k_{2}, and hence λ_{i} and σ_{i} are not restricted to be between zero and one. For example, $H-F$ obtaincd empirical estimates of $k_{1}=4.44$, and of $k_{2}=0.64$. This would imply that for values of $d_{i} /\left(d_{c}+d_{i}\right)>1 / 4.44, \lambda_{i}$ hecomes larger than one. Since λ_{i} is a probability, its dependence on d_{i} and d_{c} should be constrained in such a way that its value will lie in the $[0,1]$ interval. The $H-F$ model therefore lacts robustness. $H-F$ are well aware of that. They state that,
"Unless $k_{1}=k_{2}=1.0, \lambda_{i}$ and σ_{i} are not probabilities for all values of $d_{i} /\left(d_{c}+d_{i}\right)$. However, equations (3) and (4) can be assumed to represent probabilities if $d_{i} /\left(c_{c}+d_{i}\right)$ is restricted,

$$
d_{i} /\left(d_{c}+d_{i}\right)<\min \left(1.0,1 / k_{1}, 1 / k_{2}\right)
$$

More general functions can be substituted for equations (3) and
(4) without invalidating later results. The authors found that for their problem equations (4) were sufficiently accurate". ${ }^{3}$

Section 4 will be devoted to examining ways through wich the model can be made rotust.

Let us now relate market share to the parameters k_{1} and k_{2}. Substituting (3) and (4) for λ_{i} and σ_{i} in (7) gives
(5)

$$
m_{i, e}=\frac{k_{2} d_{i}}{d_{c}+\left(1+\frac{k_{2}}{k_{1}}\right) d_{i}}
$$

Let $q_{1}=$ sales of i, and $Q=$ industry sales. Market share $m_{i}=q_{i} /$ Note that $H-F$ replace $m_{i, e}$ in (5) by $a_{i} / 0$. We should observe that this implies the assumption that observed market share is equal to steady state market share. We will return to this issue in ssctioni

Substituting q_{i} / Q for $m_{i, e}$ in (5) and rearranging terms, $H-F$ obtain,
(6)

$$
a_{i} / d_{i}=k_{2} \cdot Q /\left(d_{c}+\mu \cdot d_{i}\right),
$$

where $\mu=1+k_{2}-k_{1}$, and $a_{i} / d_{i}=$ the average sales per outlet. From (6) it follows that for a given value of d_{c}, and with $\mu<0$, average sales per outlet will increase with d_{i}, and goes to infinity when ($d_{c}+\mu \cdot d_{i}$) goes to zero. With $k_{1}=4.44$ and $k_{2}=0.64$, $\mu=-2.80$, and therefore, the model would predict infinite sales per outlet when $d_{i} / d_{c}=1 / 2.8$. For values $d_{i} / d_{c}>1 / 2.8$, the model would predict negative sales. The function pattern is depicted in Figure 1.

Insert Figure 1 about here

On the other hand if $\mu>0$, the model averape sa:na pes mutlet will decrease when the number of outlets increases. Lambin applied i-o $H-F$ model on a brand of gasoline in european
(a)
country 110 , chapter 71 , and found values of $k_{1}=.170, k_{2}=.127$. and $\mu=0.957$. However, even with $\mu>0$, one may still run into difficulties. With d_{i} large (for a given d_{c}), q_{i} approaches $\hat{r}_{2} \cdot 0 / \mu$ If $k_{1}>1$, this would imply that when d_{i} becomes large company i's sales exceed industry sales.

The next issue deals with the estimation of the parameters k_{1} and k_{2}. Equation (6) is nonlinear in k_{1} and k_{2}, and could not he estimated by linear regression. $H-F$ applied a series of transformations to (6) and ended up with the following function
(7) $\quad \bar{a}_{i} / \ddot{0}=\alpha+B\left(q_{i} / 0\right)$
where $\bar{q}_{i}=G_{i} / d_{i}=$ average sales per outlet for firm ${ }_{j}$

$$
\bar{Q}=0 /\left(d_{c}+d_{i}\right)=\text { industry average sales per outlet }
$$

$$
\alpha=k_{2}
$$

$$
B=k_{1}-k_{2}
$$

$H-F$ use linear regression to estimate α and B. The parameters k_{1} and k_{2} are then uniquely determined from α and B. There ar i various problems associated with the estimation procedure used is $H-F$. These will be examined in section 3.

