
iiyi-iiiiiiliiiiiiilf

ptiit[i;!iiinnitiiuiii>i)isV I
i![i:



fUBRASIESj
«»

Of TEc*"

ULT. LffiRARtES - DEWEY







HV,

'//>'//

fj^UG 18 1988

trQBAF»55^

Center for Information Systems Research
Massochusefts Institute of Technology

Sloan School of Management
77 Massachusetts Avenue

Cambridge, Massochusetts, 02139





SOFTWARE PRODUCTION ECONOMICS:
THEORETICAL MODELS AND

PRACTICAL TOOLS

Chris F. Kemerer

April1988

CISRWPNo. 168
Sloan WP No. 2005-88

®1988C.F. Kemerer

To be presented at the ACM 27th Annual Technical Symposium .

Washington, D.C., June 1988.

Center for Information Systems Research
Sloan School of Management

Massachusetts Institute of Technology





SOFTWARE PRODUCTION ECONOMICS:
THEORETICAL MODELS AND
PRACTICAL TOOLS

CHRIS F. KEMERER

MIT Sloan School ofManagement

E53-329, 50 Memorial Drive

Cambridge, MA 02139

617/253-2971

BITNET: CKEMERER@SLOAN

To be presented at the ACM 27th Annual Technical Symposium , Washington, D.C.,

June 1988.





Software Production Economics

ABSTRACT

If the current work in software engineering is to have its maximum impact, more

attention needs to be focused on methodological tools for understanding and

managing the software development process. This paper proposes the use of

microeconomics to model software development as a production process.

Microeconomics provides both a rich theory with which to model the likely impacts of

software tools and a diverse set of analytic tools with which to validate those models

on real world data. One theoretical model, Galbraith's Technology Imperative

Model, is described and then applied to the software development process to

illustrate the insights available from a microeconomic approach. The hypotheses

proposed from such a model can be empirically tested, and current examples of such

research are presented. Finally, a substantial list of additional research questions

stemming from the microeconomic production process model are presented, with

suggestions on how to continue the work begun in this area. The benefits from such

research include not only a greater intellectual understanding of the software

development process, but also some immediately valuable recommendations to

practicing software development managers.

ACM CR Categories and Subject Descriptors: D.2.2 [SOFTWARE ENGINEERING] Tools and

techniques, D.2.8 [SOFTWARE ENGINEERING] Metrics, D.2.9 [SOFTWARE ENGINEERING]

Management K.6,0 [MANAGEMENT OF COMPUTING AND INFORMATION SYSTEMS]

General, K.6.3 [MANAGEMENT OF COMPUTING AND INFORxMATION SYSTEMS] Software

Management.



Software Production Economics

I. INTRODUCTION

In order to effect the move from a labor-intensive "craft environment" to a tool,

or capital-intensive "production environment" it will be important to develop

models ofhow software is developed under a production approach. A number of

such models have been proposed. These models typically either deal only with one

aspect of software development (e.g., design [Spector/ Gifford 86]), or address only

certain types of software development (e.g., programming-in-the-small.)l.

What are needed are broader, more general models ofhow to apply engineering

concepts to the task of software production. One such model is the "software

factory" concept [Bratman/Court 75], whose popularity has waxed and waned, but

may be on the rise again due in part to some reported successes in Japan

[Cusumano 87]. This concept draws a very specific analogy between factories,

which are strictly manufacturing entities, and software production. Software,

particularly custom software, while typically thought of as a product in the

software factory model, has many characteristics of a service. These include the

greater customer participation in the creation of a service, the less tangible nature

of services, the greater difficulty in measuring the output of a service, the lesser

degree of standardization of a service, and the tendency of service operations to

locate closely to their customers [Walls 86]. For these reasons, more general

models of software production would also be useful.

Fortunately, such models are available. Economists define "production" as any

activity that creates value. In addition, they have developed a number of powerful

analytic tools with which to quantitatively model any production process that

transforms inputs into outputs. The proper application of these models and

analytic tools can have several obvious benefits for the software engineering

community, including directing tool-making efforts where they might find their

ISee [Manley 85] for a criticism of the limitations of this approach.



