
MIT LIBRARIES DUPL

3 TOaO DD7EflflEM 1

Basement



J*h«&,;^^

""-x







I'^'S^-B'^H omm

HD28
.M414

>!fe5>i

. M?t:M*'-i>£',;^

n
WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

System Development Corporation ;

Defining The Factory Challenge 1

by

Michael Cusumano

WP 1887-87 Revised Dec, 1988

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE .

CAMBRIDGE, MASSACHUSETTS 02139



0^ OB
itO



CASE 1

SYSTEM DEVELOPMENT CORPORATION: DEFINING THE FACTORY CHALLENGE''

Contents
Introduction
Origins of SDC and the "Software Factory"
Factory Components: Methodology, Organization, Tools
Factory Performance: Initial Problems Revisited
New Problems the Factory Created
Managers' Assessments and the Japanese Challenge
Conclusions

INTRODUCTION

System Development Corporation (SDC), established in 1956 as a subsidiary

of the Rand Corporation, became part of Burroughs in 1981 and then in 1986

became a division of the Unisys Corporation after the 1986 merger of Burroughs

and Sperry. In 1987, Unisys/Sperry's SDC operations, primarily in defense

systems, had approximately $2.5 billion in revenues and 6,000 employees in

facilities across the U.S. The company, since its inception, has specialized in

large-scale, real-time applications systems, which often take years to develop

and run into hundreds of thousands and often millions of lines of code. The

management control problems involved in such projects persuaded SDC

management in the mid-1970s to launch the first attempt in the U.S. to create

a factory-type organization for software production.

SDC's Software Factory was part of the larger movement among software

researchers and developers during the early 1970s to reflect on various

programming experiences and identify useful support tools, design and

programming methods, and management procedures. Analyses of IBM's

development of the operating system for the 360 family of mainframes, as well

as numerous other projects for the U.S. military, NASA, other government

agencies, and private industry, contributed to a body of literature on practical

1 SDC Software Factory



•5

problems faced in software engineering that began emerging at this time. Two

reports on the SDC Software Factory published in 1975 and 1977 were a part of

this literature, and presented convincing arguments promoting engineering or

factory-type discipline, planning, and control as a model for managing large-

scale software development.

SDC allowed its factory effort to lapse in 1978, although the experiment

has had considerable influence on industry practices in the U.S. and abroad.

The factory procedures became a model for SDC's corporate practices and for

the software standards later adopted by the U.S. Department of Defense. But

perhaps the largest impact of the SDC experiment has been in Japan--

particularly at Hitachi, Toshiba, and NEC -- where managers iiave emphasized

the factory approach even more than the U.S. pioneer.

This case is organized into four parts. The first discusses the Software

Factory initiative in the context of SDC's evolution as a company from the

mid-1950s through the early 1970s. The second section analyzes the main

components of the Factory at its inception in 1976 -- a set of standardized

procedures, tools to support the development process, and a matrix organization

dividing labor between system design, done at customer sites, and actual

software production -- detailed design, coding, and testing -- done in the

factory. This is followed by an account of the factory's opening and

dissolution after less than three years of operation. The next section compares

accounts of the performance of the factory with the five major problems SDC

staff designed the factory to solve, and identifies three more serious problems

the factory experiment created: imbalances in the work flow, breakdown of the

matrix system, and resistance on the part of middle-level mangers to the

organizational changes the new system required. The final section recounts

assessments from SDC managers of what the factory achieved and failed to

2 SDC Software Factory



achieve.

The most significant positive results for SDC appear to have been the

identification of software development as a major management issue deserving

corporate attention and resources, and the standardization of better practices

for design, quality assurance, and project management. On the negative side,

the factory represented somewhat of a "mismatch" with SDC's strategy as a

company and with the state and type of software technology it dealt with.

SDC had built a reputation for producing innovative software systems for a

variety of customers; this strategy required a very flexible, job-shop type of

organization, rather than a factory structure. Furthermore, management did not

forsee the degree to which the lack of portable computer languages and

architectures would make it difficult to achieve the factory goals of reusable

tools and code. Management also failed to manage other problems, such as

reorrenting project managers to the new system, and introducing sufficient

controls so that the factory would have enough work to keep it operating.

Finally, rather than focus on the benefits of the factory organization and allow

enough time and resources for it to succeed, top executives ended their

commitment to the effort when its main advocate in management moved on to

another division.

ORIGINS OF SDC AND THE "SOFTWARE FACTORY"

Companv Background

System Development Corporation originated as a nonprofit, government-

sponsored corporation on the model of MIT's Lincoln Laboratories and MITRE

Corporation. In the mid-1950s, the U.S. Air Force gave a contract to the Rand

Corporation to build what would become the world's first real-time command

3 SDC Software Factory



and control system for air defense, SAGE (Semi-Automatic Ground Environment) .

Rand management then decided to spin off its System Development Division as

an independent entity, named System Development Corporation.

The new company required increasing numbers of programmers to build

SAGE and then a variety of other projects, and expanded from about 450

employees in 1956 to 3500 by 1959. For example, after completing SAGE by

the late 1950s, SDC designed a command-control system for the U.S. Strategic

Air Command, SACCS (SAC Command and Control). The operating system alone,

which ran on an IBM mainframe, exceeded a million lines of code, an astounding

length for a program at that time. SDC then went on during the 1960s to

build other complex software systems for the U.S. government to handle air

defense and communications, satellite control, various types of simulations, and

the Apollo space missions. Projects for the private sector included information

management systems for hospitals, the National Science Foundation, state

governments, airports, libraries, and other customers.

The reputation SDC gained from these projects was as a product innovator,

"pioneering. . . timesharing technology, user- oriented data management and display

systems, and tools and languages enabling programmers to interact readily with

computing machines.' But the need to attract new business and hold talented

employees with higher salaries led SDC's board of directors to abandon the

nonprofit status in 1969 and become more aggressive at competing for contracts

across the U.S. and abroad.

The transition proved to be difficult. Years of decline in government

procurement for air defense systems, vertical integration by hardware

manufacturers such as Boeing and TRW into software programming, and entrance

into the software contracts business of about 2000 new firms after 1960, greatly

increased competition for the type of work SDC did. Another change after

4 SDC Software Factory



1969 was that the U.S. government no longer guaranteed SDC a steady stream

of contracts as one of the Department of Defense's special "non-profit"

suppliers." To survive in a more competitive setting, SDC now had to submit

low-priced bids for a wider range of software and hardware systems and for

different types of customers, not only the Department of Defense. The need to

write software for a variety of mainframes, minicomputers, and smaller machines

made by DEC, Gould, Burroughs, IBM, Amdahl, Univac, and other computer

vendors complicated SDC's system design and programming tasks.

Under these conditions, SDC management retrenched and reduced its

employees whenever contract orders fell; employees thus dropped from a peak of

4300 in 1963 to 3200 in 1969 and to merely 2000 by 1971. After continued

financial losses, the board of directors launched a nation-wide search and in

1971 selected Dr. George Mueller, who had gained in NASA and TRW a

reputation for "cost reductions, technology development, and marketing," as the

new Chief Executive Officer. Mueller had started his career as a system

designer for Ramo-Wool ridge Corporation in the 1950s and then worked as a

vice-president for R&D in TRW's Space Technology Laboratory, an associate

administrator for NASA during the Gemini and Apollo flights during 1963-1969,

and most recently as a senior vice-president in General Dynamics.^

Mueller quickly set out to change SDC's product/market strategy and

method of operations management. One issue for the company was how to get

more orders from customers not dependent on U.S. defense spending. Another

was to learn more about integrating hardware products with software.

Procurement officials in the government and private industry had gradually come

to prefer "total systems suppliers" -- companies that could design and install

computer hardware and communications devices as well as software. Many

hardware vendors, such as Boeing, were developing this capability by setting up

5 SDC Software Factory



in-house software divisions and were no longer contracting out as much

software development to firms like SDC. A third issue was competitive

advantage. As recounted by the company history, Mueller felt the software

industry was "maturing" and it did not appear to him that SDC, plagued with

unpredictable demand for costly, custom job orders, was offering significantly

better product or process technology than other firms:

The problem facing SDC in 1971 was that we were building custom
software on a one-by-each' basis, in a fast-maturing industry where
SDC's competitive edge had all but eroded, predominantly for a single

customer -- the Department of Defense -- with unpredictable demand
for our services and at a price that covered our labor plus a small

government allowed markup. The answer to growth in revenues and
profits was clearly not in doing more of the same.

Taking advantage of the crisis atmosphere, Mueller launched a review and

streamlining of all operations -- planning, finance, administration, personnel,

reporting and control systems -- and created profit centers to make managers

directly responsible for their margins above costs. He brought in professional

managers from Ford, General Dynamics, RCA, Rockwell, Computer Sciences

Corporation, and Singer. Of equal or even greater significance, he "took

personal charge of the R&D program and focused it on creating a "corporate

hardware capability, [and] a methodical factory' approach to developing

software.
"

Along with these efforts in operations rationalization and R&D, Mueller

successfully diversified into non-defense systems such as for air traffic control;

command, control and intelligence for local governments and police departments;

custom work stations; communications networks; and management information

systems. By 1974, defense contracts had fallen to just SO^b of SDC's business.

Meanwhile, SDC doubled revenues from $45 million in 1971 to $90 million in

6 SDC Software Factory



1974, and employees to 3900. Profits recovered, but Mueller was still seeking a

competitive advantage for SDC that would rely on the technical skills within

the company. ^

The Factorv Initiative

This was the atmosphere which produced the first U.S. software factory:

a CEO who believed that the industry was maturing, job-shop production was

too costly, and all operations in the company had to be rationalized. The

factory, as explained in the company history, was an attempt to "embody

Mueller's concept of a streamlined approach to the manufacturing of software,"

and thereby make SDC "the first company to develop custom software more

scientifically, economically, and reliably."'*^ While SDC projects tended to be

"state of the art" in terms of product technology, they were also usually on

fixed-price contracts, which meant SDC lost money every time a project went

over-budget. This was usually the case:

All were pushing the state of the art in real-time command-control
information systems. All had fixed prices or cost ceilings. All called

for major software developments to be performed away from SDC's
Santa Monica headquarters, near the customer. And all suffered from
early schedule and, consequently, cost difficulties.'^

Careful project control or reuse of code to reduce development time and

costs were not practices SDC managers commonly followed. In fact, when

Mueller joined the firm there was no "standard policy or engineering procedure

for company-wide software development. . . each programming project was thought

to be so unique as to defy a common policy. The entire domain of software

development was deemed more an art than a science by its practitioners." Jim

Skaggs, SDC president after the merger with Burroughs and the manager who

7 SDC Software Factory



headed the Systems Group at the time of the Software Factory, described the

usual state of SDC operations in the early 1970s: "We were engaged in creating

a one-time miracle' in three places at once.' "'

Mueller seems to have met little or no resistance when he set up a

Software Development Department within the R&D Division in the fall of 1972

to study tools. He put Terry Court, a B.A. in matiiematics from UCLA who was

a senior project manager in SDC's Government Systems division, in charge of

the project. Mueller gave him the goal of achieving "a methodical, standardized

engineering approach to software development," and called the effort "The

Software Factory," registering the name as an SDC trademark. Court hand-

picked his team, which included Harvey Bratman, another B.A. in mathematics

from UCLA with a master's degree in systems management from USC. Court,

Bratman, and others worked on the project for three years until 1975, when

Mueller asked John B. "Jack" Munson, a divisional vice-president, to form a task

force to transfer the tools being developed in research to SDC's line

organization .