The estimated coefficients k_{1} and k_{2} are then used in an aggregate retail outlet location model in which the ohjertiv is to maximize discounted return of firm (i).

```
Let J = the number of regions (j=1,\ldots.., J)
    T = the time horizon (t=0,\ldots,T)
    \tau = the discount factor
    rit = return per unit sold in region j, period t
    d
    di0}=\mathrm{ existing number of outlets at time 0
    l i
        and in period t
    c
    b
        ni
```

The return maximization model is then

$$
\left.\operatorname{Max} \begin{array}{ll}
j & \varepsilon \\
j & t \\
1+\tau
\end{array}\right) \quad \frac{1}{r_{i}^{j t}} \bar{q}_{i}^{j t} \quad d_{i}^{j t}
$$

subject to :

$$
\begin{aligned}
& \sum_{j} c_{i}^{j t} n_{i}^{j t} \leq b_{t} \\
& \bar{q}_{i}^{j t}=k_{2} \cdot Q^{j t} /\left[d_{c}^{j t}+\mu \cdot d_{i}^{j t}\right] \quad \forall j, t \\
& d_{i}^{j t}=d_{i}^{j 0}+\sum_{k=1}^{t} n_{i}^{j k} \forall j, t \\
& n_{i}^{j t} \leq i_{i}^{j t}
\end{aligned}
$$

(a)

The reader will notice that with $\mu<0, \bar{\Pi}_{i}^{j t}$ is an increasing function ${ }^{4}$ of $d_{i}^{j t}$ and therefore unless $r_{i}^{j t}$ is carefully specified as a net return and unless the discounted construction costs, i.e. $\sum_{j} \sum_{t}\left(\frac{1}{1+\frac{1}{\tau}}\right)^{t} c_{i}^{j t} n_{i}^{j t}$, are deduced, the objective function is menctone increasing and the solution is merely given by the constraints. It is also important to note that even when the discounted construction costs are deduced, the abjective function may still be monotone increasing, for $d_{i}^{j t}<\left|\int_{c}^{j t} / \mu\right|$.
3. ISSUES IN ESTIMATING THE $H-F$ MIDEL

The parameters k_{1} and k_{2} are obtained from the estimated values of α and β in equation (7).

First we observe that markot share $\left\{q_{i} / 0\right\}$ is on the right hand side of the equation while in fact the numter of retail outletsis expected to have a causal effect on market share and not vice versa. Furthermore, with $\bar{q}_{i}=q_{i} / y_{i}$, and $\bar{Q}=Q /\left(d_{c}+d_{i}\right)$, the left hand side of equation (7$)$ is $\bar{q}_{i} / \bar{Q}=\left(q_{i} / Q\right)\left(1+d_{c} / d_{i}\right)$. Or, equ tion (7) can be rewritten as :
(8)

$$
m_{i}\left(1+d_{c} / d_{i}\right)=\alpha+\beta \cdot m_{i} \text {, }
$$

with m_{i} on both sides of the equation.

From a causality point of view we would like to
have d_{i} / d_{c} on the right and m_{i} on the loft of the equation. Some simple manipulations of equation (8) result in the following lineat equation,
(9)

$$
1 / m_{i}=\gamma+\delta \cdot\left(d_{c} / d_{i}\right)
$$

where $\gamma=(1-\beta) / \alpha$, and $\delta=1 / a$. Or in terms of k_{1} and $k_{2}, k_{2}=1 /$ and $k_{1}=(1+\delta-\gamma) / \delta$.

Yet we would rather think in terms of c_{i} and ${ }_{c}{ }_{c}$ determining m_{i} rather than i / m_{i}. So rather than trying to lineariz the market share function, we can estimate it directly as nbiainec in equation (5) (with m_{i} replacing $m_{i, ~}$) by nonlinear ostimation methods.

Felow we will conmare estimation of k_{1} ard k_{2} obtained from equations (7), (9), and (5). The estimetions were performe on the TROLL system ${ }^{5}$. The estimation procedure in TROLL is besed on Marquardt's alqorithm for least-squares estimation of norlinear parameters 1121.