Software Production Economics

greatest leverage, proposing worthwhile research questions and generally guiding

managerial thinking about the software development process. While the process

of model-building and the use of models has generally been promoted as an aid to

intellectual advancement in many disciplines, software engineering could

particularly benefit, given its relatively short tenure and the fact that it exists in a

rapidly changing technical and economic environment. The use of models would

force the surfacing of assumptions, and thereby possibly expose newly obsolete

thinking.

The general outline of this paper is as follows. Section 11 describes one classic

theoretical economic model developed by Galbraith to describe the impact of the

increased use of technology on production processes. While this model was

originally applied to manufacturing, it is sufficiently powerful to be of use in

describing other production applications. Sectionm discusses its applicability to

software production, and uses it to make predictions about what the future may

hold for software engineering methods and tools. Section IV then summarizes the

results of some actual current research that models software development as an

economic production process. These results illustrate the usefulness not only of

the economic concepts, but also of the tools of economic analysis. Section V then

describes some ongoing and planned research which takes further advantage of

the economic models. Concluding remarks are presented in Section VI.

II. Galbraith's Model of Technological Impact on Production Processes

A number of economists have examined the phenomenon of the impacts of

technology. Perhaps the best known and the most accessible of these efforts is

John Kenneth Galbraith's 1967 book the New Industrial State , now in its fourth

edition [Galbraith 85]. In Chapter 2 he outlines what he calls the "imperatives of

technology". While much of the rest of the book deals with Galbraith's proposed

solutions to his predicted changes, Chapter 2 is limited to describing what

Galbraith sees as the effects of technological change. He defines technology as the

"systematic application of scientific or other organized knowledge to practical

tasks". The use of technology requires that 1) the production task be divided into

sub-tasks, 2) that knowledge be applied (typically by specialists) to the sub-tasks,



Software Production Economics

and finally 3) that the finished elements be combined to form the final product or

service. While Galbraith has in mind a manufacturing process, (indeed, all of his

illustrative examples are from the automobile industry, particularly the Ford

Motor Company) it is clear that this general description could apply to any task

where technology is being applied. In particular, his description of the change

from how Model T's were made — from highly skilled general labor creating

products based on relatively simple systems, to today's decentralized, assembly

line production of complex, highly interdependent automobiles -- bears quite a

strong resemblance to what the software engineering community is proposing as

changes in the development of software. Given this analogy, and his definition of

technology that encompasses both methodologies and more conventional tools, it

seems reasonable to look at what Galbraith's model of technological change

predicts for the future of technologically-aided software development.

Galbraith presents six hypotheses about the effects of increasing the amount of

technology used in an economic production processes. The first is that an

increasing span of time will separate the beginning of the production process, the

planning, from its eventual result, the product or service. His example is the

difference between the use of readily available sheetmetal for the Model T, and

today's complex interconnection between manufacturers such as Ford and their

large industrial suppliers. These suppliers may even be involved in the

specifications of the raw material (such as steel or tires) that will eventually go

into the car. This greater complexity and the need to subdivide the production into

smaller tasks has the eventual affect of lengthening the critical path for the entire

process.

A second hypothesis is that there will be an increase in the amount ofcapital that

is committed to production over and above that merely required for increased

output. Put another way, the capital to labor ratio will increase. One reason for

this is that the increased knowledge brought to bear on the sub-tasks will

eventually be embodied in some tool or methodology. This, plus his earlier

assertion, leads to a third hypothesis, that due to the increase in the amount of

time and capital that are committed, the investment in the production process will

become increasingly inflexible. Certainly the massive retooling required by the



Software Production Economics

American auto makers to meet the demand for smaller cars is adequate testimony

to this assertion.

A fourth hypothesis is that increased technology will require specialized

manpower. As the process of building a car is divided into smaller and smaller

tasks, and more and more knowledge (in the form of technology) is applied to those

tasks, the staffing requirements change. While an early Ford engineer may have

understood how to build an entire car, the current staffmembers are highly

decentralized, each responsible for increasingly smaller parts of the system. Given

this specialization, the fifth hypothesis follows immediately. That is that larger

organizations will be required in order to pull together these disparate workers.

The sixth and last hypothesis follows from the increased time/money

commitment, the greater inflexibility of that commitment, and the needs of a

larger organization. The sixth hypothesis is that much greater resources will have

to be expended in the planning stage at the beginning of the production process.

