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Software Complexity and Software Maintenance Costs

Abstract
In an empirical analysis of software maintenance projects at a large IBM/COBOL transaction

processing environment the impacts of software complexity upxjn project costs were estimated.

Program size, modularity, and the use of branching were all found to significantly affect

software maintenance costs. It was estimated that the maintenance projects dealing with more
complex software were at a cost disadvantage of approximately 35% with respect to the site's

average projects, and the disadvantage with respect to more favored projects is approximately

twice that large. These costs amount to several millions of dollars a year at this site alone. A
generalizable model is provided to allow researchers and managers to estimate these costs in

other environments.
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Maintenance; D.2.8 [Software Engineering]: Melncs; D.2.9 [Software Engineering]:

Management; F.2.3 [Analysis of Algorithms and Problem Complexity]: Tradeoffs among

Complexity Measures; K.6.0 [Management of Computing and Information Systems): General -

Economics; K.6.1 [Management of Computing and Information Systems): Project and People

Management; K.6.3 [Management of Computing and Information Systems): Software

Management

General Terms: Management, Measurement, Performance.
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I. Introduction

With software costs now exceeding $200 billion annually and with most of that being spent on

niaintenance of all types, rather than new development, the econoniic incentives to develop

software that requires less repair maintenance and is more easily adapted to changing

requirements are quite strong [Boehm, 1979, 1987; Gallant, 1986]. In this paper, we test and

measure the degree to which the maintainability of a system is influenced by the complexity of

the existing code. In particular, we investigate the impact of software complexity upon the

productivity of software maintainers.

The empirical evidence linking software complexity to software maintenance costs has been

criticized as being relatively weak [Kearney, et al, 1986]. Much of it is based on experiments

involving small programs [e.g., Curtis et al, 1979], or is based upon analysis of programs

written by smdents [e.g., Kafura and Reddy, 1987]. Such evidence can be valuable, but

several researchers have noted that caution must be used in applying these results to the actual

commercial application systems which account for most software maintenance expenditures

[Conte, et a/.,1986, p. 1 14; Gibson and Senn, 1989]. And, the limited field research that has

been done has generated either no or conflicting results; for example, in the case of degree of

program modularity [Vessey and Weber, 1983, Basili and Perricone 1984, Card etai, 1985],

and in the case of program structure (see Vessey and Weber's 1984 review article.). Finally,

none of the previous work develops estimates of the actual cost of complexity, estimates which

could be used by software maintenance managers to make best use of their resources.

Research supporting the statistical significance of a factor is a necessary first step in this

process, but practitioners must also have an understanding of the magnitudes of these effects if

they are to be able to make informed decisions regarding their control.

This study analyzes the effects of software complexity upon the costs of COBOL maintenance

projects within a large commercial bank. Freedman notes that 60% of all business

expenditures on computing are for maintenance of COBOL programs, and that there are over

50 billion lines of COBOL in existence worldwide, the maintenance of which, therefore,

represents an information systems activity of considerable economic imponance [1986]. Using

a previously developed model of software maintenance productivity [Banker, Datar and



Kemerer, 19901] we estimate the marginal impact of software complexity upon the costs of

software maintenance projects in a data processing environment. The analysis confirms that

software maintenance costs are significantly affected by software complexity, as measured by

three metrics: a measure of module size, a measure of modularity, and a measure of control

structure complexity. The results further suggest that the magnitudes of these costs are such

that software maintenance managers should monitor the complexity of the software under their

control, and take active steps to reduce that complexity.

This research makes contributions in two distinct areas. The first is in developing a model with

which to resolve some current academic debate regarding the nature of the impact of software

complexity, and the shape of the functional form relating complexity to the productivity of

software maintainers. The second is in providing practicing software maintenance managers

with a predictive model with which to evaluate the future effects of software design decisions.

This model could also be used to assist in the cost-benefit assessment of a class of computer-

aided software engineering (CASE) tools known as restrucrurers.

The remainder of this paper is organized as follows. Section 11 outiines the research questions,

and summarizes previous field research in this area. Section in describes our research

approach and methodology, and section FV presents our model and results. Implications for

practitioners are presented in section V, and concluding remarks and suggestions for future

research are provided in the final section.