We estimated equations (7), (9), and (5) for a major brand of gasoline in a Furopean country. There are 35 quarterly observations, from the first quarter of 1962 to the third quarter of 1970. The statistical results for the nonlinear model are based on its linearized form around the ontimu'n, i.e. the minimum of the residual sum of squares ${ }^{6}$. Let $\hat{v}=\left(0_{1} \ldots 0_{p} \ldots o_{p}\right)^{\prime}=$ vector of parameters ; $x_{t}=\left(x_{1 t} \ldots x_{p t} \ldots x_{p t}\right)^{\prime}=$ vector of observations. The general model is written as,

$$
y_{t}=f\left(x_{t}, \theta\right)+\varepsilon_{t}
$$

where ε_{t} is the disturbance term.

Let $\hat{\theta}$ be the final least-squares estimate of θ. With θ close to $\dot{\theta}$. $E\left(y_{t}\right)$ can be approximated by a first-order Taylor expansion itlout $\hat{\theta}$,
(10)

with $\hat{f}_{p t}=\binom{\partial f\left(x_{1}, \theta\right)}{\partial \theta_{p}}_{\theta=\hat{\theta}}$, and

$$
\hat{f}_{t}=f\left(x_{t}, \hat{\theta}\right)-\sum \hat{f}_{p t} \hat{\theta}_{p},
$$

equation (10) can be written as a linear function of the parameters

$$
\begin{equation*}
z_{t} \equiv \sum_{p} \theta_{p} \cdot \hat{f}_{p t}+\varepsilon_{t} \tag{11}
\end{equation*}
$$

where, $z_{t} \equiv v_{t}-\hat{f}_{t}$. The statistics for the nonlinear model are similar to those of a linear regression. Thus, if we define the following ($T \times P$) - matrix :

$$
F=\left(\begin{array}{cccc}
\hat{f}_{11} & \hat{f}_{21} & \cdots & \hat{f}_{p 1} \\
\hat{f}_{12} & \hat{T}_{22} & \cdots & \hat{f}_{p 2} \\
\vdots & & & \\
\hat{f}_{1 T} & \hat{f}_{2 T} & \cdots & \hat{f}_{p T}
\end{array}\right)
$$

where T is the number of observations available, than the estimate variance-covariance matrix of $\hat{\theta}$ is $V(\hat{\theta})=s^{2}$. $(F \cdot F)^{-1}$, in which ? is tho residual mean square?

Note that s^{2} is no longer an unhiased eitimate of σ^{2}, the disturbance variance and that even when the error term is normally distributed, $\hat{\theta}$ is no longer normally distributed. As a result, the usual $t-, F-$, and Durbin-llatson- statistics are not valid in peneral. However, these statistics will he reforted here they should therefore he refarded as mere comparison values.

The results for hrand i are presented $f n$ Table I. Both k_{1} and \hat{k}_{2} are hiphly significant. Yet they are of little ure. First, the high value nf \hat{k}_{1} wnuld restrict the meaningful outlatshare of hrand i to less than 5 ner cent. Yet, over the whole period of ohservations, its outlet share was higher than 8 per cent. Worse even, \hat{k}_{2} is negative. The values of the nurbin-Watson statistic indicates autncorrelation of the residuals, and hence prablems with the model snecification. There are several posejtio explanations. One is that important additional explanatory variables may have heen left nut. A previous study of these data shows that this is not the case ${ }^{8}$. More liRely reasons are the misspecifir tion of the transition probability functions, and the assumption that observec market shares are equilibrium values.

In other cases one may have better luck. For exam-

 ple, we applied the $H-F$ model on another brand $(a)^{9}$, and found results similar to those in the $H-F$ paper as illustrated in Tahle II The Durbin-Watson statistic, however, af̧in indicates significant 10 autocorrelatinn.In the next section we will explore two ways in
which the model can te made robust. We will apply both these morel formulations to the data for brand 1 .
4. ALTERNATIVF FORMULATIONS