Galbraith illustrates this by discussing the relative ease with which Henry Ford

could make changes on short notice to his product (leaving aside the question of

whether he would do such a thing) compared to the tremendous amount of

planning that is required by today's cars, where even the obsolescence is planned.

It will be convenient to summarize these six hypotheses in a short list to make

references to them in later sections. They are:

Technology Effects Hypotheses

1. Increased timespan from inception to implementation

2. Increased capitalization (tools)

3. Greater inflexibility of the investment

4. Greater specialization oflabor

5. Larger organizations

6. Increased planning.



Software Production Economics

III. Application of the Technology Model to Software Production

The technology efTects described above can be used to describe and make

predictions about software development when modeled as an economic production

process. In addition to noting whether or not the changes predicted by Galbraith

have taken (or will take) place, it is even more important to try and assess the

likely impacts of such changes. The evidence for these changes and for some of

their impacts will be described below and in the research results presented in

Section IV.

Galbraith 's first (increased timespan) and fifth (larger organizations)

hypotheses can be thought of together as an increase in the scale size of

production. The question for software production is whether longer projects and

increased team sizes are to be expected from the increased use of technology. A
number ofarguments could be presented for why this is already happening. The

development ofmethodological tools, such as Gane/Sarson/Constantine's

structured analysis and design and structured programming have efi'ected exactly

the kind of change Galbraith describes, in terms of breaking the production of

software into smaller tasks [DeMarco 78]. This modularization is believed to allow

for the successful completion of larger projects, as individual team members can

work independently and in parallel on difi"erent portions of the project that will

ultimately come together into a large system. In this regard, the technology, in

the form of structured methodologies, may permit the completion of larger

projects. Two explanations are possible for explaining the potential creation of

larger projects. The first is that project management may choose to tackle more

ambitious projects due to the availability of these methodological tools.

Alternatively, the fixed costs (startup costs such as learning and in some cases the

purchase price of proprietary methodologies) may be sufiiciently large that

smaller projects may be economically less sound under these methodologies.

A more critical issue, particularly for practitioners, concerns the impacts of

larger project sizes. Using the standard definitions of scale economies (i.e.,

increasing returns to scale are present when the marginal returns to an additional



Software Production Economics j

unit of input are greater than the average returns (at a given level ofvolume), and

decreasing returns are present when the opposite is true), does software

development exhibit either increasing or decreasing returns to scale? Some recent

empirical research by Banker and Kemerer [Banker/Kemerer 87a] related to this

question is described in Section IV,

The truth of Galbraith's second hypothesis (increased capitalization/tool usage)

is already apparent. Even the brief history of software development can be told

through the context of increased tool usage and the resultant increases in

capitalization. For example, Jensen [Jensen] categorizes software generations as

'Trimitive Tools" (e.g., assemblers, basic linkers), "Basic Tools" (e.g., high level

language compilers, basic source editors), "Interactive Tools" (e.g., database

management systems, interactive debug aids), "Modern Tools" (e.g., virtual

memory operating systems, static source analyzers), and "Advanced Tools" (e.g.,

automated requirement specification languages and analyzers, automated

verification systems).

An interesting question to ask in relation to this second hypothesis is, what is

the impact on productivity of these tools? Presumably the direction is positive,

once the fixed costs such as purchase and learning are subtracted, but how large is

the actual impact? Is the efi"ect a difference of degree, whereby productivity on a

project is X% higher due to the use of some tool, T, or is it a difference in kind,

where certain types or sizes of projects could not be done without the tool? And

how can these effects be measured? All of these are important research questions.

Some results relating to these questions from a recent study are provided in

Section IV.

The third hypothesis, increasing inffexibility, is a likely possibility. Three

explanations may be given as to the sources of this infiexibility. The first is the

existence of large learning curves associated with learning new methods

[Grammas/Klein 85]. Given that a large up front investment is required in new

methodologies or tools, firms may be reluctant to adopt them, particularly given

the lack of well-documented methods for verifying the payback in the investment.

The adoption ofAda (TM, US DoD) may be a case in point [Riddle, cited in



Software Production Economics £

Bayer/Melone 87]. Second, the increasing inventory of software has created both a

software maintenance burden and a realization on the part ofmanagers of the

large investments that have been made by their firms in software [Parikh 85].