'

'

Munson had joined SDC in the 1950s, after graduating with a degree in

mathematics from Knox College. Initially, he worked as a mathematical

programmer on SAGE and then moved up into management during the 1960s.

Now a Unisys vice president running SDC's space shuttle software services in

Houston, Texas, Munson recalled his motivation to work on the factory as

stemming from a need to improve control over large-scale system development:

I was over in the Defense Division at the time and we [had]... a

couple of big programs that were in trouble. Management wasn't
getting visibility into them. I was spending most of my time on an
airplane and George Mueller, who was then the chief executive of the
company, who had been working in the R&D Division with these guys
on his concepts (I think he was really the one that coined the name
Software Factory, and applied it to the work that they were doing in

the R&D Division on primarily tools), had been investing maybe three
years and several millions of dollars into this R&D project that Terry

8 SDC Software Factory



and Harvey were doing over there. And so we got a confluence at

that point in time of, if you guys are doing so well in the R&D
effort, we need to convert it over to something real. And so, he
tapped me at that time and said, could you at least come in and look

at the R&D effort and tell me how we could turn this into making
money for the company. You know, convert it from being a sandbox
in R&D into something productive. And so I got tapped with this

project. By that time it was already deemed the Software Factory. '°

Bratman and Court notified the world of their efforts in a 1975 article in

the journal Computer , titled "The Software Factory."'^ They discussed how

studies of software development had found a poor correlation between

programmer productivity and experience, and suggested this indicated "the lack

of a methodological and well founded body of knowledge on the software

development process. "-^^ And, despite the continued refinement of tools and

programming concepts, Bratman and Court complained these "are either not used

at all in system development or, when they are used, they are not used in an

integrated manner, but are put together ad hoc each time a large system

programming project is begun. "^^ There were five categories of problems in

particular that the SDC researchers had encountered in software development

and hoped a factory approach would ameliorate:

1) Lack of Discipline and Repeatabilitv : Bratman and Court referred to the

absence of "standardized approaches to the development process. Each

time a software system is developed, the process is partially reinvented,

with the consequence that we never become very proficient at this

process, nor are we able to accurately predict the time and resources

required.

"

2) Lack of Development Visibility : They complained that code production was

often used to indicate progress in completing a software project, but this

9 SDC Software Factory



did not measure "completeness of performance requirements, the design

itself, or how well the code implements the design. " Not until system

testing did it become clear how well a project was progressing; and fixing

problems at this stage "is exceedingly expensive and time consuming...

Managers have difficulty in tracking the progression of the system from

phase to phase, and as a result they have problems in planning and

controlling the developing system."

3) Changing Performance Requirements : The problem here was that

"Performance requirements are subjected to interpretation and change as

soon as the system design and implementation process begin the translation

of requirements to computer programs." Not only was it nearly impossible

to specify completely performance requirements before detailed design and

coding, but there were often disagreements on the meaning of certain

requirements, and changes demanded by the customer.

4) Lack of Design and Verification Tools : Several tools -- such as high-

level languages, data-management systems, subroutine libraries, .and

debugging tools, facilitated coding and debugging. But Bratman and Court

asserted that these activities accounted for only about 20*^ of development

costs. "There are few widely ijsed tools and techniques which provide

significant support to other components of the development process such

as requirement and design specification, verification and validation, project

management and control, documentation, etc."

5) Lack of Software Reusability : There were many application areas that

required similar logic, but there was little capability to reuse software

10 SDC Software Factory



components, "Extensive use of off-the-shelf software modules would

significantly lessen the risk and shorten the time required for software

development. "^^

To solve these problems, Bratman and Court offered "The Software

Factory," which they defined in 1975 as "an integrated set of tools that

supports the concepts of structured programming, top-down program

development, and program production libraries, and incorporates hierarchically

structured program modules as the basic unit of production." Reusability they

hoped to attack through "the careful system component structuring, the specific

relationship with performance requirements, and the improved documentation

inherent in software developed in the factory. "^"^

None of the procedures and tools under development were "new or

"revolutionary." But Bratman and Court insisted that, when integrated and

applied consistently, they should result in a process with the potential to

introduce significant improvements in developing software systems "regardless of

size, complexity, application, or programming language." The factory thus

offered "a disciplined, repeatable process terminating in specified results within

budgeted costs and on a predefined schedule." A specific goal was to eliminate

or reduce the need to re-tool for each new system, thereby allowing the

organization to get projects underway quickly and improve, through capturing

the benefits of experience, specific functions such as program design, code

production, testing, and project management. "^^

Although Bratman and Court complained about the unsystematic use of best

methods as well as tools, in the 1975 article, they proposed a software factory

model consisting primarily of an integrated set of standardized design-support

and project-management tools. This can be seen in their early definition of the

n SDC Software Factory



Software Factory quoted above. The 1975 article did not even mention what

Bratman, Court, and Munson later considered the most important part of the

factory, the Software Development Manual, also known as the SDM handbook.

But, while SDC had tried to introduce a factory infrastructure before having a

factory process, Munson explained that, by the end of 1975, they had decided

this approach was a mistake:

Court and Bratman both came to work for me over in the Defense
Division. And we spent about a year or so, prior to the time we set

up the factory, thinking through the implications of what they had,
and what the real problems are. One of the major conclusions we
came to at this point in time was that tools can't drive the
technology. Tools have to support the technology. And that what
the tools seemed like a great deal but, without a methodology that

the people were using, and that the tools were supporting, it was the

wrong way to go. So what we did was stop the tool development at

that point for a bit and spend about a year working on the
methodology, which was the Software Development Manual . We got
that produced, and then we essentially fitted the tools that they had
to the methodology and then defined some new tools that we
wanted. "^^

By 1976, Munson's team was viewing the factory as a "facility," structured

around three discrete elements -- standardized procedures for design and

management; a new organization of the design and production process; and a set

of advanced design-support and project-management tools. This was ultimately

the order of importance in how they viewed these elements, in that the tool set

had to support the standardized methodology as well as the new organization.

The organizational innovation they introduced consisted of a matrix system

whereby project managers would be responsible for system design at customer

sites while other managers would take responsibility for building and testing the

actual programs in the factory. Munson recalled the factory components and

their priorities:

12 SDC Software Factory



When I think of the "Software Factory," I think of three elements...
The policy infrastructure -- the procedures in the development
manual -- is one piece of it. The tools to implement that
engineering practice is a second element. But the third is

organizational. We included an organizational approach as part of the
factory and that included two pieces, an external and internal piece.

The external piece was a matrix organization, i.e. the work would be
system engineered outside the organization but the work would be
performed within the organization. And within the organization we
looked at breaking down the work into, if you will, (1) design, (2)

production and (3) test as three independent spaces, with separate
organizational and management responsibilities, although we thought
some of the people would flow with the work. . . But we thought of it

in the order that the most important piece was the procedures. The
second most important was the organization. And then the third

most important was the tools. In a priority sense, the tools were
meant to support the first two. So the fact that we didn't have a

lot of tools available didn't really bother us that much. We thought
we would eventually evolve there. '^°

This broader view of the Software Factory can be seen in the new definition

Bratman and Court offered in their 1977 article:

The Software Factory Concept [is] a software development facility

consisting of an integrated set of standards, procedures, and tools

that supports a disciplined and repeatable approach to software
development and replaces ad hoc conglomerations of developmental
techniques and tools with standard engineering practices.-^'

FACTORY COMPONENTS: METHODOLOGY. ORGANIZATION, TOOLS

Element 1: Standards and Procedures

For a year and a half during 1975-1976, Munson's team identified a set of

standards and procedures -- general rules and specific guidelines -- that could

be applied to all software projects, based on a life cycle model of software

development and covering the major activities, events, and product components

common to all projects. They wrote these down in an engineering handbook,

13 SDC Software Factory



the Software Development Manual, also known as SDM, in 1976. The

methodology was consistent with, and in instances borrowed from, existing "U.S.

military standards, U.S. Air Force Manual 375 requirements, and the better

" 2ft
commercial practices. ^° The required programming practices included

structured design and coding, top-down program development, and program

production libraries. In addition, SDM outlined a management and control

process, providing guidelines for planning, project control, review and evaluation

procedures, and quality assurance. After Munson's group finished writing the

manual in 1976, Mueller directed that all line organizations adopt it for current

and future projects. ^^

Deciding on the standards and procedures for the factory was essentially a

matter of examining previous projects SDC had done, reviewing records and

interviewing personnel, determining what had worked well, and codifying what

appeared to be "best practice." This process was necessary, according to the

factory architects, to provide a common language and methodology to make the

factory more than just a building housing a large number of programmers

working from a similar pile of tools. Bratman and Court explained this

reasoning in 1977:

The procedures hold the disparate portions of the Factory together:
the standards are the means of making the Factory efficient and easy
to use and learn. Without the standards that establish the Software
Factory methodology and the procedures that establish the precise
way of doing a task, the Factory is little more than an agglomeration
of software development tools. Standardization, initially established
and faithfully maintained to reflect changing conditions and continual
improvement, is essential to the success of the Factory. The ...

standards. . .establish a working environment where the creative design
solutions of key technical personnel can be implemented in high-
quality products, on schedule, and within budget. More specifically

they:

-- promote repeatability in the software development process;
-- allow rapid transfer of expertise from one project to another;
-- establish a consistent framework for cost estimating;

14 SDC Software Factory



— make it possible for people to interact efficiently and with a

common understanding of goals;
— provide the capability to measure project progress in a realistic

manner;
— enforce technical and management techniques;
— establish a basis for assuring and measuring software quality. ^

Munson explained the compilation of the SDM handbook from his point of

view: an exercise to avoid having to "reinvent the basic process" with every

new project, as well as to provide a transition vehicle to move into the factory

mode of production by standardizing around good practices, with more detailed

guidelines than the usual "high-level buzz word[s]" offered:

The reason for it [SDM] was really one that said we need engineering
handbooks for our people to use. We shouldn't reinvent the basic
process. How do you build a building? You don't reinvent it every
time. We know these things, and we know what good practices are,

so lets put them in a handbook that we require our engineers to use.
And that was really the reason for the detailed handbook... [I]t

wasn't that it was any big original concept at that point in time. A
lot of people recognized it and were trying to do something", and
were doing good things. ,. [0]nce we got that handbook done, we
worked on the organizational concepts. That was when we
implemented the Software Factory by collecting up all the software
projects that were being done in Santa Monica at that time. We had
already picked some of the better people around and had them
working with us on the handbook for a year. . . We had some of the
best people out of the line engineering organization working with the
R&D people in developing that handbook. We as a team became the
transition vehicle."^'

The first standards that SDM set were for a "time-phased software

development life-cycle," composed of six phases: planning, requirements and

performance, design, development, test and acceptance, operations and

maintenance (Figure 3.1) ."^^ Each phase contained specific "objectives, inputs,

outputs, functions. . .and criteria for corporate review of successful

completion. . .Each phase can, in turn, be broken down into smaller activities,

each of which yields a product; each product requires a standard, each activity

a procedure."