Ir, this section we will redefine the transition probability functions. First, as exponential functions of the relative number of outlets in section 4.1., and next as logistic functions in section 4.2. How to make use of these models will he further examined in section 4.3.
4.1. Exponertjal model
$\operatorname{Let} D_{i}=d_{i} / d_{c}$, and $D_{c}=d_{c} / d_{i}$.
Define λ_{i} as,
(12) $\quad \lambda_{i}=1-E X P\left(-a_{i} \cdot D_{i}\right)$
where $e_{1}>0$. If there are no outlet's for brand $i, \lambda_{1}=0$. The larger d_{i} / d_{c}, the larger $\lambda_{i} i s$. If d_{c} is zero, $\lambda_{i}=1$. Also when d_{i} / d_{c} approaches infinity, λ_{i} approaches one. Equation (12) thus relates the relative number of outlets 0_{i}, to the transition probebility λ_{i}, in a robust way.

$$
\text { Similarly, } \lambda_{c} \text { is defined as }
$$

(13) $\quad \lambda_{c}=1-\operatorname{EXP}\left(-\lambda_{c} \cdot D_{c}\right)$
where $a_{c}>D_{0}$ And therefore, $\sigma_{c}=\operatorname{EXP}\left(-a_{i} \cdot D_{i}\right), \sigma_{i}=\operatorname{ExP}\left(-a_{c} \cdot \eta_{c}\right.$

Market share at time t is related to market share

at time $t-1$,
(14) $\quad m_{1, t}=\left\{1-E X P\left(-a_{i} \cdot D_{i, t}\right)-E X P\left(-a_{c} \cdot D_{c, t}\right)\right\} \cdot m_{i, t-1}$

$$
+E X P\left(-{ }_{c}{ }_{c} \cdot D_{c, t}\right)
$$

Assume now for a moment, as $H-F$ did, that observed market share values ere equilibriur values, for given values of $D_{j, t}$ and $D_{c, t}$. That is,
(15) $m_{i, t, e}=\operatorname{EXP}\left(-a_{c} \cdot D_{c, t}\right) /\left[E X P\left(-a_{i} \cdot D_{i, t}\right)+\operatorname{EXP}\left(-a_{c} \cdot D_{c, t}\right)\right\}$
Applying a logit transformation to (15) results in
a linear model ${ }^{1!}$,
(16) $\log \left[m_{i, t, e} /\left(1-m_{i, t, e}\right)\right]=a_{i} \cdot D_{i, t}-a_{c} \cdot D_{c, t} \cdot$

The results of the estimation of a_{i} and a_{c} for brand i are presented in Table III. The estimated \dot{a}_{i} is negative which would seem to indicate that the assumption on equilibrium is not at all warrantec

It should be clear that many assumptions - not satisfied in this case - have to be made in order to accept tle equilibrium form (16). For example, provjded that
a) - the consumption patterns are adequately stable,
b) - the unit-time period is sufficiently long so that the disruptive effects of a marketing campaign launched in periou
[t-1,t] - on the steady-state market shares can resorb in a new equilibrium achieved within the same period [t-1,t],
c) - the unit-time period is short enough so that no competitive reaction can interfere with this new ecuilitirium,
we may retain equation (15). The restrictive and somewhat contradictory character of this non-exhaustive set of assumptions explain why we should turn to dynamic forms. This does not imply that we have to disregard the steady-state aspects when we are about to make decisions on where to add new outlets. The results in Tahle Ill merely indicate the market dyamics shnuld be taken into account in estimating the parameters.

Insert Table 111 about here
Equation (14) is intrinsically nonlinear, and was
estimated in two different ways. First, we used TROLL. Secondly, we applied the Sequential Unconstrained Minimizatinn Technique (SUMT) 12. Nonlinear programming can be used for nonlinear estimetion in the following way. Let the model be,

$$
y_{t}=f\left(x_{t}, \theta\right)+\varepsilon_{t},
$$

where ${ }_{t}$ is tho disturbence torm. Minimizing tho sum of squeroe is achieved by solving the nonlinear programming problem helew.

$$
\begin{equation*}
\min _{\theta} \quad \varepsilon_{t}^{t}=1 \quad \varepsilon_{t}^{2}(\theta) \tag{17}
\end{equation*}
$$

s.t. $\quad y_{t}-f\left(x_{t}, 0\right)-\varepsilon_{t}=0, t=1, \ldots, T$

Tahlo IV shows the results of the estimation of equation (14) usinf TROLL and SUMT. Figure 2 illustrates λ_{i} and λ_{c} as functions of 0_{i} and n_{c} respectively.