Given the need for staff trained in, for example, COBOL for maintenance work,

there may be some incentive for managers to continue to write new software in

that language. Third, and finally, as the field matures there will be an emergence

of certain de facto standards. Economists have noted that the establishment of

standards and the creation of an installed base leads to "excess inertia" in the

market, due to the fact that early adopters bear a disproportionate share of the

transient incompatibility costs [Farrell/Saloner 86].

2

The fourth hypothesis, increased specialization ofmanpower, is related to the

previous hypothesis, and there is apparent evidence for it in software production.

Early programmers can be likened to Henry Ford's Model T assemblers. They

were very close to the machine, were skilled at doing a number of tasks by hand,

and generally had a clear understanding of all the steps involved in producing the

final product. Today, programming assignments have been abstracted away from

the machine level through tools such as high level languages and user-friendly

operating systems. Staff today who can, for example, program in assembly

language, tend to be specialists. Application programmers have been increasingly

supplied with tools that allow them to know less and less about the hardware and

systems software with which they are working.

The sixth and final hypothesis, increased resources devoted to the planning

activities associated with production, seems to be coming true. As software

engineering has matured, increased attention has been paid to methodologies for

management, who are the economic actors entrusted with the planning

responsibilities. Papers and panels at recent sessions of the International

2Farrell and Saloner describe this phenomenon with the memorable phrase, "the penguin efTect",

since penguins who must enter the water to find food would prefer that another penguin go first, in

the event that there are predators. Once the first penguins jump in and appear safe, the rest are

glad to follow.



Software Production Economics 10

Conference on Software Engineering have included many examples of these

methodologies, including models to support managerial planning [Manley 85,

Schwartz 87] and algorithmic cost estimation tools [Rubin 85, Miyazaki/Mori 85].

In addition, studies in more managerially-oriented sources continually place

planning as the top-ranked issue facing information systems executives

[BrancheauAVetherbe 87],

Again, the issue for software engineering researchers and practitioners is the

likely impact of this change. One possibility may be that increased attention to

planning may result in more managerially-acceptable projects (e.g., more projects

completed on time, within budget, etc.). Given the relatively dismal track record

of large systems development projects in these areas (e.g., less than 1% of large

completed systems are finished on time, within budget and having met all user

requirements, and up to 25% of large projects are cancelled before finishing [Jones

86]) improvement would be highly welcome. However, any improvement via

improved planning methods may be hard to identify, given that the methods may

induce managers to attempt even more ambitious projects. Methods and metrics

are needed that allow comparison of similarly-sized efi"orts if legitimate

comparisons are to be made in order to evaluate the impact of these improved

planning tools. Section V describes some research in progress designed to look at

one aspect of this process.

In summary, Galbraith's six hypotheses provide a number of insights into how

the production of software may be afiected by the implementation of technological

advances in the form of software engineering tools. This is a theoretical

contribution of economics to the understanding of software development, modeled

as a microeconomic production process. In the next section, the results of some

current research using economic analysis tools to investigate the hypotheses

proposed by Galbraith and others are provided.



Software Production Economics 11

IV. Current Researcii Results

Many of the technology hypotheses can be tested empirically, using tools of

production economics analysis. In addition, and perhaps of greater interest, the

impacts of the changes that are the likely consequences of the increased

application of software engineering technology can also be measured. In this

section, two recent research efforts will be summarized, and their results outlined.

These two examples should serve to illustrate the applicability of microeconomic

production analysis to the modeling of software development.

Galbraith's first and fifth hypotheses relate to the increased scale size that is the

likely result of the increased application of technology. An issue of importance to

both researchers and practitioners is the effect of such an increase in scale size on

the production process. Does software production exhibit decreasing returns to

scale, so that larger projects are less efiicient, increasing returns to scale, so that

larger projects are more efficient, or constant returns to scale, where efficiency is

not affected by the size of the project?