II. Research Questions

Complexity and maintenance

The complexity of a software system is said to increase as "the number of control constructs

grows and as the size in the number of modules grows" [Conte, et ai, 1986, p. 109.]. The

formal characterization of the maintenance impacts of software complexity is sometimes

ascribed to Belady and Lehman, who, in their Evolution Dynamics theory, propose that

software systems, like their analogues in other contexts, face increasing entropy over time

[Belady and Lehman, 1976]. As more changes are made to a system in the form of

maintenance requests, the initial design integrity deteriorates, and the system's complexity

increases. In addition, several longitudinal studies have noted increases in tiie size of software

^Hereafter referenced as "BDK, 1990"



systems that are in active use [Lawrence, 1982, Chong, 1987]. These two factors have been

suggested to contribute to the increasing difficulty of software maintenance over dme. Given

the growing economic imponance of maintenance, researchers have attempted to empirically

validate these theories. In general, however, researchers have not been able to empirically test

the impact of complexity upon maintenance effort while controlling for other factors known to

affect costs. Therefore, our overall research question (to be developed into specific testable

hypotheses below) will be:

Research question 1 : Controllingfor otherfactors known to affect software maintenance
project costs, what is the impact of software complexity upon the productivity ofsoftware
maintenance projects?

Size and Modularity

A key component of structured programming approaches is modularity, defined by Conte, et

at., as "the programming technique of constructing software as several discrete parts" [Conte,

et al., 1986, p. 197]. Freedman and Weinberg have estimated that 75-80% of existing

software was produced prior to significant use of structured programming [Schneidewind,

1987], and therefore the absence of modularity is likely to be a significant practical problem. A

number of researchers have attempted to empirically validate the impact of modularity on either

software quality or productivity with data fi-om actual systems, and the results of tiiis research

are summarized in Table 1

.

Table 1: Previous Field research on Modularity

Year



Perhaps the first widely disseminated field research in this area was by Vessey and Weber, in

their study of repair maintenance in Australian and US data processing organizations [1983].

Their work relied on subjective assessments of the degree of modularity in a large number of

COBOL systems. In one dataset they found that more modular code was associated with fewer

repairs, in the other dataset no effect was found. Basili and Perricone, in an analysis of a large

Fortran system, found more errors per thousand source lines of code (KSLOC) in smaller

modules, which they hypothetically attributed to a) greater numbers of interface errors, b)

possible greater care taken in coding larger modules, or c) simply the continued presence of

undiscovered errors in larger modules [1984]. Shen, et al. disagreed with Basili and

Perricone's analysis, noting that the higher error rate observed with smaller modules could be

simply a function of an empirically observed phenomenon that modules contain a number of

errors independent of size, in addition to a size-related error rate. Therefore, according to this

model, smaller modules will show a higher rate of errors due to this size-independent error

component being divided by a smaller number of lines of code. Shen, ei al. conclude that "...it

may be beneficial to promote programming practices related to modularization that discourage

the development of either extremely large or extremely small modules." [1985, p. 323].

Bowen, in an analysis of secondary data, compared the number of SLOC / module with a set

of assumed niiaximum values of two well-known complexity metrics, McCabe's V(G) and

Halstead's N [1984]. He concluded that the optimal values of SLOC / module differed across

languages, but that all were much less than the DoD's proposed standard of 200 SLOC /

module. In his suggestions for future research, he notes that "More research is necessary to

derive and validate upper and lower boundsfor module size. Module size lower bounds, or

some equivalem metric such as coupling, have been neglected; however they are just as

significant as upper bounds. With just a module size upper bound, there is no way to dissuade

the implementation of excessively small modules, which in turn introduce intermodule

complexity, complicate software integration testing, and increase computer resource overhead."

[1984, p. 331] Boydston, in his analysis of programmer effort, noted that "...as a project gets

larger, the additional complexity of larger modules has to be balanced by the increasing

complexity of information transfer between modules." [1984, p. 159]. Card, Page, and

McGarry tested the impact of module size and strength (singleness of purpose) on

programming effon [1985]. In their basic analysis, they found that effon decreased as the size

of the module increased. However, they also noted that effon decreased as strength increased,

but that increases in strength were associated with decreases in module size. Their conclusion

was that nothing definitive could be stated about the impact of module size.