With the current number of outlets, $D_{1}=$, and $D_{c}=\quad, \quad \lambda_{i}=$
$\lambda_{c}=$

These vilues are very high, which is to be expected for a well developed market. With these values of λ_{i} and λ_{c}, predicted equilibrium market share is . A one per cent increase in $d_{i} /\left(d_{i}+d_{c}\right)$, and assuming d_{c} remains constant, equilibrium market share would increase by Fer cent. Whether such an increase in share would be worthwile depends on industry sales volume, unit profit, and the number of new outlets needed to increase outlet share by one percent.

More interesting of course is to look at the problem on a regional basis. For this particular product, we have information on four different regions. The company's outlet share varies from a high of about 10 per cent in one region to a low of about 5 per cent in another region. Incremental yearly regional sales per outlet added are shown in Tahle V for cach of the four rerions. Adding outlets in region contributes the highest marginal return.

It is quite possible that the response parameters differ ecoross regions. For example, rural areas might be tistinguished from metropclitan areas. In our particular application in-
(4)
formation by region was available only on an annual basis over a period of six years. This was insufficient for the purpose of estimating response coefficients by region.

Insert Table V about here

4.2. Logistic..model

Market share as a function of relative number of outlets is often thought of as having an S shaped form. Varicus oil companies, for example, have been able to observe such S curves in plots of sales or market share as functions of the number or 13 the relative number of outlets.

The theoretical arguments in favor of such a S shaped relationship at the market share level - already introduced in the form of equation (15) - may also hold at the transition probability level. Thus, at one extreme, if the oil company has too few filling-stations consumers will notice them too infrequently and will often be obliged to tank up ot other companies stations; as a consequence, their loyalty will be very low. As the number of stations increases consumers will be able to tank up at the company petrol pumps locatod in various geographical areas and their loyalt will be enhanced accordingly. At the other extreme, if the company continues to extend its distribution network, each new station cone tructed will he\%e to attract consumers from the remaining hard co: of competitors customers.

Estimating the parameters of equation (20) will raise one issue. If the historical data come from a stable market, i.e. our outlet shares and market shares show relatively little variability, there will be severe multicnllinearity problems. As mentioned in sfetion 3, the independent variables in the linear equation derived from a first order Taylor expansion are first order derivatives evaluated at the current solution. Let the current solution be $a_{i}=a_{i}^{a}$, $b_{i}=b_{i}^{0}, a_{c}=a_{c}^{0}$, and $b_{c}=b_{c}^{0}$. To illustrate the multicnlifineaPity problem, consider the derivatives with respect to a_{i} and b_{i}, evaluated at $a_{i}=a_{i}^{0}$ and $b_{i}=b_{i}^{0}$,
(22)

$$
\frac{\partial m_{i, t}\left(a_{i}=a_{i}^{0} ; n_{i}=b_{i}^{0}\right)}{\partial a_{i}}=-m_{i, t-1} 0_{i, t}^{0_{i}^{0}},\left(a_{i}^{0}+0_{i, t}^{b_{i}^{0}}\right)^{2}
$$

With limited variation in $D_{i, t}$, there will be high correlation between $\partial m_{i, t} / \partial a_{i}$ and $\partial m_{i, t} / \partial b_{i}$.

> An important issue in nonlinear estimation is fin- ding good initial values. We used the following procedure. In stead state, the elasticity of market share with respect to the relative number of outlets is,

$$
\begin{equation*}
n_{m_{2, t, e}}, D_{i, t}=b_{i} \cdot \lambda_{i} \cdot m_{c, t, e} \tag{24}
\end{equation*}
$$

(a)

For these reasons, a S shaped curve relating transition probabilities to the relative number of retail outlets seems justified. Hence we can define λ_{i} as

$$
\begin{equation*}
\lambda_{i}=D_{i}^{b_{i}} /\left(a_{i}+D_{i}^{b_{i}}\right) \tag{18}
\end{equation*}
$$

where a_{i} and hi are positive. With $d_{i}=0, \lambda_{i}=0$. With $d_{c}=0$, $\lambda_{i}=1 . \lambda_{i}$ increases with D_{i} and as D_{i} gets larger and larger, λ_{i} approaches one, according to a S sheped pattern.