Plausible theories exist on either side of this question. Researchers such as

Boehm [Boehm 81] have noted the presence of a number of factors in new software

development that may contribute to increasing returns to scale, particularly

software development tools such as on-line debuggers or code generators. These

tools may increase productivity, but the relatively large initial investment, both in

purchase and in the organizational learning cost, may proscribe their use on small

projects. A second factor is that larger projects may also benefit from specialized

personnel, whose expertise in a certain area (e.g., assembly language coding) may

increase the project's overall productivity. Finally, all projects require a certain

fixed investment in project management overhead. This type of overhead (e.g.,

status meetings and reports) does not increase directly with project size and

therefore can be a source ofincreasing returns to scale for larger projects.

In contrast to this view, many authors have pointed out the possibility of

decreasing returns to scale on large software projects. Brooks [Brooks 75] has



Software Production Economics 12

noted that the number ofcommunication paths between project team members

increases geometrically with the number of team members. This communication

overhead is a clear case of non-linear cost increase, and hence a factor that could

contribute to decreasing returns to scale. Somewhat analogously, Conte, et al.

[Conte et al. 86] suggest that larger systems development projects will face more

complex interface problems between system components.

Some recent research has set out to empirically test these two competing notions

of the returns to scale for new software development [Banker/Kemerer 87a].

Eight published empirical data-sets were tested for the presence of scale

economies. Previous research in this area was extended by the use ofmore robust

traditional econometric models as well as the use ofnon-parametric specifications.

Based on the results of these tests, it is shown that, in most organizations, the

software development production process first exhibits increasing returns to scale,

but that decreasing returns set in for very large projects. A method for

determining the most productive scale size for any given organization is also

shown. This research is an example ofhow the tools of economic analysis can be

used to both test hypotheses about the effects of technological change and to

provide software development managers with practical advice on how to increase

productivity.

A second research effort primarily relates to Galbraith's second and fourth

hypotheses, which both concern the factors of production. In particular, he

suggests that capital will be substituted for labor, and that manpower

requirements will become more specialized. These hypotheses present a number of

challenging research questions. Can software engineering tools be used to replace

manpower on software development projects? What is the extent of the learning

curves for these tools? Have increased maintenance requirements changed the

demand for tools or for staffing? What aspects ofmanpower specialization affect

productivity?

Some recent research has begun the process of answering these questions for the

maintenance phase of the software production process [Banker, et al., 87]. In this

context maintenance means all of the activities following implementation, and



Software Production Economics 13

therefore includes adaptive and perfective maintenance as well as corrective

maintenance [Lientz/Swanson 80]. Data were collected on 65 software

maintenance projects completed over an 18 month period at a large commercial

bank. These data included the number of hours worked on the projects, the

number of Function Points [AlbrechfGaffney 83] and source lines of code

produced, and the presence or absence of a number of environmental factors

believed to affect productivity. A production process model was created, using the

data envelopment analysis tool [Banker, et al. 84]. This model produced efficiency

ratings for each of the projects. These ratings were then analyzed in light of 16

environmental factors believed to affect productivity. The results of the study

showed that six of the environmental variables had a statistically significant

impact on the productivity of the projects. These effects can be grouped into two

categories that correspond to Galbraith's second (tool usage) and fourth (staff

requirements) hypotheses, and a third category that can be called project

management.

In the category of tool usage, under hardware tools it was found that better

response time was significantly associated with higher productivity. This is

consistent with the findings of a number of other researchers [Lambert 84,

Thadhani 84], but is of broader relevance since it is not based upon sub-second

response time. A methodological tool-related finding was that the use of a

particular structured analysis and design methodology was negatively associated

with productivity. This result is believed to be highly dependent upon the fact that

productivity was being measured only at the level of the current project (as

opposed to the long term productivity associated with an application) and to the

fact that the methodology was newly installed at the site. What this result

suggests, however, is that measurement of the impact of tools on project

productivity will be very difficult, due to the downstream nature ofsome of the

benefits and to the often significant learning costs involved.

The second category, staffing requirements, held the most statistically

significant results of the research. A first, and intuitive result was that project

teams composed of at least half "top performers" (as evidenced by their personnel

ratings) were significantly more productive than teams not so composed. A



Software Production Economics 14

second, and more novel, result was that team members' experience with the

application was more important in explaining variations in their productivity

than was their level of systems experience. Of course, this result may reflect the

maintenance nature of the tasks, and only additional research may show whether

this result holds in general. Nonetheless, this result suggest that increased

specialization as suggested by Galbraith has already occurred along the

application dimension. The managers at the research data-site acted upon this

information by increasing the minimum amount of time that staffmembers were

associated with an application before being rotated to other assignments. This is

another example of the potential of the economic analysis tools to provide practical

managerial recommendations.