15 SDC Software Factory



7*«^jt(«*

'igurt I: Softwarm ayatsma davalopmmnt lifa^cyala



The Planning Phase required a strategy for program development and a

schedule of measures to carry out the plan. This activity accomplished three

things: (1) It identified the specific tasks required to deliver the product. (2)

It identified and allocated resources needed to complete the tasks. And (3) it

set up procedures for monitoring and controlling project performance.

Managers were responsible for drawing up a detailed "master project plan,"

which included the following elements:

Software Development Plan

Project Work Plan

Project Organization and Staffing Plan
Project Budget
Documentation Plan
Configuration Management Plan
Quality Assurance Plan

Project Monitoring and Control Procedures.

In the Requirements/Performance Phase, managers had to "delineate and

describe the software system's functional characteristics and performance

parameters, and the means for verifying that the system meets these

requirements." This included deciding on computer languages and design

standards, selecting production tools, and "investigat[ing] available software

modules that could potentially perform the required functions."

The Design Phase called for determination of the details of the software

system structure in a top-down fashion -- "continual functional decomposition

of the higher-level modules into more and more detail -- and continued until

completion of all the modules decided on in the requirements phased. Managers

also had to decide how to develop the product "by multiple teams without

excessive coordination."

The end result of the design phase is a system representation which
consists of descriptions of all system components (modules, data
elements, and control logic); their dependencies and relationships,

both to each other and back to the performance specification; and

17 SDC Software Factory



the accompanying schedules and resource allocatiohs.

In the Development Phase, programmers completed detailed designs of the

components identified in the computer program's design specifications, coded the

modules, and verified their correctness. A Program Production Library (PPL)

tool tracked each version of the system as it evolved. The SDM provided

extensive examples and guidelines on how to complete and document a detailed

modular design in a top-down, hierarchical manner, culminating in a system

representation .. .consisting of operational code."

The Test and Acceptance Phase began "with delivery of the program

package to the PPL for testing and ends with acceptance of the program system

by the customer." The basic objective was to determine if the coded modules

worked reliably in conjunction with each other and the system hardware, as

well as performed according to the customer's requirements. The Operations

and Maintenance Phase consisted of installing the system, training support

personnel, correcting errors or inefficiencies, and then adding improvements as

necessary.

SDC updated the manual every couple of years and in 1987 was still using

it, although the company was preparing to adopt new military standards. It was

not clear to Munson, however, that the military handbooks could ever provide

adequately detailed guidelines to manage the development process. He believed

"the Department of Defense military standard is at a level significantly higher

than our Software Devetopment Manual and you will still need something

equivalent to the Software Development Manual to implement the Department of

Defense standards. "^"^

Element 2: Organization

As noted, Mueller, Munson, and other SDC managers did not conceive of

18 SDC Software Factory



the factory initially as being more than this set of tools and methods for use

by SDC facilities around the country; they did not at first think of the

Software Factory as a physical, centralized "facility." A major reason was that

the Department of Defense frequently required software contractors to locate

development teams at the hardware sites. Other factors that argued against a

large centralized facility able to take advantage of economies of scale and

scope were the incompatibility of many computers for which SDC wrote

programs, and the wide variety of applications involved in programming jobs.

As a result of Department of Defense preferences, as well as market and

hardware realities, SDC had evolved a tradition where each team built its own

tools and decided on its own practices. Yet this tradition tolerated expensive

redundancies and was often impractical for the software vendors. Due to a

growing shortage of skilled programmers, it was becoming harder to find the

proper set of experts on operating systems, compilers, interfaces,

telecommunications, etc., in different locations or who were willing to move

frequently. It seemed more logical to Mueller, Munson, and other SDC

managers to get a group of specialists together in one site and bring the

programming jobs as well as the methods and tools to them:^

After studying these problems, in 1976 Munson's group recommended that

SDC create a centralized software development organization in Santa Monica to

build or control all the software SDC's System Division contracted for. The

facility would use standardized tools and techniques, as well as remote-terminal

and computer technologies that allowed "a single set of personnel to monitor

and control a large number of software projects concurrently, taking advantage

of economies of scale and providing for cross-utilization of scarce skills.
""^^

Atchley saw the factory not as a totally new way to organize but as a

formalization of the type of organization SDC had used for SAGE and some

19 SDC Software Factory



other major development projects:

We implemented [the Factory] with the idea that we would have three
separate groups of people. We would have the requirements analysts,
designers, or what now is possibly called system engineering We
would have the program production, which is now software
engineering. And we would have the test and evaluation. Those
three would be disciplines whereby the work would be done, and the
work would flow through the Factory. ... In the SAGE environment
we had a group called Requirements Design Branch, and they did the
specification. We had the Programming Development Branch, and we
did the coding and the preliminary testing; and we had the System
Test Group in Phoenix which did the final testing. So wejust kind
of moved that concept into place and made it more formal."^"

As in the past, the f-actory structure still required the division to

established program offices at each customer site (Figure 3.2). Program or

project managers maintained responsibility throughout the life-cycle for program

management and control, customer relations, requirements and performance

specifications, system engineering, and quality control and assurance. To build

the actual software and test it, however, program managers were supposed to

hand off system specifications to what was essentially an "assembly line" of

three groups within the factory: Computer Program Design; Computer Program

Development; System Test and Verification."^' Bratman and Court expected this

division of labor to facilitate continuity and pooling of skilled personnel, the

use of a centralized program library, familiarity with a set of tools, and

visibility and control over product development through the review procedures

at the end of each development phase:

The basic tenet of this philosophy is that increased benefits accrue
over time if essentially the same people are responsible for

production activities in the Software Factory. Familiarity and facility

with tools is gained with repeated use; general purpose libraries are
built up which simplify new production efforts and centers of

technological expertise can be maintained which allow the best talent

to be applied to multiple activities. Within this production

20 SDC Software Factory



organization several further divisions seem to make practical sense in
accomplishing the management objective of maximum visibility. This
involves organizationaJly separating design, production, and test.
Since the end result of each group's activities is a tangible product,
the requirement for turnover forces top-level visibility and represents
a natural point for review and quality control.^"

21 SDC Software Factory



Software Factory Organizational Principles

01

>< r

— 3

i •

o u

3

3

^

3

;3 Ci a
^ i •» r

3 1 ^ «*

S 3 r 3

5 5 = ^
:. i 3 ••*

=: =!-» '^
o Q 3 r

^ ^ ^ ;j

• • • •

— t/1

< 12

wi i.



The SDC authors, at least in 1977, recognized that separating system

design from program production offered both an advantage in closeness to the

customer, and a potential disadvantage in remoteness from the factory. They

hoped that standards and communication — "a normal, well -understood

interface procedure" — could overcome any problems:

One of the major advantages of this .allocation of responsibilities is

that the program office is not tied to the computer location. In

fact, it is highly desirable for the program office to be co-located
with the customer/user to assure the rapid unambiguous coordination
of program activities. On the other hand, remoteness of the program
office from the development facilities does present a set of potential

advantages and challenges. The problems of separation must be
mitigated by a normal, well-understood interface procedure. Benefits
include the formalized specificity required for communication between
the project office and production activity which provide management
visibility and prudent checks and balances. ^^

Element 3: The Tool Set

"Factory Support System" was the name Bratman and Court gave to the

"basic structural and control components" designed to support the factory

methodology.^^ This ran on a host computer (an IBM 370, initially) and used

the facilities of the host's operating system to automate or partially automate

many procedures for keeping track of program development and collecting data

(Figures 3.3 and 3.4). The system, which was written in a higher-level language

to facilitate transportability, had several capabilities:

support of top-down development

automation of management support

maintenance of requirements through implementation

provision of library/history capability

23 SDC Software Factory



complete symbolic system data control capability

semi-automation of program checkout.

The tool set included three main sub-systems: The Factory Access and

Control Executive (FACE) performed control and status gathering services for

all processors, supported the factory command language, integrated the

processors with the system development data base, and provided Program

Production Library services. Integrated Management, Project Analysis, and

Control Techniques (IMPACT) utilized production data base information on

milestones, tasks, resources, system components, and their relationships to

provide schedule, resource computation, and status reports at tlie individual

components level or summarized at any module or task hierarchy level. The

Project Development Data Base established data bases for each project using the

factory and kept track of all schedules, tasks, specification components, and

test cases, along with the copies of each program module and the up-to-date

status of the project. This tool actually consisted of two databases, one for

software development and another for project control.

24 SDC Software Factory



Software Factory Architecture



IMPACT Capabilities

E

3 5l2

J 3

Z2

e
o

I ft* « - •



The Project Development Data Base facilitated the automation of program

development, management visibility, configuration control, and documentation.

The Software Development Data Base extended the concept of a program library

and kept copies of modules from their first functional definition through their

completion as object-language programs. The Project Control Data Base

maintained the system and program descriptions and supporting management

data, which was oriented toward the software system structure and the

activities performed to develop the software system.

IMPACT was the central factory management tool. This assisted the

manager of a software project in planning and monitoring the production of

various items, such as specification documents, program modules, user manuals,

etc. for which his project was responsible. "It helps him plan, monitor, and

control the work; define and control the software configuration; and ensure the

observance of quality assurance measures. It assists him in the preparation of

management reports. In the evaluation of project progress, and in spotti-ng

potential difficulties and developmental trends." IMPACT also supported

structured programming and modular design by fostering the creation and

integration of a hierarchical structure of program components. In preparing

input data, IMPACT also forced a planning discipline on project managers by

requiring them to know and define all the elements of the project and the

relationships among them. Elements included:

requirements and deliverable items

requirements and program functions

program functions and program modules

high-level program modules and lower-level program modules

program modules and equipment

deliverable items and the activities that produce them

27 SDC Software Factory



activities and the resources necessary to support them.

impact's project management tools fell into three functional areas -- data

base generation and maintenance, project planning and control, and report

generation. Data bases were built by providing such information to IMPACT as

descriptions of program items and activities. Data could be inserted and

processed interactively during the development cycle.

Project planning and control involved three major functional modules--

the Scheduler, which derived and optimized critical path schedules and resource

allocations; the Trender, which tracked trends and anomalies in project

performance; and the Threader, which interpreted the hierarchical structure of

the software system and the organization of project work. For example, a

manager or system architect could direct the Threader to "pull a thread, " that

is, call for a trace on the development status of elements at various levels of

abstraction. The report generation function of IMPACT provided access to the

information stored in the development and control data bases. Reports which

could be requested included the Management Summary, Resource Allocation,

Configuration Index and Status, Configuration Summary, Modification Index,

Modification Summary, and the Module Run Summary reports. These capabilities

not only assisted in project planning; according to Bratman and Court, they also

"constituted a powerful modeling capability designed to significantly increase the

project manager's efficiency and effectiveness."

Several additional tools provided for a variety of other support functions.