An, Gustafson, and Melton, in analyzing change data from two releases of UNIX, found that

the average size of unchanged modules (417 lines ofQ was larger than that of changed

modules (279 lines of C) [1987]. Unfonunately, the authors do not provide any analysis to

determine if this difference is statistically significant. Most recently, Lind and Vairavan

analyzed the change rate (number of changes per 100 lines of code) versus a lines of code-

based categorical variable [1989]. They found that minimum values of change density

occurred in the middle of their ranges, suggesting that modules that were both too large and too

small increased the amount of change density. They further suggest that, for the Pascal and

Fortran programming languages, the optimum value might be between 100 and 150 SLOC.

The results of these previous studies can be summarized as follows. Researchers looking for

unidirectional results (i.e., that either smaller modules or larger modules were better) have

found no or contradictory results. Other researchers have suggested that a U-shaped function

exists, that is, both modules that are too small and modules that are too large are problematic.

In the case of many small modules, the number of intermodule interfaces is increased, and

interfaces have been shown to be among the most problematic components of programs [Basili

and Penicone, 1984]. In the case of a few very large modules, these modules are less likely to

be devoted to a single purpose and may be assumed to be more complex, both of these factors

having been linked with larger numbers of errors and therefore higher maintenance costs

[Card, etal. 1985, Vessey and Weber, 1983].

However, the researchers who have suggested the U-shaped curve hypothesis either provide

no or very limited (e.g., categorical) data linking size and cost . They also, in general, do not

provide a methodology for determining the optimum program size.^ Finally, previous

research on software complexity metrics has suggested that, for large systems, modularity is

most appropriately measured at multiple levels of program organization [Zweig, 1989]. This is

because, as will be explained in greater detail in Section III below, the effects of breaking an

application into modules of an appropriate size are distinct from those of breaking those

modules into their component subprograms or procedures [Zweig, 1989]. Therefore, the

research question to be addressed is:

Research question 2: Do software maintenance costs depend significantly upon degree of
modularity, measured at multiple levels, with costs risingfor applications that are either under

or over modularized?

^Boydston does extrapolate from his dataset to suggest a specific square root relationship between number of

new lines code and number of modules for his Assembler and PLS language data [1984].



Structure

An excellent review of the empirical research on structured programming is provided by

Vessey and Weber (1984). Therefore, this section will only briefly summarize the arguments

presented there. Structured programming is a design approach that limits programming

constructs to three basic control structures. Because these structures are often difficult to

adhere to using the GOTO syntax found in older programming languages, this approach is

sometimes colloquially referred to as "GOTO-less programming". Vessey and Weber note

that, while few negative results have been found, absence of significant results is as frequent as

a finding of positive results, a development that they attribute, in part, to the fact that

researchers have not adequately controlled for other factors. They note die difficulty of

achieving such control, particularly in non-laboratory, real world settings. Therefore, the

question of a positive impact of structure on maintenance costs is still unanswered, and

requires further empirical support This suggests the following research question:

Research question 3: Do software maintenance costs depend significantly upon the degree of
control structure complexity, with costs rising with increases in complexity?

In the following section we describe our approach to answering these research questions.

in. Research Approach

In attempting to answer the research questions posed above, we needed to test the impact of

complexity on real-world systems, and to attempt to control for other factors that may have an

impact on labor productivity, since labor costs are the single largest cost component in

commercial software maintenance. For this purpose we began with the data and model

developed in our previous research in software maintenance productivity. The data collection

procedures and model development are described in detail in [Kemerer, 1987] and [BDK,

1990], and will only be summarized here.

The Research Site

Data were collected at a major regional bank with a large investment in computer software. The

bank's systems contain over 10,000 programs, totalling over 20 million lines of code. Almost

all of them are COBOL programs mnning on large IBM mainframe computers. The programs

are organized into appUcation systems (e.g. Demand Deposits) of typically 100 - 300 programs

each. Some of the bank's major application systems were written in the mid-1970's, and are

generally acknowledged to be more poorly designed and harder to maintain than more recendy

written software.



The software environment in which we are conducting our research is a quite typical

commercial data processing environment. The empirically based results of the research should,

therefore be highly generalizable to other commercial environments. The projects analyzed

were homogeneous in that they all affected COBOL systems, so our results are not confounded

by the effects of multiple programming languages.