Finally, a third group of significant factors was related to the management of

the project schedule. Projects where the manager felt that there was greater than

average deadline pressure were more productive than those where this was not the

case. In addition, project loading (the ratio of work-months to calendar months, or

roughly average staff on the project) was inversely related to productivity. That is,

adding a lot of staff in order to complete a project lowered productivity, as

suggested by Brooks's Law [Brooks 75].

In summary, the results of the scale research and the maintenance productivity

research suggest both the relevance of the Galbraith technology hypotheses and

the utility of the economic analysis tools employed. The next section discusses

further research that is either ongoing or planned that will continue to build on

the economic models and tools approach.

V. Ongoing/Future Research

There are a large number of possible research questions suggested by the

economic production process model of software development. In this section

several of these questions will be posed to further demonstrate the applicability of

this model to a number of questions of theoretical and practical concern.



Software Production Economics 15

One question that arises as a direct result of the research described in section IV

relates to the most productive scale size. In the organizations studied, the most

productive scale size varied, and an interesting further research question would be

to determine the factors that enable some organizations to manage larger projects

successfully. Increasing organizations' ability to do this would have significant

impacts on the profession, and could also help to mitigate any negative impacts of

the hypothesized increase in the scale size that is predicated upon the use of

technology.

One feature of the early research in software production processes is that simple,

one input, one output production process models have been used. For example, the

seminal work ofBoehm uses labor, measured in man-months, as the input and a

source lines of code metric as the output [Boehm 81]. This approach, while a

reasonable surrogate for the process, may not fully account for the differences

between the different phases of the system lifecycle.3 A more complex view of the

process would involve measuring the inputs and outputs at each of the stages,

including requirements analysis, systems design, coding, and testing and

implementation. A number of questions relating to the tradeoffs between phases,

and to potential interaction effects could be very relevant. The possible

intervention of tools to link these phases more tightly or to shift the division of

effort more heavily into other phases would be of great interest to tool developers

and users. And, the development of non-coding metrics for measuring these other

phases would be of general interest.

Some current research [Banker/Kemerer 87b] is developing a two phase model

involving both an analysis/design phase and a coding/testing phase. Of interest is

whether a) the economy of scale results shown in previous research can be further

substantiated with this more sophisticated model, and b) whether the two phases

3Note that Boehm's detailed version of his COCOMO cost estimation model allows for weighting

of the "cost-drivers" by phase.



Software Production Economics 16

can be shown to be separable. Separability is a notion used by economists to

characterize the interaction effects of two or more production processes. A
manufacturing example might be two assembly lines, where one question is

whether an increase in the volume of production on the first line has any impact on

the productivity of the second. For software development it is of interest whether a

large design effort has any effect on the effort involved in the coding phase, over

and above that indicated by the size of the project, (i.e., A large project is likely to

have both a large design and a large coding effort. The question is, whether,

ceteris paribus, a large design effort has some impact on coding.) On the one hand,

a large design effort may indicate that a thorough design was created, which

should improve the productivity of the coding effort. On the other hand, if the staff

members who are doing the design work are also doing the coding, some

exhaustion effects may set in on large projects.

Research more directly related to the second Galbraith technology hypothesis

would be to directly investigate the marginal rate of technical substitution

(MRTS) of capital for labor in the software development context. Assuming that

certain software engineering tools can actually be used to reduce the amount of

professional staff time devoted to a project, then an economic production function

could be developed that represented the relationship between the tool (capital) and

the staff time (labor) that resulted in equal amounts of software being developed

(i.e., an isoquant). With this function an obvious question of interest would be the

optimal mix of capital and labor. Note that the answer is not necessarily simply

the solution with the least amount of labor, since the cost of acquiring and using

the tool (the factor price of capital) is significantly different from zero. Therefore,

in order to determine the optimal capital/labor mix, it would be necessary to

determine the rate at which the tool substituted for labor, the MRTS.