$$
\text { Similarly } \lambda_{c} \text { is defined as }
$$

$$
\begin{equation*}
\lambda_{c}=D_{c}^{b} c /\left(a_{c}+D_{c}^{b} c^{b}\right) \tag{19}
\end{equation*}
$$

with a and be positive constants. The switching probahilities are defined as $\sigma_{c}=a_{i} /\left(a_{i}+D_{i}\right), \quad \sigma_{i}=a_{c} /\left(a_{c}+D_{c}^{b}\right)$.

$$
\text { Market share at time } t \text { is then, }
$$

(DD)

$$
\begin{aligned}
& \left.m_{i, t}=\left[\left(D_{i, t} \cdot D_{c, t}-a_{i} a_{c}\right) / i_{i}+D_{i, t}\right) \cdot\left(a_{c}+D_{c, t}\right)\right] \\
& \text { - } m_{i, t-1}+\left[a_{c} /\left(a_{c}+D_{c, t}\right)\right] \\
& \text { If } D_{1} \text { remains equal to } D_{1, t} \text {, and } D_{c} \text { to } D_{c, t} \text {, steady }
\end{aligned}
$$

state market share would be.

$$
m_{i, t, e}=a_{c}\left(a_{i}+D_{i, t}\right) /\left[a_{i}\left(a_{c}+D_{c, t}\right)+a_{c}\left(a_{i}+b_{i, t}\right)\right]
$$

To estimote initial values for the parameters, we assumed a value of 0.5 for this elasticity. For a value of $\lambda_{i}=.99$, and a given value for $m_{c, t, e}$, we obtained $b_{i}=0.56$. Substituting this value into equation (18), and solving for \exists_{i}, gave $a_{i}=.0143$. Applying the same reasoning to obtain initial values for a_{c} and b resultec in $a_{c}=0.625$ and $b_{c}=2.46$.

With these initiai values TROLL failed to find an optimal solution. Divergence occurred for these and for all other initial values which we tried. The Sumt program performed hetter. The main reason is probably that the method for minimizing the unconstrained penalty function is the Newton-Raphson method, a second order procedure, whereas Marquardt's estimation method 14
only uses first order derivatives. Furthermore, all our SUMT computations were done in double precision. This may be particularly important in view of the fact that there is a real multicollinea rity problem. The SUMT estimates arevshown in Table VI. The t statistics are very poor, as expected. Nevertheless, the coefficients all have the correct $s i g n$, and the magnitudes are reasonable. After all, the estimated values are not too different from our initial subjectivo sstimates.

Insert Table V_{1} about here

With the current values of D_{i} and $D_{c}, \lambda_{i}=$, $\lambda_{c}=$. Predicted sieady state market share is, compared to an actual merket share of . ichle VII shows the incremental sales for adding a new outlet in each of the reginns.

Insert Table VII about here

4.3. Model applioation

Tatles V and VII show respectively how the exponential and logistic models con be applied to compare incremental sales from investment in outlets in various regions.

The ultimate measure of performance is the comparison of regional profits rather than sales ${ }^{15}$. The cost structure may differ from che region to another. For example, transportation costs, and cost of purchasing land will vary acoross regions.

The optimization model (8) proposed by $H-F$ could be adjusted for the exponential transition probability functions of section 4. . We replace ${\underset{q}{q}}_{i}^{j t}$. $d_{i}^{j t}$ in the objective function by $Q^{j t} \cdot m_{j, t}^{j}$. The constraint $\ddot{\eta}_{i}^{j t}=k_{2} \cdot Q^{j t} /\left(d_{c}^{j t}+\mu \cdot d_{i}^{j t}\right)$ is replaced by :

$$
m_{i, t}^{j}=\left(1-e^{-a_{i}^{j} \cdot 0_{i}^{j}}, t-e^{-a_{c}^{j} \cdot n_{c}^{j}}, t\right) m_{i, t-1}^{j}+e^{-a_{c}^{j} \cdot 0_{c, t}^{j}}
$$

or if cur interest is only in steady state results without concern for the transient behavior,

$$
m_{i, t}^{j}=e^{-a_{c}^{j} \cdot u_{c, t}^{j}} /\left(e^{-a_{i}^{j} \cdot 0_{i, t}^{j}}+e^{-a_{c}^{j} \cdot 0_{c, t}^{j}}\right)
$$

Ifth the logistic model, complications would arié
In the optimiz tion, because the transition probability functions
are convex for some range of $D_{i}\left(o r D_{c}\right.$), and concave elsewhere.