Automatic Documentation Processor (AUTODOC) produced program and system

documentation, using comments inserted into tlie program modules by tlie

programmer. Program Analysis and Test Host (PATH) was a program flow

analyzer that analyzed a source program and inserted calls to a recording

28 SDC Software Factory



program at appropriate locations. ' Bratman and Court claimed this helped to

provide information about the structure of the program, to aid in thoroughness

of testing. Data Definition Processor (DATADEF) provided a central means of

defining data for system programs written in several common programming

languages to assure that all program modules of the system would have

compatible references to data. Test Case Generator (TCG) was an automatic

technique for designing test data. Top-Down System Developer (TOPS) was a

modeling tool that provided the capability to describe and verify a design, as

well as describe much of the control and data interface logic in the actual

coding language.

Bratman and Court claimed the Factory Support System was "flexible" in

the sense that it allowed for new tools to be added as they became available.

This flexibility was necessary, too, because the R&D group had not yet

completed their planned tool development when the factory went into operation.

Ronald Atchley, who joined the factory in 1977 and in 1987 was director of the

Software Engineering Systems Group, the staff successor to the Software

Factory, admitted that some of the planned tools never materialized: "We still

don't have a good editor. ... We had to do the traceability by hand..."'*^ Yet

Bratman and Court were totally confident they could build a fully automated

software factory and concluded their 1975 and 1977 articles with identical words

of optimism:

Our long term plan is that the Software Factory will be
augmented by the continued development of more sophisticated
tools and techniques such as application-oriented process design
languages, re-usability technology, correctness verifiers, and
cross compilers and will therefore evolve into a truly
automated software development facility. ^*^

29 SDC Software Factory



The Factory Opening and Dissolution

The Software Factory facility opened in December 1976 with about 200

programmers located in an SDC building in Santa Monica, California. Atchley

recalled the site: "That's the only large open office we had at that time. We

were in a building about a block long, two stories high, three long corridors

with cross corridors and patios in the center. Everyone had an outside window.

That building still stands, but we've moved out." As expected. Jack Munson

served as the first manager of the factory, which formally belonged to the new

Software Engineering Organization established within the SDC Systems Division.

SDC put approximately 10 major projects through the Software Factory

between 1976 and 1978. All, according to Munson and the company history,

came in on time and within budget. The company history also asserts that

SDC adopted the factory practices as corporate standards, with Munson and his

chief deputy moving upstairs into higher management in 1978 to oversee this

transfer process:

In the spring of 1978, Mueller and Skaggs extended the discipline

throughout the company. Munson was promoted to corporate vice
president responsible for all software development in the corporation,
while Hamer [deputy manager of the Software Factory] performed a

similar function as a division vice president for the Systems Group.

In reality, the factory had been gradually dissolving as the number of new

projects going through the facility declined, reaching zero shortly after Munson

left. Munson recalls that the Software Factory ended "not with a bang, but a

whimper." It simply "devolved" out of existence:

It just sort of disintegrated. . . New stuff didn't come in. They started
letting stuff go out. The Software Factory stayed and eventually it

became like a one project thing, then it became a functional staff

organization. And it just kind of disappeared by dissolution,

evolution. It became a resource for staffing other programs and got

30 SDC Software Factory



dissolved that way. Good people went here to this program, good
people went there to that program. And, in fact Atchley's title is

still Director of Software Engineering, back in that old division and
so, essentially, he's currently the Software Factory. . . It devolved. But,
for all intents and purposes it never was officially stopped. It just
disappeared. .. Nobody ever really put a bullet in it's head. You
couldn't point to the day it died. That was strange. ^^

Atchley recalls that, after Munson left, programmers gradually left the

facility to work with the "plans and programs people" at customers' sites. This

represented a return to SDC's pre-factory mode of project organization:

[Plans and programs people] chase new programs, help the proposals,
help develop the new business, go out and talk to customers, help
with the strategic planning, determine where we are going in a

particular line of business, become experts in that line of business,
and when we win contracts they become the interface out of the
program office with the factory. They are a part of the
organization. They used to give us the specs and say 'Go produce
this software.' The plans and programs person would be the
interface, and he would be controlling the budget ... As it is now, we
are a part of the program office; we work in their area, physically.
We moved the people into that physical area; we no longer keep the
people physically separated.^"

According to another SDC manager, Clarence Starkey, the assignment of

programmers to different customer sites allowed them to specialize in particular

types of applications.'^^ This was the strategy SDC had followed prior to the

factory. Some of the factory discipline and procedures remained but the

notions of a standardized tool set, a centralized factory work flow, and a crew

of permanent factory workers disappeared. Atchley explained that the tool set

was never complete and they expected this to evolve, so there was no need to

dismantle this part of the factory; old tools fell into disuse. SDC 's System

Division abandoned the matrix organization, however, so that "the factory

workers go to the work":

31 SDC Software Factory



You would not see a sign in this building that said Software
Factory.' ... We've moved on ... All the tools weren't there; some
were, some weren t. The concepts were there, the ideas were there,

but it wasn't all there. . . . They weren't really dismantled. They were
in disuse because new ones came along, and we just no longer used
them. The only thing we re still using, and we won't use it much
longer, is PDL [a Program Development Language SDC developed for

in-house use] . We're still using it, but. . .within the next six months,
we're going to be all converted over to BYRON [a commercial
product] . . . PDL was a Pascal-based system. That's the only thing left

that we're still using. We're moving to ARGUS, we're using a new
editor. Times change . . . What we're trying to do now is establish a

common software environment where we provide tools and the
environment to develop software from the beginning up to the coding
stage. . . .We provide the cadre of people to do the job as opposed to

taking the job into the factory. In Paoli, they're still running the

other way. But in Santa Monica, we've drifted from that quite a bit.

We still have the disciplines, standards, and concept, but the work
does not flow through the factory. The factory workers go to the
work.^0

A remnant of the factory organization remained in that SDC management

tried to focus its larger facilities on specialized lines of business. As Atchley

noted, the Paoli (Pennsylvania) facility, which has about 500 programmers,

adopted the practice of bringing work into one large facility. But it does not

use the term 'Software Factory" and, according to Munson, the facility is not

managed nearly as systematically as the smaller Software Factory used to be.

Nor did Paoli follow the same matrix organization Munson attempted: "they are

not anywhere near as structured as our Software Factory. They are kind of a

hybrid, they ve got some functional and some matrix organizations. It s kind of

a compromise. But not bad. Maybe that is what we sliouid have tried. ''-'

The methodology underlying the Software Factory continued in a broader

form when the U.S. Department of Defense contracted with SDC in 1976 to

develop a set of standards for military-use software procurement. Munson

directed this effort and completed the first set of standards in 1979, with the

help of the Department of Defense and an offshoot of MIT's Lincoln

Laboratories, Mitre Corporation. The government subsequently published these

32 SDC Software Factory



as a 16-volume set of guidebooks. ^

FACTORY PERFORMANCE: INITIAL PROBLEMS REVISITED

SDC has not published data from any of the projects which went through

the Software Factory. It is possible, however, to get a sense of how well the

factory performed by comparing some accounts of its operations with the five

problems that, according to Bratman and Court, motivated its inception.

Problem #1 : Absence of a standardized, predictable approach to the

development process stemming from a "lack of discipline and

repeatability."

Did the Factory solution work in practice? Yes, and no.

On the "yes" side, division of the development process into distinct phases,

the standardization of the process as outlined in the Software Development

Manual , and the tracking capabilities of the Factory Support System data bases

made it possible to improve predictability and control dramatically for budgets

and time schedules. According to Munson and the company history,

approximately 10 large-scale projects went through the factory and "never

missed a schedule or overran" a budget. One of the largest, for example, was

an air defense system for Morocco that took 30 months to build, which SDC

completed successfully in the factory on a fixed-price $3.5 million contract.^

Additional evidence for the success of the factory as a mechanism for

33 SDC Software Factory



process or project control is, in Munson's view, the fact that the U.S.

Department of Defense modeled its standards for military contractors (2167 and

2168) after the SDM manual and other SDC practices. Munson was asked to

serve as chairman of the joint business and defense department panel that

recommended creating the military standards in 1979, and he claims he based his

recommendations on "my experiences and our factory... I think [the 2167-2168

standards] were actually results of our Software Factory."^

On the negative side, however, too much of the factory discipline appeared

to come from Munson's enthusiasm and leadership, rather than from the new

systems for planning and management control. Although he kept careful

statistics and used these for control purposes, after Munson left the facility in

1978, other managers did not keep up these practices as rigorously."'"' Atchley

even claims that, when he joined the factory in 1977, no one was keeping

accurate statistics on reuse rates, productivity improvements, schedule

completion, or program quality. This made it difficult to tell if there were

improvements in efficiency or productivity, and if they were directly related to

the factory or not.^°

Munson describes what happened as being a matter of losing the

"advocate," the "evangelist" for the process innovations the factory represented.

Once he moved up into higher levels of administration, no other manager in

SDC proved to be as strong or as successful in promoting the factory idea.

Furthermore, to learn from the data and make the factory work up to its full

potential would have required more than the 3 years SDC management allotted

to the facility. For these reasons Munson concludes that the factory

represented "a great start and what happened is we lacked the will and skill to

keep it going. . .we had a bright beginning that was never fulfilled":

34 SDC Software Factory



We did keep statistics but unfortunately, after the organization
ceased to exist, people didn't keep them very clearly, i was the
advocate, if you will, for the factory, and when I moved out of that
specific organization, which was what was intended --

I was going to

spend a couple of years there setting it up and then the agreement
was that I could move on to something else -- the problems with the
factory occurred after I left. For the couple of years I was there,
everything was going well and it was on an upswing. And I think
when you take an advocate out of something that is as fragile as this

was conceptually in our organization, then it kind of lost the heart.
And the people just didn't have the will to make it succeed. . . [W]hen
I passed the baton the advocacy, the evangelism went out of it. It

tried to become something routine, and lost something. It needed a

lot of effort to make it work. And a lot of force, drive, and selling.

And I think it lost some of that... Did the factory solution work
in practice? My attitude towards this is one that I would summarize
by saying that we made a great start and what happened is we lacked
the will and skill to keep it going... One of my problems is that
these kinds of experiments are not 2- to 3-year experiments. They
are 5-, 6-, 7-year experiments, in order to get good data and so we
just didn't go long enough. . .We had a bright beginning that was never
fulfilled. 5'

f

Problem #2: Project management difficulties stemming from a "lack of

development visibility."

Did the factory solution work in practice? Yes.

The same positive factors discussed under Problem #1 affected this issue.

The clear division of product development and other operations into distinct

phases ending with design reviews, and the tools of the Factory Support

System, all provided a means for managers to visualize better the process flow.

In particular, the IMPACT tool served as a control mechanism for tracking

costs and schedules, completion status, and monitoring lines of authority and

responsibility for a project. During the planning and system definition phases,

managers used IMPACT data to allocate resources, check functional designs

35 SDC Software Factory



against performance requirements to assess their completeness and accuracy, and

to generate reports. IMPACT as well as TOPS provided visible assessments of

design completeness, while the PATH tool provided a more quantitative

assessment of testing completeness. These tools evolved over time into

different and no doubt better versions, but some indication of their

effectiveness is that similar tools soon became common in nearly all software

organizations faced with managing large, complex projects.

Problem #3: Inability to define accurately a customer s performance

requirements at the beginning of development or to deal easily

with changes made during the development process.

Did the factory solution work in practice? No. and yes.