Given the possibility of decreased flexibility suggested by Galbraith's third

hypothesis, there are a number of research questions to be addressed. First, how

can the existence of this inflexibility be confirmed? Research into the diffusion of

technological innovations may be ofsome help in this regard. Research should be

directed at the three factors that are likely to cause this inflexibility, de facto

standardization, software maintenance inventory, and learning curves. The



Software Production Economics 17

existence and presumed impact of de facto standards is looming as an increasingly

important research problem. The work of Sirbu and Stewart [Sirbu/Stewart 86] in

the market for modems may be able to provide insights into a research model for

software.

Software maintenance is a huge and growing problem, and some initial research

directed at understanding how to increase productivity in this area was described

in Section IV. Additional research, particularly at other sites, will shed further

light on this phenomenon and should help practicing software managers reduce

their costs in this area. As suggested by the research in software maintenance

cited earlier, the learning curves involved with various software engineering

innovations are likely to be non-trivial, and therefore may form serious obstacles

to the adoption of software engineering tools. Research should be directed towards

first measuring these costs, and then, based on the knowledge generated by the

models of the process, suggest means of reducing them. This research would have

significant direct payoffs in terms of the earlier and more widespread adoption of

many of the new developments in software engineering.

In summary, numerous important research questions are both suggested by

economic theory and are amenable to analysis using economic modeling tools. A
key element to the success of these efTorts will be the availability of high quality

data from real world implementation sites.

VI. Concluding Remarks

This paper has demonstrated that the tools ofmicroeconomics can be used to

model software development as a production process. The six hypotheses of

Galbraith's Technology Imperative Model were shown to provide significant

insights into the likely effects of the increased use of technology in software

development. The hypotheses from such a model can be empirically tested, and

current examples of such research were presented. This research into scale

economies and software maintenance productivity demonstrated the validity of

many of the research hypotheses, and resulted in practical recommendations for



Software Production Economics 18

software development management. These results are a direct outcome of the

analytic tools, such as data envelopment analysis, provided by the microeconomic

production process model approach.

Finally, a substantial list of additional research questions stemming from the

microeconomic production process model were presented, with suggestions on how

to continue the work begun in this area. The benefits from such research include

not only a greater intellectual understanding of the software development

production process, but also some immediately valuable recommendations to

practicing software development managers. It is suggested that increased efforts

be made to collect the empirical data necessary to apply the theories and tools of

microeconomics to software engineering.



Software Production Economics 19

Bibliography

[AlbrechfGaffney 83]

Albrecht, A. J. and J. GafFney, Jr. "Software Function, Source Lines of Code,

and Development Effort Prediction: A Software Science Validation", IEEE

Transactions on Software Engineering , V. SE-9, N. 6, (November 1983), pp.

639-648.

[Banker, etal. 84]

Banker, R., A. Charnes and W. Cooper. "Some Models for Estimating

Technical and Scale Inefficiencies in DEA" Management Science , V. 30, N. 9,

(September 1984) pp. 1078-1092.

[Banker, etal. 87]

Banker, R., S. Datar, C. Kemerer "Factors Affecting Software Maintenance

Productivity," Proceedings of the 8th International Conference on

Information Systems , Pittsburgh, PA, Dec. 1987.

[Banker/Kemerer 87a]

Banker, R. and C. Kemerer "Scale Economies in New Software

Development," Submitted to IEEE Transactions on Software Engineering .

[Banker/Kemerer 87b]

Banker, R. and C. Kemerer "Test of a Production Economics Model ofNew
Software Development: Comparison ofParametric and Non-parametric

Approaches," working paper, 1987.

[Bayer/Melone 87]

Bayer, J. and N. Melone "Predicting Acquisition and Adoption of Software

Engineering Innovations," Carnegie Mellon University (GSIA) Working

Paper #42-86-87, June 1987.

[Boehm81]

Boehm, B. Software Engineering Economics , Prentice-Hall, Englewood

Cliffs, NJ (1981).



Software Production Economics < 20

[Brancheau/Wetherbe 87]

Brancheau, J. and J. Wetherbe "Key Issues in Information Systems

Management," MIS Quarterly V. 11, N. 1 (March 1987) pp. 23-45.