We analyzed 65 software maintenance projects from 17 major application systems (see Table 2

in Section FV). These projects were carried out between 1985 and 1987. An average project

took about about a thousand hours (at an accounting cost of $40 per hour) and changed or

created about five thousand source lines of code.

Modeling maintenance producrivirv

Our major goal in this study is to evaluate the impact of software complexity on maintenance

labor productivity. In order to do so^ however, we must control for the effects of other

factors, such as task magnitude and the skill of the developers, that also affect the developer

hours required on a project Excluding task size (or other relevant factors) would result in a

mis-specification of the model and incorrect inferences about the impact of software complexity

on costs. For example, a large maintenance project dealing with an application system of low

complexity may require more hours than another project meant to make a small modification to

a system of higher complexity. A failure to control for the different task sizes could lead us to

the unjustified conclusion that higher software complexity will result in lower costs.

Figure 1 presents a measurement model of the maintenance function developed in [BDK,

1990]. Software maintenance is viewed as a production process whose inputs are labor and

computing resources and whose output is the modified system. Since labor hours are

considerably more expensive than computer resources, and there are limited substitution

possibilities between the two, we focus upon labor hours as the major expense incurred in

software maintenance. The productivity of this process depends upon a number of

environmental variables, including the skill and experience of the developers, and the software

tools available to the developers [Boehm 1987].
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Software tools: Many commercially available products have been designed to increase

developer productivity. To the extent that they do so, they will have noticeable

beneficial effects upon maintenance costs.

Software complexity: We are primarily concerned here with the impact of this factor

upon maintenance costs. Any practical cost estimation model, however, must consider

and control for the effects of other factors such as those discussed above.

This model of software maintenance costs has already been tested [BDK, 1990] at the research

site without the software complexity variables. The model was explicidy designed to allow the

introduction of new factors, and by introducing software complexity we can confirm its

robusmess. Of more immediate interest is that we can test the marginal impact of software

complexity upon maintenance costs. And we can compute the actual magnimde of the cost

impact of complexity, so as to determine the extent to which the effect is of managerial interest.

Definitions

The following defmiriuns will be used throughout the rest of this paper:

*Module: A named, separately compilable file containing COBOL source code. A module
will typically, though not necessarily, perform a single logical task, or set of tasks. All the

modules counted in the analysis were of this type. Modules containing COBOL source code

but not the headers which allow it to be mn on its own (e.g., INCLUDE modules and COPY
files) were not included.

*Paragraph: The smallest addressable unit of a COBOL program. A sequence of COBOL
statements preceded by an addressAdentification label. This constmct is not precisely paralleled

in other high level languages.

*Procedure: The range of a PERFORM statement. For example, if paragraphs are labelled

sequentially, the statement PERFORM D THRU G invokes the procedure consisting of

paragraphs D, E, F, G and die paragraphs invoked by these paragraphs.

*Componeni: The union of two or more overlapping procedures, (e.g., PERFORM D THRU
G and PERFORM E THRU J will have at least E, F, and G in common.) Measurement of

components prevents possible double counting. Such overlaps are relatively rare, however,

with the result that components and procedures behave almost identically for all statistical

purposes.

*Applicanon System: A set of modules assigned a common name by the bank, typically

performing a coherent set of tasks in suppon of a given department, and maintained by a single

team. References to this term refer only to the source code, not to the JCL and other material

associated with it. 'Application' or 'system', if used separately, mean the same thing.

Software Complexitv Metrics

A number of steps must be taken before it can be determined whether reductions in software

maintenance costs can be achieved by monitoring and controlling software complexity. First,



we must identify appropriate metrics with which to measure software complexity. Having

identified such measures, we can then attempt to establish that their effects are managerially

important — that they do in fact have a large enough effect upon software costs to justify

possibly significant expenditures by those wishing to control them.

The first step was accomplished in an earlier study at the same research site [Banker, Datar and

Zweig, 1989^]. We analyzed over five thousand application programs in order to develop a

basis for selecting among dozens of candidate software metrics which the research literature

has suggested. Although much research has been devoted to testing single software metrics in

isolation, our analysis suggested that the metrics which we analyzed could be classified into

three major groups, measuring three distinct dimensions of software complexity: measures of

module size; measures of procedure complexity; and measures of the complexity of a module's

control structure [BDZ, 1989]. That research also idendfied representative metrics from each

group which could be expected to be orthogonal to each other [BDZ, 1989].