Rather than a simple "no," it might be said that the factory worked as

best as could be expected given the type and variety of products SDC made. On

the one hand, SDC accepted contracts for so many different applications

systems running on so many kinds of computers that accurately defining and

meeting customer needs was no doubt a herculean challenge. This problem is to

a large extent intrinsic to any design process, except perhaps for firms making

products with the most stable and standardized features. But did the factory

help with this issue? Then there is the second element of Question *3: How

much did the factory help manage changes in requirements made during the

process? These resemble engineering change orders related to product designs

in hardware manufacturing, frequently cited by manufacturing managers as the

bane of their existence, too. No design process could be expected to eliminate

36 SDC Software Factory



these completely — but did the factory process help?

The answer is yes, the factory did help. The Software Development

Manual tried to capture the experience of the better system designers on how

to define customer requirements. It then codified these "best practices" in

writing and they became standard procedures, subject to improvements and

modifications over time. Division of the development process into distinct

phases with design reviews made it easier to identify if detailed design and

coding was actual implementing the customer's requirements, at least as they

were written up in the design documents. Tools such as IMPACT also helped

personnel keep track of the interrelationships among system components, and

this should have facilitated analysis of the effects of changes on the product's

architecture. Munson agrees that the factory helped, especially in making it

more obvious if discrepancies were appearing between the design requirements

and the actual product being built:

One of the things that we were trying to do, by breaking it like we
did between the requirements and the implementation, was to create a

very, very visible interface as to what the status was of the
requirements when they were turned over to implementation. In most
projects, requirements are just a flow in the implementation. It is

very easy for that to merge and never be seen by top management. . .

We didn't do much better in making requirements more thoroughly
determined ahead of time. But on the other hand, we were clearly

able, because of the interface on the hand-over between the
requirements people and the production people, to make it very, very
visible as to what the status was. And we were able to put into our
plans, then, the fact that we didn't have yet a good set of

requirements. So, we didn't solve the basic problem. But we sure
made the characteristics of the problem more visible. And we made
the impacts of the problem more manageable in the production
process, because we at least recognized \t.°

37 SDC Software Factory



Problem #4: Lack of tools for design and verification.

Did the factory solution work in practice? No. and yes.

The Software Factory began as an effort in tool development and Court's

team clearly did a lot of work in this area. TOPS and DATADEF improved the

levels of automation and verification (tests for logical correctness) in the design

process and smoothed the transition between design and program coding. in

general, however, it seems that the most effective tools were for project

management; tools that interacted directly with the product, such as to test

design correctness, usually had to run on the same hardware and perhaps even

be written in the same computer language to work. As a result of the variety

of projects it accepted, SDC never succeeded in producing standardized design-

support and testing tools.

Another difficulty was that SDC management did not continue to allocate

corporate money for tool development once the factory went into operation.

Mueller wanted Munson to charge tool costs to the expenses of specific

projects, which meant that R&D for general-purpose tools for the factory was

funded only during the 3 or 4 years preceding its opening in 1976: "Of course

one of the motives of Mueller at the time was to stop spending company money

on this thing and get contract money to support it. So, we basically were put

on a shoe-string budget, and told to go make it real.""'

Yet the difficulties inherent in tool development required a continual,

well-funded effort. Another SDC manager, David Deaver, made the statement

that, in terms of what the factory was trying to do with tool portability, it was

"ahead of its time."^^ This seemed to be the case; truly portable tools remain

an elusive goal even in the late 1980s, due to machine and language

38 SDC Software Factory



incompatibilities. Munson recalls his frustrations:

We never did solve the problem of heterogeneous hardware, and the
fact that tools weren't very portable. . .They were able to run on one
system [but] were not easily ported to other systems. And many
times we were working on government supplied equipment, which
meant we had to use their equipment, we couldn't afford to pay for

an overhead facility. Because the government was supplying, for
instance, PDP's, DEC equipment, and if our tools are running on IBM
equipment, there was no way we could justify the cost of the
overhead for the tools on that equipment. And the technology, in

fact, isn't yet here today, where a common set of tools are really

portable around a whole bunch of different environments. And that

was what SDC was faced with -- a whole bunch of different

environments.

Munson believed that the Japanese, in contrast, as well as some U.S.

companies, can develop general-purpose tools because they work primarily on

compatible hardware:

Now you take a Hitachi or a NEC, or even the commercial part of

the Unisys Corporation, where the bulk of the work that they're
doing is done on their own set of equipment, that are constant and
homogenous. They yield a better chance even today, and certainly in

those days, of making a success of these available tools . . . [A] lot of

people, because they've had slightly different environments, have been
able to be successful, where we weren't, because of things like the
homogenous equipment and the different culture in the organization.
But, in any event, I think we pioneered and, if we failed, it was
because we were ahead of our time...°^

Problem #5: Lack of reusability of code.

Did the factory solution work in practice? No. and ves.

SDC did not design its Software Factory tools and procedures specifically

39 SDC Software Factory



to encourage reusability. Bratman and Court believed that practices such as

careful structuring of modules, and improved documentation, would help

programmers reuse code. Atchley recalled the beliefs of the factory's architects

regarding reusability:

They felt that if we used this technique (top-down program design)
and if we used modules, that the reusability would fall out of it. . .you

would decompose your requirements into functions and come up with

code that was modular and reusable by following the techniques in

the SDM. And then, as a fallout of that, you could go back [to the
program library] and find it and reuse it. ^

But these practices in themselves were not always sufficient. The same

difficulties and successes SDC encountered regarding tool portability applied to

code reuse. SDC achieved extensive reuse across different projects in the

factory and after 1978, but only when applications and the computers for which

the code was written were the same. Reusability in the Software Factory, then,

was primarily a function of similarity in applications and hardware, and thus of

chance more than deliberate strategy and planning. Managers could take

advantage of similarities across different projects by submitting low bids for

projects similar to what they had done before. In this sense, centralizing

people and program libraries in the factory helped achieve and exploit

reusability. But managers could not really plan for similarity in projects, unless

there was a surplus of work, and there was not in this division.

Because reuse was hard to do, and because managers did not require it,

programmers generally did not try to reuse components from the program

library. iVIodules were also difficult to find in a library without an effective

coding or indexing scheme, which SDC apparently failed to develop. Atchley

explained:

40 SDC Software Factory



[W]e changed machines from project to project, and it was very
difficult to reuse the code. We had an electronic funds transfer
program that was done on DEC's PDP-ll. And then we went to the
Emergency Command and Control System for the Los Angeles Police
Department which was also done on the PDP-ll. And we tried to
find some of that software that we could reuse, and some of the
modules. We had not donis a good job in EFTS [Electronic Funds
Transfer System] of providing a road map to get it, even using some
of the same programmers. They would say, 'I know I did it and I

think we saved it; I'll go look for it...' ...They expressed a

willingness verbally to do it, and it sounded like a good idea, but at
that time we were unable to capture much. It was easier to do it

than to go find it. If you did find it you had to re-code it.

Basically, it offered you a detailed design. Not bad, but you had a

different database, a different language, different applications, and it

was hard to find the building blocks that remained the same. We
were at that time doing the police system, an air defense system, a

ground telemetry system, and an intelligence classifying system. They
were on four different machines, they had four different sets of
requirements, and it was very hard to find any reusability or savings
among the four of them. We did set up a library, where we collected
all the software produced, filed it, and documented it. Usage of that
library was very minimal. °^

Even in 1987, there was only one programming project in SDC that

Atchley knew of which was reusing large amounts of existing code. Atchley

admitted that, again, this was possible because, "It's the same machine and the

same application. That's really simple... no fights, no arguments about it; we

just do it. And we're not getting any static at all. But when the applications

aren't the same, it's hard." SDC actually bid on this project assuming it could

reuse 80% of the program code from existing SDC systems. Atchley says that

the real figure is turning out to be more like 50%, which he still considers a

very high number. °^ When asked how he felt about the low incidence of code

reuse in the early days of the factory, Atchley commented, "it's been ten years,

and we're now coming up with an ability to do that . . . the idea is good but the

fact that it's taken us so long ... is kind of sad."^*^

Munson confirmed that code portability across different types of computers

was the major obstacle preventing wide reuse of code, and that, when hardware

41 SDC Software Factory



was the same, reuse levels were enormous. Sometimes they reused only higher-

level detailed designs, rather than actual code. For example, Munson tracked

reuse rates and costs for four functionally equivalent air defense systems built

after SAGE. The first was SAGE's successor, the BUIC (Back-up Interceptor

Central) system, the second an air defense system for Spain contracted to

Hughes Aircraft, the third a system for Morocco (contracted to Westinghouse)

,

and the fourth a similar system for Thailand. SDC achieved increasingly high

levels of code reuse when the hardware was similar, and design reuse when the

applications alone were similar. Reuse of any type also helped meet cost

targets:

In [the Moroccan air defense system] we ended up reusing a lot of

design and not code. We had intended to reuse some code out of the
BUIC Air Defense Systems. . . the second version after SAGE. .. it was too

major a difference in computer systems, but we used a lot of design
and the Morocco system has since been reused almost entirely in the
Royal Thai Air Defense System [RTADS], which SDC bid and won
competitively and is in the process of implementing today... with
almost 100% use of the existing code. So the first time we didn't
use a lot of the code but we used an awful lot of the design. . . And
we came in on cost. And then the second time we were able to get
a competitive advantage because we didn't have to create almost any
new code for the Thailand system. Thailand, of course, isn't being
done in the factory as such. But the results, the quality of results

out of the factory gave them the opportunity to make another big,

huge sale, a 100 million dollar sale. . And RTADS is using the
products that we developed in the factory without having to modify
them. . .because we had commonality of equipment. They were both on
comnpatible Burroughs computers.

SAGE cost in excess of TOO million dollars for the computer
programs. BUIC cost about 30 million dollars for the computer
programs. The Hughes system cost about 12 million dollars. Morocco
cost about 3 1/2 million dollars. And the new one we are building
today for Thailand is zero million dollars, because we are basically

using all the existing code. The reason Morocco was cheapest, for

instance, in our line to BUIC, is because we used a lot of design and
knowledge. . . We didn't have to spend all the time working out what
the dynamics were for interceptors and what the equations of motions
were and all the data base functions and structures. We knew all

those kinds of things. . . [D]esign is about 40% of the cost of a system
and the test is about 40% of the cost of the system. So if you reuse
the design you can reuse a lot of your test so it cuts a lot of that

80% of the cost of the system out. . . [I]t talks to the fact that. . .when
the programmers really do understand the problem they have a much

42 SDC Software Factory



better chance of doing it right and cheaper, as opposed to bringing
In a new pro to do it. . . [A]ir defense systems are air defense systems.
They were -the"/ they are today. There has not been any new
technology.""

This type of reuse involved redeploying an entire software and hardware

system in another location, rather than utilizing modules of code as building

blocks for different types of programs. Some Japanese software factories stress

reuse of large and small chunks of code and designs. In comparing SDC to the

Japanese, as he did with tool portability, Munson attributed the greater

apparent emphasis of the Japanese on reuse to more commonality in machines

and applications -- what they would have liked to have had more of in the

Software Factory:

At the macro level we are talking about with air defense systems we
really didn't do anything specific other than use the good
programming practices that we had built up for the factory anyway.
And when we reused the total system, we aren't talking about
modular reuse. . . Where Japan is getting a lot of their productivity out
of reusability are in things that are multiple uses of common products
able to move across homogeneous product lines. And a lot of it is

not in the applications software it's in the overhead software.

