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Abstract

The equations characterizing a systems problem may be expressed as a network of

directed branches. (The block diagram of a servomechanism is a familiar example.)

A study of the topological properties of such graphs leads to techniques which have

proven useful, both for the discussion of the general theory of feedback and for the

solution of practical analysis problems.





SOME PROPERTIES OF SIGNAL FLOW GRAPHS

1. Introduction

A signal flow graph is a network of directed branches which connect at nodes.

Branch jk originates at node j and terminates upon node k; its direction is indicated

by an arrowhead. A simple flow graph is shown in Fig. l(a). This particular graph

contains nodes 1, 2, 3, and branches 12, 13, 23, 32, and 33. The flow graph may be

interpreted as a signal transmission system in which each node is a tiny repeater

station. The station receives signals via the incoming branches, combines the infor-

mation in some manner, and then transmits the result along each outgoing branch. If

the resulting signal at node j is called xj, the flow graph of Fig. 1(a) implies the

existence of a set of explicit relationships

1 = a specified quantity or a parameter

x2 = f 2 (xl, x3 )

x3 = f 3(X1 , x2 , x 3 ). (1)

The first equation alone would be represented as a single isolated node; whereas the

second and third equations, each taken by itself, have the graphs shown in Fig. l(b) and

Fig. (c). The second equation, for example, states that signal x 2 is directly influ-

enced by signals xl and x3 , as indicated by the presence of branches 12 and 32 in the

graph.

In this report we shall be concerned with flow graph topology, which exposes the

structure (Gestalt) of the associated functional relationships, and with the manipulative

techniques by which flow graphs may be transformed or reduced, thereby solving or

programming the solution of the accompanying equations. Specialization to linear flow

graphs yields results which are useful for the discussion of the general theory of feed-

back in linear systems, as well as for the solution of practical linear analysis problems.

Subsequent reports will deal with the formal matrix theory of flow graphs, with sensi-

tivity and stablity considerations, and with more detailed applications to practical

problems. Our purpose here is to present the fundamentals, together with simple

illustrative examples of their use.

2. The Topology of Flow Graphs

Topology has to do with the form and structure of a geometrical entity but not

with its precise shape or size. The topology of electrical networks, for example, is

concerned with the interconnection pattern of the circuit elements but not with the char-

acteristics of the elements themselves. Flow graphs differ from electrical network

graphs in that their branches are directed. In accounting for branch directions we shall
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need to take an entirely different line of approach from that adopted in electrical network

topology.

2. 1 Classification of paths, branches, and nodes

As a signal travels through some portion of a flow graph, traversing a number of

successive branches in their indicated directions, it traces out a path. In Fig. 2, the

sequences 1245, 2324, and 23445 constitute paths, as do many other combinations. In

general, there may be many different paths originating at a designated node j and ter-

minating upon node k, or there may be only one, or none. For example, no path from

node 4 to node 2 appears in Fig. 2. If the nodes of a flow graph are numbered in a

chosen order from 1 to n, then we may speak of a forward path as any path along which

the sequence of node numbers is increasing, and a backward path as one along which the

numbers decrease. An open path is one along which the same node is not encountered

more than once. Forward and backward paths are evidently open.

Any path which returns to its starting node is said to be closed. Feedback now

enters directly into our discussion for the first time with the definition of a feedback

loop as any set of branches which forms a closed path. The flow graph of Fig. 2 has

closed paths 232 (or 323) and 44. Multiple encirclements such as 23232 or 444 also con-

stitute closed paths but these are topologically trivial. Notice that some paths, such as

12324, are neither open nor closed.

We may now classify the branches of a flow graph as either feedback or cascade

branches. A feedback branch is one which appears in a feedback loop. All others are

called cascade branches. Returning to Fig. 2, we see that 23, 32, and 44 are the only

feedback branches present. If each branch in a flow graph is imagined to be a one-way

street, then a lost automobilist who obeys the law may drive through Feedback Street

any number of times but he can traverse Cascade Boulevard only once as he wanders

about in the graph.