In this study we undertake the second step required to validate the practical use of software

complexity metrics by assessing their effect upon maintenance costs. We used a commercial

static code analyzer to compute metrics from each of the groups of metrics identified earlier.

Three software complexity metrics, representing each of the previously identified dimensions,

were used in this study. Choice of these three metrics was based upon the ease with which

they could be understood by software maintenance management and the ease of their collection.

Given the typical high levels of correlation among complexity metric groups [Zweig, 1989,

Munson and Khoshgoftaar, 1989], this approach has been recommended by previous research

[Shepperd, 1988]^ . Consistent with previous research, we used module length, in statements

(STMTS) for the first metric, a measure of size^. The effect of this complexity metric will

depend upon the application systems being analyzed. Module for module, larger modules will

be more difficult to understand and modify than small ones, and maintenance costs will be

expected to increase with module size. However, a system can be composed of too many

small modules as easily as too few large ones. If modules are too small, a maintenance project

^Hereafter referenced as "[BDZ, 1989]".

^However, in order to test the sensitivity of our results to choices of alternative metrics, the model described

below was re-estimaied using other metncs. No significant changes in the results were found due to specific

metric choice.

^For these data this metric is highly correlated (Peanon correlation coefficient > .92) with other size metrics,

such as physical lines of code, and Halsiead Length. Volume, and Effort [Zweig, 1989]

10



will spread out over many modules with the attendant interface problems and therefore

maintenance costs could actually decrease as module size increases.

For the second metric, to measure module complexity, we computed the average size of a

module's procedures (STMTCOMP)^- The same argument concerning the effect of module

size applies here. And if modules are broken into too many small procedures, then an increase

in average component size will be associated with a decrease in maintenance costs. There is an

almost universal tendency to associate large component size with poor modularity, but,

intuitively, neither extreme is effective.

A third dimension of software complexity was the complexity of the module's control

structure. The initial candidate metric chosen for this dimension was the proportion of the

statements which were GOTO statements (GOTOSTMT) We selected a control structure metric

which was normalized for module size, so that it would not be confounded with STMTS. This

metric is also a measure of module decomposability, as the degree to which a module can be

decomposed into small and simple components depends direcdy upon the incidence of

branching within the module. Highly decomposable modules (modules with low values of

GOTOSTMT) should be less cosdy to maintain, since a developer can deal with manageable

portions of the module in relative isolation.

The density ofGOTO statements (GOTOSTMT), like other candidate control metrics we

examined, is a measure of decomposability ~ each GOTO command makes a module more

difficult to understand by forcing a programmer to consider multiple portions of the module

simultaneously — but it does not distinguish between more and less serious structure

violations. A branch to the end of the current paragraph, for example, is unlikely to make that

paragraph much more difficult to comprehend, while a branch to a different section of the

module may fVessey, 1985]. Yet none of the structure metrics we examined differentiate

between the two.

The modules we analyzed have a large incidence ofGOTO statements (approximately seven per

hundred statements) but if only a relatively small proportion of these are seriously affecting

maintainability, then the GOTOSTMT metric may be too noisy a measure of control structure

complexity. Empirically, over half of the GOTOs in these programs (19 GOTOs out of 31 in

the average module) are used to skip to the beginning or end of the current paragraph. Such

°This metric was found to be uncorrelated with STMTS (coefficient = .10).

11



branches would not be expected to contribute noticeably to the difficulty of understanding a

module (in most high level languages other than COBOL they would probably not be

implemented by GOTO statements) and a metric (such as GOTOSTMT) which does not

distinguish between these and the less benign 40% of the branch commands will be

understandably imperfect

To avoid this problem, a modified metric was computed (GOTOF.\R) which is the density of

the non-trivial GOTO statements i.e., the 40% of the GOTO statements which extend outside

the boundaries of the paragraph and which can be expected to seriously impair the

maintainability of the software. (Since the automated static code analyzer was not able to

compute this metric, it was computed manually. Due to the large amount of time this

computation required, this metric was not computed for all the modules analyzed, but for a

random sample of approximately fifty modules per application system (about 15(X) modules in

total, or approximately 30% of all modules))^.