Nevertheless the model will remain useful. Instead of trying to find the optimal allocation over time, the model could be applied to evaluate various outlet expansion plans.
5. CONCLUSION

In this paper we have presented a detailed study of the aggresate retail outlet locetion model developed hy Hartung and Fisher, ble found that their general procedure was sound, but that the specifics suffered from a variety of problems regaroing the estimation of the model paramsters, and the robustness of the response functions. Remedial action was proposed, and was applied to a brand of gasoline in a European country.
$T A B L E$
Estimation of k_{1} and k_{2} for brand i

	Coefficient Value	Statistic	\hat{k}_{1}	\hat{k}_{2}	R^{2}	\bar{R}^{2}	F (2, 33)	DurbinWatson
Equation (7) $\hat{\alpha}$ -0.57 -6.63								
$\hat{\beta}$	20.26	15.32	21.83	-0.57	. 877	. 870	234.7	0.38
Equation (9)								
$\hat{\gamma}$	26.54	17.25	24.87	- 0.94	. 617	. 594	53.1	0.60
$\hat{\delta}$	- 1.07	- 7.29						
Equation (5)								
\hat{k}_{1}	26.26	11.88	26.26	- 1.03	. 588	. 563	47.0	0.65
\hat{k}_{2}	- 1.03	- 6.86						

	Coefficient Value	$\stackrel{t}{\text { Statistic }}$	\hat{k}_{1}	\hat{k}_{2}	R^{2}	\bar{R}^{2}	$F(2,36)$	OurbinWatson
Equation (7) $\hat{\alpha}$ 0.56 7.72								
\hat{B}	4.99	5.16	5.55	0.56	. 42	. 39	26.6	0.49
Equation (9)								
$\hat{\gamma}$	0.37	0.20	1.55	0.87	. 59	. 57	51.9	0.35
6	1.15	7.20						
Equation (5)								
k_{1}	2.75	2.32	2.75	C. 78	. 69	. 67	79.4	0.54
\hat{k}_{2}	0.78	8.07						

(a)

```
Steady State Estimation of Exponential Model
    for brand i
```

Coefficient Value

$$
\begin{array}{ccc}
\hat{a}_{i} & -26.241 & -20.89 \\
\hat{-}_{c} & -037 & -3.25 \\
\hat{R}^{2}=.700 & -0{ }^{-2}=.681 \quad F(2.33)=38.4 \quad D W=0.49
\end{array}
$$

Coefficient
Statistic
R^{2}
$\bar{R}^{2} \quad F(2,32)$
0W

TROLL
\hat{a}_{1}
59.08
2.75
.70
. 68
37.3
2.68
\hat{a}_{c}
0.73
7.30

SUMT

\hat{a}_{i}	59.05	2.76	.70	.69	37.3	2.68
\hat{a}_{c}	0.73	7.63				

SUMT Estimates for Logistic Model			
	Coefficient Value		tstatistiv
\dot{a}_{1}	. 00276		. 019
\bar{b}_{1}	. 8394		. 044
\hat{a}_{c}	. 8598		.0ヶ2
\hat{b}_{c}	2.683		. 068
$R^{2}=$	$.7049 \quad \bar{R}^{2}=.675 \quad F$	$F(4,30)$	$=17.92 \mathrm{OW}$

FOOTNOTES

Based on discussions with various major oil companies. The concept of linked hierarchical models has heen examjned by cruwston ond Scott-Morton [1], and has been applied in the area of operatiorinl planning and control by Green [6], Newson [151, and Shwimer [16]. A possible application in the public sector has been proposec by Hausman and Naert [E].

2 $\hat{\theta}$, the final estimate of θ.

All this adds up to pointing out the bias created in estimatine k_{1} and k_{2} via equation (7).

Notice that no error, term was introduced in equatior (5), had one be added the linearization of (5) would have been impossible.
A test of hypothesis conducted hy LAMEIN [11].

For brand a, 38 ojservations were available.