The nodes in a flow graph are evidently susceptible to the same classification as

branches; that is, a feedback node is one which enters a feedback loop. Two nodes or

branches are said to be coupled if they lie in a common feedback loop. Any node not in

a feedback loop is called a cascade node. Two special types of cascade nodes are of

interest. These are sources and sinks. A source is a node from which one or more

branches radiate but upon which no branches terminate. A sink is just the opposite, a

node having incoming branches but no outgoing branches. Figure 2 exhibits feedback

nodes 2, 3, 4, a source 1, and a sink 5. It is possible, of course, for a cascade node

to be neither a source nor a sink. The intermediate nodes in a simple chain of branches

are examples.

2.2 Cascade graphs

A cascade graph is a flow graph containing only cascade branches. It is always pos-

sible to number the nodes of a cascade graph in a chosen sequence, called the order of
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flow, such that no backward paths exist. For a proof of this we first observe that a

cascade graph must have at least one source node. Let us choose a source, number it

one, and then remove it, together with all its radiating branches. This removal leaves

a new cascade graph having, itself, at least one source. We again choose a source,

number it two, and continue the process until only isolated nodes remain. These

remaining nodes are the sinks of the original graph and they are numbered last. It is

evident that this procedure establishes an order of flow.

Figure 3 shows two simple cascade graphs whose nodes have been numbered in flow

order. The numbering of graph 3(a) is unique, whereas other possibilities exist for

graph 3(b); the scheme shown in graph 3(c) offers one example.

2. 3 Feedback graphs

A feedback graph is a flow graph containing one or more feedback nodes. A feed-

back unit is defined as a flow graph in which every pair of nodes is coupled. It follows

that a feedback unit contains only feedback nodes and branches. If all cascade branches

are removed from a feedback graph, the remaining feedback branches form one or more

separate feedback units which are said to be imbedded or contained in the original flow

graph. The graph of Fig. 1, for example, contains the single unit shown in Fig. 4(a),

whereas the two units shown in Fig. 4(b) and Fig. 4(c) are imbedded in the graph of

Fig. 2.

The units shown in Fig. 4(d) and Fig. 4(e) each possess three principal feedback

loops. The number of loops, however, is not of great moment. A more important char-

acteristic is a number called the index. Preparatory to its definition, let us introduce

the operation of node-splitting, which separates a given node into a source and a sink.

All branch tails appearing at the given node must, of course, go with the source and all

branch noses with the sink. The result of splitting node 2 in Fig. 4(d) is shown in

Fig. 4(f). Similarly, Fig. 4(g) shows node 1 of Fig. 4(e) in split form. We shall retain

the original node number for both parts of the split node, indicating the sink by a prime.

Splitting effectively interrupts all paths passing through a given node and makes cascade

branches of all branches connected to that node.

We can now conveniently define the index of a feedback unit as the minimum number

of node-splittings required to interrupt all feedback loops in the unit. For the determi-

nation of index, splitting a node is equivalent to removing that node, together with all

its connecting branches.

The index of the graph in Fig. 4(d) is unity, since all feedback loops pass through

node 2. Graph 4(e), on the other hand, is of index two.

2.4 The residue of a graph

A cascade graph represents a set of equations which may be solved by explicit

operations alone. Figure 5, for example, has the associated equation set
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X2 = f2 (xl)

x3 = f 3 (xl, x2 )

4 = f4(x2, 3 ). (2)

Given the value of the source xl, we obtain the value of x 4 by direct substitution

X4 =f 4 f 2(xl) f 3 [x1 , f(xl)]} F 4 (x 1 ). (3)

In general, there may be s different sources. Once an order of flow is established,

a knowledge of the source variables x1 , x2 , ... , xs fixes the value of xs+1, since no

backward paths from later nodes to Xs+l can exist. Similarly, with xl, x2 , ... , Xs+

known, Xs+ 2 is determined explicitly, and so on to the last node xn. A cascade graph

is immediately reducible, therefore, to a residual form in which only sources and sinks

appear. The residual form of Fig. 5 is the single branch shown in Fig. 6(a), which

represents Eq. 3. Had two sources and two sinks appeared in the original graph, the

residual graph would have contained, at most, four branches, as indicated by Fig. 6(b).