Research Hypotheses

Based on the above research approach, we propose four specific research hypotheses based on

the initial research questions that can be empirically tested:

Hypothesis 1 : Controlling for otherfactors known to affect software maintenance costs,

software maintenance productivity increases significantly with increases in software

complexity, as measured by STMTS, STMTCOMP and GOTOFAR.

Hypothesis 2: Software maintenance costs will depend significantly upon average module size

as measured by STMTS, with costs rising for applications whose average module size is either

too large or too small.

Hypothesis 3: Software maintenance costs will depend significantly upon average procedure

size as measured by STMTCOMP , with costs risingfor applications whose average procedure

size is either too large or too small.

Hypothesis 4: Software maintenance costs will depend significantly upon the density of
branching as measured by GOTOFAR, with costs rising with increases in the incidence of
branching.

^A sensitivity analysis regression using GOTOSTMT instead of GOTOFAR lends credence to our belief that

the excluded branch commands represent a noise factor. The estimated effect of GOTOSTMT had the same

relative magnitude as that of GOTOFAR, but the standard error of the coefficient was four times as large.

12



IV. Model and Results

Factors Affecting Maintenance Cosis

In assessing the effect of software complexity upon maintenance costs, it is necessary to

control for other factors known to affect these costs. The most significant of these, of course,

is the magnitude of the maintenance task. To control for this, and for other factors known to

affect costs, we began with a previously developed model of software maintenance costs

[BDK, 1990].

In testing the various complexity metrics, we shall be interested in their impact upon

maintenance costs controlling for these other factors. To do so, we shall estimate the following

model:

HOURS = Po + Pl*FP + p2*SL0C + p3*FP*FP+ p4*SL0C*SL0C + P5*FP*SL0C +

p6*FP*L0WEXPER + P7*FP*SKILL + P8*FP*METH0D0L0GY +

p9*SL0C*QUALnT + pio*SLOC*RESPONSE +

Pll*SLOC*STMTS + pi2*SL0C*STMTC0MP + pi3*SL0C*G0T0FAR + e

This model, without the three complexity terms (the terms associated with parameters Pn
through Pi 3), has been previously validated at the research site [BDK, 1990]. In this model,

project costs (measured in developer HOURS) are primarily a function of project size,

measured in function points (FP) and in source lines of code (SLOC). The number of hours

was obtained from the site's billing files. The size measures were computed by the

development staff after the projects were complete. In order to model the known nonlineaiity

of development costs with respect to project size, we include not only FP and SLOC, but also

their second-order terms. We expect this to result in a high degree of multicollinearity among

the size variables which will make the interpretation of their coefficients difficult [Banker and

Kemerer, 1989]. Those coefficients, however, are of no concem to us for examining the

current research hypotheses relating to the impact of complexity.

Other factors, shown to be significant in affecting project costs included:

METHOD: The use of a structured design methodology. (A binary variable.) This is

expected to have an adverse effect upon single-project productivity, although it is meant

to reduce costs in the long run. [BDK, 1990]

RESPONSE: The availability of a fast-turnaround programming environment (A

binary variable.) [BDK, 1990]

13



The values of these binary variables were obtained by interviewing developers and project

managers.

*SKILL: The percent of developer hours billed to the most highly skilled (by formal

management evaluation) developers. This variable is quite distinct from the following

one, which depended upon the developers' experience with a specific application

system. [BDK, 1990]

LOWEXPER: The extensive use (over 90% of hours billed to the project) of

developers lacking experience with the application being modified. (A binary variable.)

[BDK, 1990]

The values of these variables depended upon the number of hours billed to each project. This

information was obtained from the project billing files. [BDK, 1990]

QUALITY: A measure (on a three-point scale of low/medium/high quality) of the

degree to which the completion of the project was followed by an increase in the

number of operational errors. This measure was based upon information obtained from
the site's error logs. [BDK, 1990]

These explanatory factors are weighted by a measure of project size, either by FP or by SLOC,

depending on whether they are thought to be associated more strongly with the analysis phase

or with the coding phase of the project. In a manner consistent with the software productivity

literature [Boehm, 1981; Albrecht and Gaffney, 1983] we model the effects of these factors to

be proportional, rather than absolute, so they are weighted by program size^^. Table 2

presents the summary statistics for this dataset.