[Bratman/Court 75]

Bratman, H. and T. Court "The Software Factory," Computer (May 1975)

pp. 28-29.

[Brooks 75]

Brooks, F. The Mythical Man-Month , Addison-Wesley, Reading MA (1975).

[Conteetal.86]

Conte, S., H. Dunsmore, and V. Shen Software Engineering Metrics and

Models, Benjamin-Cummings, Reading, MA (1986).

[Cusumano 87]

Cusumano, Michael "The Software Factory Reconsidered," MIT Sloan School

WorkingPaper #1885-87, June 1987.

[DeMarco 78]

DeMarco, Tom Structured Analysis and System Specification , Yourdon, Inc.

NY, NY (1978).

[Farrell/Saloner 86]

Farrell, J. and G. Saloner "Installed Base and Compatibility: Innovation,

Product Preannouncements, and Predation," American Economic Review V.

76 N. 5 (Dec. 1986) pp.940-955.

[Galbraith 85]

Galbraith, John Kenneth The New Industrial State , 4th Edition, Houghton-

Mifflin, Boston (1985).

[Grammas/Klein 85]

Grammas, G. and J. Klein "Software Productivity as a Strategic Variable,"

Interfaces V. 15 N. 3 (May/June 1985) pp. 116-126.



Software Production Economics 21

[Jensen]

Jensen, R.W. "Projected Productivity Impact ofNear Term ADA Use in

Software System Development," Mimeo, Huglies Aircraft, Fullerton,

California 92634.

[Jones 86]

Jones, Capers "The Productivity Report Card", Software News V. 6, N. 9

(September 1986) p. 19.

[Kemerer 87]

Kemerer, Chris F. "An Empirical Validation of Software Cost Estimation

Models," Communications of the ACM , V. 30 N. 5 (May 1987) pp. 416-429.

[Lambert 84]

Lambert, G. N. "A Comparative Study of System Response Time on Program

Developer Productivity", IBM Systems Journal V. 23, N. 1, (1984) pp. 36-43.

[Lientz/Swanson 80]

Lientz, B. and E.B. Swanson Software Maintenance Management , Addison-

Wesley, Reading, MA (1980).

[Manley 85]

Manley, John "Software Engineering Provisioning Process,
'

Troceedings of

the 8th International Conference on Software Engineering (1985) IEEE

Computer Society Press, pp. 273-284.

[Miyazaki/Mori 85]

Miyazaki, Y. and K. Mori "COCOMO Evaluation and Tailoring,"

Proceedings of the 8th International Conference on Software Engineering

(1985) IEEE Computer Society Press, pp. 292-299.

[Parikh 85]

Parikh, Girish "Software Maintenance: Penny Wise, Program Foolish,"

Computerworld (Sept. 23, 1985) pp. ID11-ID16.



Software Production Economics 22

[Rubin 85]

Rubin, Howard A. "A Comparison of Cost Estimation Tools (A Panel

Session)," Proceedings of the 8th International Conference on Software

Engineering (1985) IEEE Computer Society Press, pp. 174-180.

[Schwartz 87]

Schwartz, David P. "Software Evolution Management: An Integrated

Discipline for Managing Software," Proceedings of the 9th International

Conference on Software Engineering , Monterey, CA (1987).

[Sirbu/Stewart 86]

Sirbu, M. and S. Stewart "Market Structure and the Emergence of

Standards," Carnegie Mellon University Engineering and Public Policy

Working Paper (1986).

[Spector/Gifford 86]

Spector, A. and D. GifTord "Case Study: A Computer Science Perspective of

Bridge Design," Communications of the ACM V. 29 N. 4 (April 1986) pp. 267-

284.

[Thadhani84]

Thadhani, A. J. "Factors Affecting Productivity during Application

Development," IBM Systems Journal V. 23 (1984) pp. 19-35.

[Walls 86]

Walls, J. G. 'Information Systems Development: Product or Service?" Panel

#7, Proceedings of the 7th International Conference on Information Systems

San Diego, CA (Dec. 1986) pp. 347-348.





Mil LIBRARIES

nil nil nil I
III |ii{ iiiij

3 TDflD DD5 3Sfl LDfl

^- h-^yo

6262 G9







Date Due

Lib-26-67