Utilities, operating systems, macro libraries. A Fujitsu, NEC, or

Hitachi can do that because they're not programming for IBM, DEC,
or Burroughs. And their architectures tend to be instruction

compatible. .

."'

On the other hand, Munson stressed that reusability can also be viewed in

terms of "reuse of people" -- allowing designers and programmers to apply the

learning they acquired on one project to new projects. In this sense of reuse,

the factory — while it existed -- was far more successful than a project system

where new groups were always formed, with little or no repeated experience

among the members:

43 SDC Software Factory



[W]e had some results that held some pretty high hopes for this kind
of thing because we were seeing reusability in the people working on
multiple solutions, if not the code itself. We had people working on
the second implementation of an air defense system that had worked
on the first one, not a whole new set of people that had to learn the
whole applications thing again. If you look at what the academic
world, or the professional scientific world, thinks of reusability, it

really comes in a bunch of different flavors. Whereas code
reusability, you know library modules, is only one application.

[W]e are not there yet in the coding phase, even in the Ada world,
which was going to be the solution to reusability. But, again, the
learning curve aspects of building a system -- which is the one
involved in SAGE being 100 million dollars and Thailand being free
for the software -- it does apply to these. And we were able to

produce a high tech system called Morocco on a fixed-price, time-

limited contract -- a 3.5 milion dollar system in 30 months. And we
sure couldn't have done that for SAGE or BUIC. . .

[P]eople reusability is almost as important I think as code reusability.

It's clearly true in our business that the second time the same guy
solves the same problem, he does it better. That goes back to

Wolverton's studies in the early 1970s that talk about delivering the
second version of your system, and throw away the first version.
You clearly learn something the first time through it so you can
apply productivity and quality on the second time through. . .assuming
you use the same people... [W]hat the factory did was keep the
people together in one organ-ization . The same people were there the
second time it came through, as opposed to doing it here one time,

then reconstructing a team somewhere else another time -- which is

what normally happens with projects. So, in that sense [the factory]
creates a focus where all the software resources were in place and
therefore the managers managing at that point in time had the ability

to reapply the people. They weren't dispersed, off working on
somebody else's contract in some other location.""

NEW PROBLEMS THE FACTORY CREATED

In addition to mixed improvements on the five original problems, the

Software Factory created several new ones that management lacked adequate

commitment or ability to solve. These were interrelated among themselves but

in part reflected responses by managers and programmers to some of the

difficulties that prevented full solution of Bratman and Court's list of issues.

The new concerns became (1) imbalances in the work flowing into the factory,

44 SDC Software Factory



which made its sustenance difficult for management to justify; (2) difficulties,

both political and technical in nature, introduced by the matrix management

system, which greatly exacerbated the work-flow problem; and (3) cultural

resistance on the part of managers as well as workers to the changes inherent

in the factory organization, which contributed to lapses in management

commitment, as well as in control and cooperation; These three problems, more

than any others, appear to have resulted in the dissolution of the Software

Factory in 1978.

Work-Flow Imbalances

SDC employed the name "Software Factory" in much the same way that

producers of hard goods separate product development and production activities

into distinct steps and divide labor to take advantage of economies of scale and

scope. There was supposed to be a managed flow of programming jobs through

more or less distinct groups on a sort of "assembly line." To Bratman and

Court, the development data base resembled a conveyor and control system that

carried the work and materials (documents, code modules) through each phase,

as workers used various tools and techniques to build the product: "In the

Factory, the development data base serves as the assembly line -- carrying the

evolving system through the production phases in which Factory tools and

techniques are used to steadily adcJ more and more detail to the system

framework. "^9

But a serious work-flow imbalance occurred that made it difficult to

sustain a key part of the factory: the permanent group of design, programming,

and testing specialists. Part of the reason was the nature of the factory's

business -- customized programs, mainly for the government. Another factor

was SDC's planning and management practices.

45 SDC Software Factory



Because projects came about on a contract basis, there was not a

guaranteed flow of work into the company, and SDC generally hired

programmers for individual projects as it needed them. If the company did not

need them immediately for another project, managers let the programmers go.

The organization had always tried to be, in Munson s words, "just lean and

mean. A project would build up and when you got finished you answered to

people and fired them. And that is essentially the same attitude they took

towards us [the Software Factory] ... [W]e did not have the work to sustain it,

and work wasn't coming through and we had our ups and downs. "'^

Clearly, the Systems Division's business was sufficiently cyclical to make a

large factory -- such as the 2300 personnel at Toshiba's Software Factory in

1987 -- impractical. This can be seen in the huge fluctuations in the number

of SDC employees (table). According to Munson, the division specialized in

large-scale projects requiring 2 or 3 years to complete, and there were not that

many of these. Those that existed were primarily Department of Defense

contracts, and these were not possible to "inventory," that is, to create a

backlog of them, because the government generally wanted the projects

completed by a certain date. The result was that military contractors tended

to expand as necessary to meet specific deadlines, and to contract when work

levels dropped, unless top management provided funds to keep programmers on

the payroll.

46 SDC Software Factory



Table 3.1: SYSTEM DEVELOPMENT CORPORATION EMPLOYEES. 1956-1974

Year Number of Employees

1956



ways. First, we needed a capital investment from the company. The
second was to "charge" more for any given job and have the excess
go into, if you will, a pad, or a cushion. But we could never get the
company to step up and do either. But that is what you have to do.
You have to recognize that, like any factory, there will be times of

65% capacity and 85% capacity. But the problem is our factory was
basically people and people are very expensive and nobody wanted to

consider people as important tools in the factory as if they were
machine tools. But they are very similar if you think about it in an
analogy sense. When you are not usina them you still need to keep
them there. You don't go sell them. '^

On the other hand, in the commercial software area, such as business

applications, there were many more customers and it was easier to create a

backlog of work to keep a permanent group of programmers employed. In fact,

according to Munson, SDC's commercial software area was so busy it "was in

chaos." Munson claims he left the Software Factory and the Systems Division

to add some discipline to this other group:

[Tjhe reason I left this organization was to really concentrate on our
commercial area, which was in chaos, a disaster at that point in time,

and try to bring more discipline to that. And they had big backlogs.
It worked fine. But those are generally not the job shop kinds of

jobs you get with the military. DoD [Department of Defense] wants
a weapon system and they want it delivered in 48 months. It is hard
to put a competitive procurement into backlog. Whereas an MIS
[Management Information Systems] department that has a whole bunch
of changes they want in their MIS system might be willing to put
that kind of stuff in a backlog. So, there are really apples and
oranges in this kind of situation. What we were talkina about with
the factory was really high technology weapon systems.'^

"Matrix" Management

Despite the cyclicality of the Systems Division's business, there should

have been enough work in the division, and surely enough in a company of

approximately 4000 programmers, to sustain a facility with 200 employees. The

end of the Software Factory does not appear to be due simply to the "ups and

48 SDC Software Factory



clowns" in the flow of work. The real essence of the problem seems to be that

program managers out in the field responsible for system design were not

required to use the factory to code and test their programs. It was hard for

this writer to believe that SDC did not insure the success of a facility that

took nearly 4 years to put Into place by requiring managers to use it. In

response to an inquiry on this, however, Munson confirmed they did not. He

blamed the situation on a lack of commitment to the idea, especially from his

superiors (except perhaps Mueller), and a strong tradition of "projectized"

management, rather than matrix management.

Well, that's back to the management. In my opinion, they were
hedging their bets, if you will. They weren't willing to make a

commitment and so it was the 'oiling the squeaky wheel' syndrome.
All these guys out here would just say a factory can't do this, I've

got to do it out here for some reason. My customer wants me to be
in his facility. And management never fought very hard. It didn't
say, 'No, there is one way we are going to do it and this is the
way.' That might be overstating it a little bit. But, in essence, that

is really true. And that goes back to the cultural, the projectized

versus the functional kind of organizational aspects. SDC historically

has built into its genes, even built into the software business genes,
this projectize mentality. .^.The only way you can build a software
project is to projectize it.''*

The Software Factory depended upon a type of matrix organization

whereby there were program or project managers located in the field and

responsible for dealing directly with customers; and managers in the factory

responsible for producing the actual software -- detailed design, coding, and

testing. In principle, this division of responsibilities and labor was no different

from non-software firms that had separate product development organizations

and then manufacturing operations divided into functional departments. In

practice, software firms like SDC usually manage by projects rather than divide

labor among so many different groups. Sometimes division of labor is not

49 SDC Software Factory



desirable for technical reasons. In ail cases, to make the handing off of work

go smoothly requires substantial efforts in standardization of practices,

communication, and cooperation among all the relevant groups.

On the technical side of this issue, sometimes the factory programmers did

not have as much "application-specific" expertise as the program managers

wanted. Because of this, some managers did not want to give up control of the

implementation and testing phases to the central organization and resisted

sending work into the Software Factory, preferring to build their own teams on

the customer's site, as had been SDC's practice in the past. This became a

political problem for Munson and other factory staff, who did not want to force

program managers to use the factory. A serious dilemma resulted as the

breakdown of the matrix system occurred once Munson left the and program

managers realized they could continue with previous practices unencumbered.

This breakdown, it seems, was the major source of the work flow problem that

managers such as Atchley complained about.

Munson recalled the combination of political, organizational, managerial,

and technological hurdles SDC faced in trying to make the matrix system run

smoothly. Of equal importance to any of the other dimensions, he thought, were

the political and organizational issues, because some people were "dedicated to

seeing that [the factory] didn't work." Program managers wanted complete

control, and programmers wanted to "flow with the job":

One of the basic problems was, from my point of view, a political

problem. Why it didn't really become as successful as it could have
was a lack of management commitment to make it work. In our
organization, there has always been a defined right of kings syndrome
where people want to own the resources that are doing their work.
We have a very strong heritage and management orientation and
obviously management support of projectized versus matrix kinds of

organizations. So there was a fair share of the population that was
dedicated to seeing that it didn't work, because they wanted to have
control of their own resources, as opposed to having a matrix

50 SDC Software Factory



organization that did the work for them. . .Also, we were fighting
social history. There were just a lot of professional people, the
engineers, that didn't like the concept because they wanted to flow
with the job, rather than work on pieces of the job.

The point that programmers probably found it useful to specialize in

particular types of applications was as much a technological issue as a political

problem. The accumulation of experience in specific areas seems to make

programmers more efficient when designing and coding familiar types of

systems. This reality of software engineering encouraged both programmers and

program managers to want people to "flow with the job" rather than hand off

initial designs, as Munson points out:

[The factory] really failed to take into [account] the fact that
experience in understanding the application you are working on is

almost as important as understanding the technology you're applying
to it... For instance, if you're working with a banking system,
understanding intuitively how a bank works is almost as important as

understanding how to program computer systems. Or, say, with
programming a radar system, you just don't take any programmer and
say program a radar system; . .there is no management or technical

substitute for your people understanding the problem. . .This really

turns out to be at the lowest level... the guys that are making the
implicit and derived functional requirements implementation. The
intuitive understanding of the problem helps you in the production
process.