^^t should be noted that any collineanty which may exist between the weighted metrics and other independent

variables which have been weighted by SLOC will cause us to underesomate the significance of the metnc; the

analysis presented below, therefore, is a conservative tesL

14



Table 2: Maintenance Project Summary Statistics*

VARIABLE



Table 3: Regression Results

VARIABLE



and to the median (40) for this organization. However, individual appUcadons vary in average

procedure size from 13 to 115 statements! ^^

As an additional test of the robustness of these results, after determining the minimum value of

45, we developed a linear model incorporating two linear variables representing the deviations

below and deviations above the optimum value. This model generated similar results (R2=.90,

adjusted r2=.87, F14.50 = 31.15).

Analogous to the U-shaped relationship between maintenance costs and procedure size, there is

also reason to expect a similar U-shaped relationship between maintenance cost and module

size. An additional model was tested, adding a second order term, STMTS-. However, this

relationship was not supported by the data at this site, as the second order term was found to be

statistically insignificant. The resulting coefficients showed that all the application systems

examined fell on the downward-sloping portion of the computed curve. In fact, a direct

plotting of the data confirmed that the relationship was downward-sloping and approximately

linear across the observed range of the data, so no second-order term was included for this

complexity metric in the final model.

The Belsley, Kuh, Welsch test of mulncollinearity [Belsley, et ai, 1980] did not show the

complexity metrics to be significandy confounded with the otiier regression variables, so we

may interpret their coefficients with relative confidence. We also detected no significant

heteroskedasticity. This supports our decision to model the complexity effects in our

regression as proportional ones, rather than use tiie unweighted metrics alone.^^

Tests of the Research Hypotheses

This analysis confirms all four of our hypotheses:

Hypothesis 1 was the general hypothesis that, controlling for the other explanatory factors,

software complexity has a significant impact upon software maintenance costs. This is

confirmed. Recall

1
1 As is often the case in this type of estimation [Banker and Kemerer, 1989] there was a high degree of

mullicoUinearity between the linear term and the quadratic term, which required the computation of the

minimum point to be talcen with caution. An attempt to confirm the results of this computation by plotting

the data directly also yielded a minimum point at 45. Sensitivity analysis, using different minimum points,

showed the estimation to be insensitive to moderate variations in this value.

^^If the complexity effects were not proportional to project magnitude, our use of the weighted metrics would

cause our model to overestimate the costs of large projects, resulting in residuals negauvely correlated with size.
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P(Ho: pii=pi2=Pl3=[3l4=0)=0.0001 as F4,50 =12.02.

Hypothesis 2 was that maintenance costs would be significantly affected by module size. This

is confirmed.

P(Ho: Pii=0)=0,001 as tso =-3.33.

We also tested for a U-shaped relationship between module size and software maintenance

costs. The maintenance costs at this site the data tended to be linear over the observed range of

module sizes, controlling for other factors. It should be noted that, while these data do not

indicate a U-shaped relationship, they are not necessarily inconsistent with such a hypothesis.

(The data can be seen as falling on the downward sloping arm of this U, with the possibility

that had sufficiently large modules been available, that costs would again begin to rise.)

Hypothesis 3 was that maintenance costs would be significandy affected by procedure size.

This hypothesis is confirmed by an F test on the joint effect of the two procedure-size terms.

Recall

P(Ho: Pi2=Pl3=0)=0.0001 as F2, 50 =12.02.

Again, we hypothesized a U-shaped relationship between procedure size and software

maintenance costs. At this site the data are supportive of the U-shaped hypothesis, with actual

application systems observed to fall on both arms of the U, and minimum costs observed for a

procedure size of approximately 45 statements.

Hypothesis 4 was that maintenance costs would be significantly affected by the

density of branch instructions within the modules. This is confirmed.

P(Ho: Pi4=0)=0.002) as tso =3-22.