At this stage an additional quaiification ought to be made about $H-F$ estimation procedure. The similarity of the results obtained from regression analysis apnlied on equations (5) and (5) as opposed to the relative dissimilarity observed between those derived from equaticns (7) and (5) should cause no surprise, since equation (7) contains m_{i}, a stochastic variahle, on both sides (as evidenced by equation (B)). Hence we should expect biased estimates of α and β from small samples ; furthermore in this case $\hat{\alpha}$ and $\hat{\beta}$ are inconsistent since the residuals indicate a strong autocnrreletion among the error terms.

For additional discussion on linearizing such nonlinear models, see Naert and Bultez [14].

For a theoretical exposition of SUMT, see Fiacco and Mc Cormick [4]. The computer program is described in Mylander et al. [i3].

13 Many factors making the S shaped curve plausible in this industry are repurted by kotler [9, pp. 96-971.

14

15 Assuming that profit maximization is the objective.

16 Different types of regions, e.g. metropolitan, suburban, rural, migh have different parameters, therefore a_{i} and a_{c} are superscripted by regions.
 "L $=-1$

年

anion


```
REFERENCFS
```

[1] Crowston, W.B., and M.S. Scott-Morton, "The Design of Hierarchical Decision Systoms". Proceedings of the 11th International Meetiris of TIMS, Fal11970.
[2] Draper, N.R., and H. Smith. Anplied Regression Analysis, New Yark : John Wiley and Sons, 1966.
[3] Eisner, M., and P. Pindyck, "A Generalized Approach to Estimation as Implemented in the TROLL/イ System", Working Paper, National Bureau of Economic Research, Computer Research Center for Economics and Management Science, March 1972.
[4] Fiacco, A.V., and G.P. Mc Cormick, Monlinear Programming : Seouential Unconstrained Minimization Techniques. New York : John Wiley and Sons, 19 §8.
[5] Goldfeld. S.M., and R.E. Quandt, Nonlinear Methods in Econometrics, Amsterdam : North~Holland Publishing Company, 1972.
[6] Green, R.S.. "Heuristic Coupling of Aggregate and Detailed Models in Factory Scheduling", Unpublished Ph. D. Dissertation, Sloan School of Management, M.I.T., 1971.
[7] Hartung, P.H., and J.L. Fisher, "Brand Switching and Matheretical Pregramming, in Market Expansion", Management Science, vol. 2, August 1965. pp. 16-49.
［e］Hausman，W．H．，and P．A．Naert，＂Optimal Resource Allocation in Family Planning Scrvices Delivery＂，Unpublished Working Paper， Alfred P．Sloan School of Management，M．I．T．，August 1872.
［s］Kotler Ph．，Marketing Decision Mahing ：A Model Bui］ding Approach． New York ：Holt，Rinehart and Wiston， 1971.
［1ח］Lambin，J．J．，Modèles et Programmes de Marketing，Paris ：Presses Universitaires de France， 1970.
［11］Lambin，J．J．．＂Is Gasoline Advertising Justified ？＂，The Journal of Business，vol．45，n° 4，October 1872.
［12］Marquardt．D．，＂An Algorithm for Least－Sctares Estimation of Non－ linear Parameters＂，Journal of the Society of Industrial and Applie Mathematics，vol．11，$n^{\circ} 2$ ，June 1963，pp．431－441．

「13〕 Mylander，W．C．，R．L．Holmes，and G．P．Mc Cormick．＂A Guidr to SUMT－Version 4 ：The Computer Program Implementing the Sequential Unconstrained Minimization Technique for Nonlinear Programming＂， Paper RAC－P－63，Research Analysis Corporation，October 1971.

「141 Naert，P．A．，and A．V．Bultez，＂Logically Consistent Varket Share Models＂，Working Paper n° 607－72，Alfred P．Sloan School of Mana－ gement，M．I．T．，June 1972 ；also in Journal of Marketing Research （forthcoming）．
［15］Newson，E．F．P．，＂Lot Size Scheduling to Finite Capacity＂，Unpu－ blished Ph．D．Dissertation，Alfred P．Sloan School of Management， M．I．T．， 1971.
$\lceil 1 E\rceil$ Shwimer，J．，＂Interaction Between Apgregate and Detailed Schedu－ ling in a Job Shop＂．Unpublished Ph．D．Dissertation，Alfred P． Sloan School of Management，M．I．T．， 1972 ．
［17］Wilde．D．J．，and C．S．Beightler，Foundations of Optimization． Englewood Cliffs，N．J．：Prentice Mall， 1967.