The preference for "projectizing" rather than matrix management--

forming separate projects as needed, in contrast to having a permanent work

force in a factory to do implementation and testing -- led to organizational and

cultural conflicts. Neither program managers nor programmers ended up liking

the Software Factory. Munson felt this difficulty also reflected the desire of

programmers to stay with their programs "from womb to tomb":

Another aspect of the problem was that. . .of matrix versus

51 SDC Software Factory



projectizing. There really was a very strong feeling on the part of

the technical people that they liked to work software problems womb
to tomb,' that they didn't like to just be responsible for the design
and pass it on, and so we were faced with two kinds of cultural
problems in that area. One was that the [managers] didn't like the
organizational concept anymore than the [programmers] did. But. . . It's

looking back to the will again. People will start liking it if it's

successful. And they get bennies and stroking as a result of being
part of a successful organization. And so you begin to change their

attitudes about that kind of thing. Suppose it was still in practice
today, ten years later, and it had been successful, the people would
love it, because people like being involved with successful things.
And this whole attitude about the womb to tomb would have changed
and they would have seen that different benefits come in the fact

that they could have grown with the organization into different roles

and responsibilities. But in the short term it was a very big start up
problem. The fact that we had on one hand managers who were
fighting the matrix functional problem and we had people, technical
people in the organization that were fighting that problem. So we
were kind of getting it from both sides.

Atchley admitted the matrix system created considerable discord when

program managers realized they were no longer in control of development

activities. He added that people complained about the additional overhead

burden of having to pay for two sets of management -- one inside the factory

and one outside. For other managers, however, it was more a 'turfdom"

struggle:

We didn't have the management tools in place . . . what happens is

that you've got a program manager who's come to you with his

program and he's given you the task to do, but really he doesn t

have any control over you. And if you overspend, what's he going to

do? He has to have the job done. So there was not enough
incentive on the part of the factory to produce at an economical cost
. . . [These] were the complaints of the other managers. It was costing
them money . . . there were some complaints about the fact that now
they had two managers, that they had doubled the overhead . . . since
you had the management of the Software Factory but you still had
the management of the program. So there were some complaints
about that. .

.

Some of the managers felt they were losing their "turfdom" ... we
took a lot of people who'd been program managers and we
consolidated into three areas. That left some men and women at that
same level who no longer had a direct influence, and they became

52 SDC Software Factory



'plans and programs' people. . .they were in the situation of getting
their projects done by the Software Factory. That left some of

those people uneasy. . . They wanted their hands on that. They wanted
to be able to touch their programmer. So there was a lot of

resistance from program management to the idea. There still is.'°

SDC had earlier tried and failed to introduce a matrix organization to

maximize scarce personnel resources. SAGE began with a project system, where

all the necessary personnel, from different functions, were brought together in

a single group and made responsible to a single program manager. In 1958,

however, SDC management created functional offices for personnel, production,

engineering, and programming, while still maintaining program management

offices responsible for specific projects but sharing responsibility for functional

activities such as engineering and programming. But the matrix format did not

work out. After conflicts erupted between the program managers and line

managers over budgets, schedules, and worker performance, in 1959 top

management decided to reorganize and return full authority to the program

managers. ''

It may be no more than historical irony or coincidence that this type of

problem had surfaced in SDC once before. But had factory planners been aware

of this history or remembered it more clearly, they might have anticipated

resistance and better prepared employees -- programmers and program managers

-- for the changes and cooperation required to make the matrix organization

work.

Cultural and Organizational Change

Whatever technological hurdles they faced, Deaver believed that only a

"drastic change in culture and philosophy" would have made certain aspects of

the factory organization work as intended. This was no doubt true with regard

53 SDC Software Factory



to matrix versus project management. Another example related to reusability.

Programmers required some retraining or rethinking about module design to

write reusable code and to reuse it consistently; the additional effort required

meant that managers should probably encourage programmers in some way to

reuse code if they want this to happen more than it would by chance There is

the additional issue of integrating someone else's previously-written and perhaps

more lengthy code into a new program, rather than write new, probably shorter

and more "elegant" code for the specific application in question.

Deaver recalls resistance to borrowing other people's code, and claims this

was "more a problem of aesthetics than performance. " Programmers preferred

to write their own, because this usually made the program "tighter" (performed

the desired function with fewer lines of code). In terms of operation, however,

programs built with reused code usually ran fine, according to Deaver, so there

was no noticeable tradeoff in product performance. Nonetheless, programmers'

habits and sense of aesthetics tended to discourage reusability, and the

managers in the Software Factory took no measures to overcome this

reluctance. °

Another seemingly cultural issue was use of the word "factory." No one

seemed to like it, and after 1978 SDC stopped using it. Atchley claims the

word became an "anathema" to managers and programmers alike. ^ Munson

explains this was because software programmers (and project managers, who

generally had started their careers as programmers) preferred to think of

themselves as professionals, not as factory workers:

Again, it has to do with the culture, the image. These people that
are computer programmers think they are professionals and the
concept that they'd be associated with a factory kind of grated them
instead of seeing it as a great sales tool. You know, they tended to

take it as being a slur on their professionalism and that's why it

really became an anathema... I always thought the factory was a good

54 SDC Software Factory



metaphor for what we were trying to do. A lot of people didn't like

It. They made a lot of fun out of it.

Munson's comment that he viewed the Software Factory as a "sales tool"

suggests he may have had some ambivalence about the concept. He also

referred to the term "factory" as a "gimmick," as quoted below. On the other

hand, "Software Factory" was not a hollow phrase to Munson, but represented

the notion of a disciplined, engineering-like approach to software development:

[It was] a gimmick, because it has a connotation to the general
population of organized, methodical, chunk it out, make schedules, do
it on time. I have always thought, and we of course have a

copyright on the expression Software Factory, that was a very
valuable concept to the world that is afraid of software. That it

would tend to give it a more engineering concept. °^

Yet recollections of the factory consistently point to a lack of

management commitment to the concept in critical areas. Munson did not

himself have the authority to make program managers use the facility or to

insure continued development of the factory tools and methods. But it is

difficult to understand why Mueller, the head of the company and originator of

the factory concept, did not give it more of a chance — such as by requiring

that program managers use rather than ignore the facility, providing corporate

funds to keep the staff on the payroll, or even getting work for the facility

from other divisions or other customers if necessary.

Nor did staff managers require programmers or line managers in the

program offices to change aspects of their behavior that undermined the

factory, even though the matrix system, or the strategy of reusing code,

represented significant departures from previous practices. Atchley admitted

that managers never required programmers to reuse code from the program

55 SDC Software Factory



library or to write reusable modules. And both he and Munson admitted that,

not only did staff management fail to require program managers to use the

factory, they failed to require the line managers to keep consistent track of

performance data. Because their superiors did not really require program

managers to change, the factory strategy and structure could be avoided. And

because line managers did not really require programmers to change, the new

factory system never had the impact or continuity it might have enjoyed.

Atchley even suggests that many programmers were not fully aware of what the

factory was or was supposed to do:

They didn't even know it happened. It was a term used and a way
of doing work, but as far as most of the programmers were
concerned, life went on as usual. I don't think there was any great
culture shock or resistance to it. They knew the term, they knew
they had been gathered from the various four corners of the company
and put together, but they didn't consider themselves in a factory.

There were lots of cartoons on the wall about the factory and all

these kinds of things, but truthfully, I don't think the programmers
considered themselves factory workers."'

MANAGERS' ASSESSMENTS AND THE JAPANESE CHALLENGE

Atchley's assessment of the factory experiment was generally positive. He

doubted that the factory reduced costs but could not tell (probably due to a

lack of detailed data) if the improvements in productivity and quality SDC

experienced were due to the factory system or to other factors, such as

accumulated experience or just better techniques introduced over time. On the

other hand, he believed the factory increased awareness among software

engineers of the product life cycle, and greatly improved quality through a more

structured approach to design and more formalized testing procedures:

56 SDC Software Factory



I think that, while we may not be organized the way we were, our
people are more aware of the software life cycle now. I seriously
doubt that it [the factory] reduced cost. Were the people more
efficient? It's hard to say they were more efficient because of the
factory or that they became more efficient because we became more
efficient. I presume there was a fallout there on efficiency and
productivity. I think the structured approach helped quality
immensely. I think the fact that we became very formal with the
independent test organization improved the quality of the product we
delivered. Whether that was the Software Factory or not, I don't
know.

Atchley also felt the factory concept should have worked and had real

potential for improving reusability and productivity. He regrets, however, that

SDC has not done much with the idea beyond the standardization of procedures

and some centralization of development at Paoli. Atchley concluded they were

now "dragging" behind the most advanced ideas coming out of universities,

rather than being in the "forefront" of implementing them, as the Software-

Factory once was:

I think it's a good concept. I think discipline can be applied to the
software development process. I think that reusability and
productivity should be the main factors out of it. We're not doing as

good a job today as we were ten years ago in keeping it alive.

We've made a lot of progress, but we could be better if we had
really actively pursued the concept and grown the concept as new
ideas came out of the schools and papers were written. If we'd kept
the factory concept more prominent, I think we would have been able
to put more of those ideas in sooner. As it is now, there's a lag.

Instead of being at the forefront, we're kind of dragging."^

Munson offered another thoughtful assessment of the Software Factory.

While acknowledging that the set of tools was incomplete and those developed

for the factory were nearly all replaced over time, he insisted this was positive

-- a type of change that represented "growth" and "evolution":

57 SDC Software Factory



[I]f you thought about it in the context of the factory, that's called

growth -- the evolution, the fact that we are not using same the
PDL today as we did ten years ago. We never expected to. We
weren t building something to last 100 years. We were building
something to grow and the fact that we are moving to a new ARGUS
system, that was the way the factory was going to grow. . .it shouldn t

be an indictment of the factory, that was what we were trying to do.

We just wished we could have done it in the context of the factory.

A major achievement, in Munson's view, was the increased attention the

factory brought to problems and needs of the software development business.

While they were not completely successful in the effort, "pioneers " generally are

not successful, he insisted. Instead, they are often "impatient" in what they try

to achieve, and while sometimes receiving "arrows in the back," they lay the

groundwork for future development. This, he feels, is what the SDC Software

Factory did -- it may not have done as well as it could liave, but it was at the

"frontier" in identifying and tackling key problems:

The factory identified software as a major management issue. It got
high visibility for software, got it up to the top level where
management would see it. We got a lot of synergy out of the
factory, getting people together, and emphasis... but we were the
pioneers in this, and you know what happens to pioneers. They get
arrows in the back, and eventually some settlers come along later and
build on those ideas that the pioneers had. . .We are always impatient.

And I was impatient because I knew it was the right thing to do and
people still think it's the right thing to do. People are moving
towards it. I think it was just a little early. It was too soon... We
may have suffered the fate of General Custer but we were out there
in the frontier.