V. Software Maintenance Management Results

Through the above analysis we have estimated the effect of software complexity upon

developer productivity in a maintenance environment. While it is a firmly estabUshed article of

conventional wisdom that poor programming style and practices increase programming costs,

there has been littie empirical evidence to suppon this notion. As a result, effons and

investments meant to improve programming practices have had to be undertaken largely on

faith. We have extended an existing model of maintainer productivity and used it to confirm

the significance of the impact of software complexity upon productivity. We used a model

which allowed us to not only verify this significance, but also to estimate the magnitude of the

effect The existence of such a model provides managers with estimates of the benefits of
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improved programming practices which can be used to cost-jusdfy investments designed :o

improve those practices.

One of the benefits of the methodology employed in this study is that once we have established

that these metrics have a significant effect upon costs, we can then estimate the actual

magrdtude of these costs by interpreting the regression coefficients. Based upon the regression

estimates in Table 4, the effects of the metrics for projects of average size (about 5400 source

lines of code) are approximately

- 0.6 hours reduction for every statement added to average module size.

- 15 hours added for every statement deviation firom an optimum average component

size of 45.

- 140 hours added for every 1% absolute increase in the proportion of statements

which are non-benign GOTO statements.

A perhaps more informative way to interpret these results is to compute the percent change in

average project costs associated with metric values which deviate unfavorably from the

research site's mean values by one standard deviation. The advantage of this approach is that

we know we are comparing the more complex software to complexity standards observed in

practice at this site, ratiier than to a perhaps-arbitrary ideal. The penalties associated with these

less favored complexity scores are:

- 10% of total costs for module size.

- 30% of total costs for procedure size^^.

- 15% of total costs for branching density.

Armed with these quantified impacts of complexity, software maintenance managers can make

informed decisions regarding preferred managerial practice. For example, one type of decision

that could by aided by such information is the purchase of CASE reengineering tools. A great

many claims are made for such tools; improved programming practice is only one of them.

The benefits of these tools have also generally had to be taken on faith. Our analysis,

however, indicates that the magnitude of the economic impact of software complexity is

sufficientiy great that many organizations may be able to justify the purchase and

implementation of CASE tools on the basis of these estimated benefits.

^^There is an asymmetry here. The esumates are a 25% penalty for applications whose procedures are 1 SD
smaller than average and a 35% penalty for those whose procedures are 1 SD larger than average. We cannot

statistically reject the hypothesis that these two values are actually equal.
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More generally, a common belief in the long-term importance of good programming practice

has generally not been powerful enough to stand in the way of expedience when "quick-and-

dirty" programming has been perceived to be needed immediately. An awareness of the

magnitude of the cost of existing software complexity can combat this tendency. The cost of

correctable complexity at this research site amounts to several million dollars per year, the

legacy of the practices of previous years.

Taken together these ideas show how, through the predictive use of the model developed here,

managers can make decisions today on systems design, systems development, and tool

selection and purchase that depend upon system values that will affect future maintenance.

This can be a valuable addition to the traditional emphasis on current on-time, on-budget

systems development in that it allows for the estimation of full life-cycle costs. Given the

significant percentages of systems resources devoted to maintenance, improving managers'

ability to forecast these costs will allow for them to be properly weighted in current decision-

making.

In summary, this research suggests that considerable economic benefits can be expected from

adherence to appropriate programming practices. In particular, such aspects of modular

programming, such as the maintenance of moderate procedure size, and the limitation of

branching between procedures, seems to have great benefits. The informed use of tools or

techniques which encourage such practices should have a positive net benefit.

VI. Concluding Remarks

In this study we have investigated the links between software complexity and software

maintenance productivity. On the basis of an analysis of software maintenance projects in a

commercial application environment we confirmed that software maintenance costs rise

significandy as software complexity increases. In this study software maintenance costs were

found to increase wdth increases in the complexity of a program's components, as measured by

the programs' average procedure size, average module size, and control structure complexity.

Historically, most models of software labor productivity have not explicitiy used software

metrics. Our analysis suggests that high levels of software complexity account for

approximately 30% of maintenance costs at this site, or about 20% of total life-cycle costs.

Therefore, the neglect of software complexity is potentially a serious omission.
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The results presented here are based upon a highly detailed analysis of programming costs at a

site we judge to be very typical of the traditional transaction processing environments which

account for such a considerable percentage of today's software maintenance costs. Based upon

our analysis, the aggregate cost of poor programming practice for industry is substantial.
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