Nor did Munson see himself as involved in a "noble experiment, ' trying to

manage delicate tradeoffs between, say, maximizing cost reduction as opposed

to raising product functionality or customer satisfaction. There was no attempt

to make "better" products; first, Munson claims, he felt he had "to get control

of an uncontrolled process." Better would come later:

58 SDC Software Factory



My first goal was to get control of an uncontrolled process. In my
mind software development, in general, was out of control. It was
not predictable, it was not manageable. . . At that point and time, the
two terms, software engineering and computer science, were
contradictions in terms. There was no engineering in software and
no science in computers. I considered it survival and more than a

noble experiment. We were just really, really trying to get some
terrible problems under control. And we thought this would be a way
to approach it... Some of those other things were second order. We
were just trying to do it good. Better was later. If we could just

get it controlled and bring in a project on time with some
relationship to the cost we had bid for the job, we would have been
satisfied for that. At that point, really, it wasn't a productivity
Issue, as such, although we saw it as leading to that. Once we had
it under control, then we could get to the issue of how can we make
it cheaper. But once it's out of control. . . garbage for whatever price

is still garbage. And that was the situation.

With regard to Japanese efforts at developing software factories, Munson

asserts he became aware of these attempts during the late 1970s and early

1980s through Japanese participation in international conferences on software

engineering. On a visit to Japan in 1981, he saw the Toshiba facility, among

others. Munson also had to contend with frequent visitors from Japan who

wanted to learn about SDC's Software Factory, although at the time he felt the

Japanese were more interested in superficial questions like the size of

programmers' work spaces, than the issues underlying the factory organization:

It must have been 1980-81. Hitachi came over to visit us in Santa
Monica to find out about the Software Factory. They were more
interested in measuring the size of our programmers' offices and
looking at whether they had terminals or not, than they were in

what we were trying to accomplish. And they did, they had tape
measures, they went into offices and measured all the offices. It was
strange. .. [W]e had a delegation in from one of the Japan companies
about every 3 months, it seemed like, wanting to hear what we had
to say on the subject.

After reviewing more detailed accounts of Japanese efforts in software,

Munson concluded that these have been very much along the same lines as what

59 SDC Software Factory



he wanted to do at SDC, with the advantage of more homogeneous hardware

and less cultural resistance. He believed that U.S. companies maintained a

present lead over the Japanese counterparts in software skills, although he also

felt the Japanese were sure to catch up, as they have done with other

technologies, particularly because their software factories were not dependent

on projects to exist. They were permanent organizations:

I think [the Japanese] are doing very much what we tried to do. I

think they have a little advantage, and that's the homogenous
equipment. I think I could make homogenous equipment a spectacular
success. I think we were trying to fight too many problems all at

the same time -- personnel problems, social problems, cultural

problems, customer problems, work-flow problems. With the Japanese
factories, most of them are on budgets. They are not on contracts.
And that makes a huge difference, because they have continuity, year
to year to year. More power to them. . . [But] we are still sufficiently

ahead of the Japanese in software and that is because of exactly the
reasons Why a software factory is more possible in Japan than here.

We allow more creativity, make more of the advances. I really think
that it is going to take the Japanese a while yet to catch up to us.

But they will. They will, but they culturally think differently
towards problems than we do. And I think for software, in this time,

our culture is better than theirs, but they can overcome that...

Withal, there was no question in Munson's mind whether or not SDC's

factory effort had failed. To him, it did not fail; it simply did not perform as

well as it might have with more sustained management commitment. Munson

also feels the effort was "needlessly abandoned," though he admits that he

probably did not do what he should have to convince managers and programmers

to accept the new system. Instead, he relied too heavily on strong-arm tactics

to make it work:

[W]e didn't fail. We didn't do as well as we could. But, we did
anticipate many of the developments that followed and which people
were able to use successfully. . . .SDC may have needlessly abandoned
it. . . [P]eople like belonging to a successful organization. We were

60 SDC Software Factory



being successful and we could have carried that momentum, and it

would have solved a lot of these other problems...! tend to be a

typical impatient American as opposed to the Japanese that can look

at 20-year plans. I get a little impatient with some of those
concepts that say you have to change culture. Wasn't it Nixon who's
quoted as saying, "When you got them by the balls, their hearts and
minds will follow?" Maybe that was more my philosophy .°^

SUMMARY

SDC clearly attempted to move beyond a craft-type approach to a factory

organization that produced semi-customized or fully customized products in a

more systematic manner, using standardized procedures and tools, reusable code

or designs if possible, as well as more division of labor between high-level

design and program construction. SDC failed to solve the five major problems

which initiated the effort, especially managing performance requirements, tools

support, and reusability better, as well as sustaining the factory discipline. A

comparison of SDC's Software Factory to the ten elements earlier introduced as

fundamental to successful software factory efforts reinforces the conclusion that

SDC managers did not allow themselves enough time to think through the

factory approach fully. They also seem to have had a much more limited vision

of what constituted a factory approach than their counterparts in Japan.

Perhaps for these reasons, SDC managers did not allocate the time or resources,

including preparation of employees, that would have been needed to make the

factory work, given the technological and organizational obstacles it faced. The

major issues involved in the factory effort are summarized in Table 3.2.

61 SDC Software Factory



Table 3.2: SDC SOFTWARE FACTORY SUMMARY

FACTORY CONCEPT

Strategic Integration

Product- Process Focus

Scale and Scope

Improvement, Not Innovation

Process Analysis/Control

Quality Analysis/Control

Central Tool Support

Training

Reusability

Automated Customization

IMPLEMENTATION

Some in planning stage; almost none in

implementation, particularly work flow
management, or education

Division focused on real-time programming
applications, mainly defense-related, but wide
variety in types and object computers

Factory of 200 programmers was small; other
programming operations dispersed, at SDc
locations and customer sites

SDC emphasized product innovations and
customized systems; not traditionally process
and cost oriented, thus some factory goals
were incongruent with competitive strategy
and corporate culture

No systematic analysis, though factory
methodology imposed some standardized
controls while in use

No systematic analysis, though factory
methodology imposed some standardized
controls while in use

The factory began as tool R&D; Factory
Support System provided numerous tools,

though portability was a major problem and
the development effort was not sustained

No formal training, of programmers or
managers, though the standardized
methodology was apparently followed. Lack
of understanding or appreciation for the
factory concept contributed to matrix
management problems, as project managers
disliked giving up control of program
contruction to the factory

No systematic effort; reuse achieved was
accidental

Capability not achieved, except that some
mechanized or automated project-management
and testing tools aided development

62 SDC Software Factory



REFERENCES

1. I would like to thank David Finnell for his contributions to ideas expressed
in this chapter through research done under my direction for a structured
master's thesis at the M.I.T. Sloan School of Management, titled "Application of

the Factory Model to Large-Scale Software Engineering," May 1987. The thesis

work included the Interview with Ronald Atchley cited in the text.

2. Burroughs Corporation, Annual Report , 1984, p. 15.

3. One of the key documents in this literature, which also contains a wealth of

references to other articles written during the late 1960s and early 1970s, is of

course Frederick P. Brooks, Jr., The Mythical Man-Month: Essays on Software
Engineering (Reading, MA, Addison-Wesley, 1975). Two other collections on key
articles dating back to the early 1960s are Edward Yourdon, ed.. Classics in

Software Engineering (New York, Yourdon Press, 1979) and Writings of the
Revolution (New York, Yourdon Press, 1982).

4. SDC's official company history, written by an SDC employee, details the
development of the firm from 1956 through 1981. See Claude Baum, The System
Builders: The Story of SDC . Santa Monica, Cal., System Development
Corporation, 1981.

5. Baum, pp. 26, 61.

6. Baum, pp. 53-54.

7. Baum, p. 6.

8. Baum, pp. 158-159, 163.

9. Baum, p. 161.

10. Baum, p. 168.

11. Baum, pp. 166-167, 170.

12. Baum, pp. 190-194, 285.

13. Baum, p. 246.

14. Baum, pp. 219-220.

15. Baum, p. 220.

16. Baum, p. 246; and Harvey Bratman and Terry Court (System Development
Corporation), "The Software Factory," Computer . May 1975, pp. 28-37.

17. Baum, p. 221.

18. Interview with John B. Munson, 4 and 5 October 1987.

63 SDC Software Factory



19. Harvey Bratman and Terry Court (System Development Corporation), "The
Software Factory, " Computer . May 1975, pp 28-37. This article describes the
factory tool set. A second article repeats the tool discussion but also describes
the development of standards and procedures, as well as the division of labor
between program offices and the central factory facility. See H. Bratman and
T. Court, "Elements of the Software Factory: Standards, Piocedures, and
Tools," in Infotech International Ltd , Software Engineering Techniques
(Berkshire, England: Infotech International Ltd., 1977), pp. 117-143.

20. In addition to their own experiences, Bratman and Court cited a 1974 study
which had attempted, without success, to find such a correlation. The citation

is to R.W. Wolverton, "The Cost of Developing Large Scale Software," IEEE
Transactions on Computers , Vol. C-23, No. 6, June 1974, pp. 615-635.

21. Bratman and Court (1975), p. 29.

22. Bratman and Court (1975), pp. 28-29.

23. Bratman and Court (1975), p. 36.

24. Bratman and Court (1977), p. 119.

25. Munson interview.

26. Munson interview.

27. Bratman and Court (1977), p. 117.

28. Bratman and Court (1977), p. 120.

29. Baum, p. 222.

30. Bratman and Court (1977), p. 121.

31 . Munson interview.

32. This discussion of the SDM procedures and quotations are from Bratman and
Court (1977), pp. 121-126.

33. Munson interview.

34. Baum, pp. 220-221.

35. Baum, p. 223.

36. Interview with Ronald Atchley, 3/27/87 and 4/23/87.

37. Bratman and Court (1977), p. 127.

38. Bratman and Court (1977), p. 127.

39. Bratman and Court (1977), p. 128.

64 SDC Software Factory



3-//'>

40. This section is based on nearly identical descriptions of the tool set in

Bratman and Court (1975), pp. 30-36; and Bratman and Court (1977), pp. 128-

137.

41. In "Elements of the Software Factory", this tool is called Program Analysis
and Test Certification Processor.

42. Atchley interview.

43. Bratman and Court (1975), p. 36; and Bratman and Court (1977), p. 143.

44. Atchley interview.

45. Munson interview; Baum, p. 224.

46. Baum, p. 224.

47. Munson interview.

48. Atchley interview.

49. Interview with Clarence Starkey, 10/3/86.

50. Atchley interview.

51. Interviews with Atchley and Munson.

52. Baum, p. 222.

53. Munson interview and Baum, p. 224.

54. Munson interview.

55. Munson interview.

56. Atchley interview.

57. Munson interview.

58. Munson interview.

59. Munson interview.

60. Interview with David Deaver, 10/3/1986.

61. Munson interview.

62. Atchley interview.

63. Atchley interview.

64. Atchley interview. See also data on reuse rates reported in Chapters One
and Two.

65 SDC Software Factory



65. Atchley interview.

66. Munson interview.

67. Munson interview

68. Munson interview.

69 Bratman and Court (1977), p. 137.

70. Munson interview.

71. Atchley interview.

72. Munson interview.

73. Munson interview

74. Munson interview

75. Munson interview.

76. Atchley interview.

77. Baum, p. 43.

78. Deaver interview.

79. Atchley interview.

80. Munson interview.

81 . Atchley interview.

82. Atchley interview.

83 Munson interview.

:-07;
66 SDC Software Factory





Date Due



=\0B0
0072& &24 1