Unlike those associated with a cascade graph, the equations of a feedback graph are

not soluble by explicit operations. Consider the simple example shown in Fig. 1. An

attempt to express x3 as an explicit function of xl fails because of the closed chain of

dependency between x2 and x 3. Elimination of x2 from Eq. 1 by substitution yields

3 = f 3 [xl, f 2 (Xl, x 3 ), x3 ] = F 3(x 1, x 3 ). (4)

Although a feedback graph cannot be reduced to sources and sinks by explicit means,

certain superfluous nodes may be eliminated, leaving a minimum number of essential

implicit relationships exposed.

In any contemplated process of graph reduction, the nodes to be retained in the new

graph are called residual nodes. It is convenient to define a residual path as one which

runs from a residual node to itself or to another residual node, without passing through

any residual nodes. The residual graph, or residue, has a branch jk if, and only if,

the original graph has one or more residual paths from j to k. This completely defines

the residue of any flow graph for a specified set of residual nodes.

We are interested here in a reduction which can be accomplished by explicit oper-

ations alone. The definition of index implies the existence of a set of index nodes, equal

in number to the index of a graph, whose splitting interrupts all feedback loops in the

graph. The set is not necessarily unique. Once a set of index nodes has been chosen,

however, all other nodes except sources and sinks may be eliminated by direct substi-

tution, leaving a residual graph in which only sources, sinks, and index nodes appear.

We shall call such a graph the index-residue of the original graph.

Figure 7 shows a flow graph (a) and its index-residue (b). Residual nodes are

blackened. Branch 25 in (b) accounts for the presence of residual paths 245 and 235 in
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(a). All paths from 2 to 6 in (a) pass through residual node 5. Hence graph 7(a) has

no residual paths from 2 to 6, since a residual path, by definition, may not pass through

a residual node. Accordingly, graph 7(b) has no branch 26. Figure 7(c) illustrates an

alternate choice of index nodes and Fig. 7(d) shows the resulting index-residue. Choice

(a) is apparently advantageous in that it leads to a simpler residue.

A minor dilemma arises in the reduction process if we desire, for some reason, to

preserve a node which is neither an index node nor a sink. In Fig. 8(a), for example,

suppose that an eventual solution for x 3 in terms of x 1 is required. A node corre-

sponding to variable x 3 must be retained in the residual graph. Apparently, no further

reduction is possible. The simple device shown in Fig. 8(b) may be employed, however,

to obtain the residue (c). The trick is to connect node 3 to a sink through a branch rep-

resenting the equation x3 = x 3 . The original node 3 then disappears in the reduction,

leaving the desired value of x 3 available at the sink. This trick is simple but topologi-

cally nontrivial.

2.5 The condensation of a graph

The concept of an order of flow may be applied, in modified form, to a feedback

graph as well as to a cascade graph. Consider the feedback graph in Fig. 9(a), which

contains two feedback units. If each imbedded feedback unit is encircled and treated as

a single supernode, then the graph condenses to the form shown in Fig. 9(b), where

supernodes are indicated by squares. Since the condensation is a cascade structure, an

order of flow prevails. Within each supernode the order is arbitrary, but we shall agree

to number the internal nodes consecutively.

The index-residue of a flow graph shows the minimum number of essential variables

which cannot be eliminated from the associated equations by explicit operations. The

condensation of the residue programs the solution for these variables. In Fig. 9(b), for

example, the condensation directs us to specify the value of xl, to solve a pair of simul-

taneous equations for x2 and x 3, to solve a single equation for x 4, and to compute x 5

explicitly. The complexity of the solution, without regard for the specific character

of the mathematical operations involved, is indicated by the number of feedback units

and the index of each, since the index of a feedback unit is the minimum number of

simultaneous equations determining the variables in that unit.

Carrying the condensation one step further, we may indicate the basic structural

character of a given flow graph by a simple listing of its nodes in the order of condensed

signal flow, with residual nodes underlined and feedback units overlined. The sequence

1 2 3 4 5 6 7 8 9 10 11 12

for example, states that nodes 1 and 2 are sources, 7 and 11 are cascade nodes, and 12

is a sink. Also, nodes 3, 4, 5, 6 lie in a feedback unit of index two, having index nodes

4 and 5. Finally, nodes 8, 9, 10 comprise a later feedback unit of index one, 8 being

the index node.
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2.6 The inversion of a path

A single constraint or relationship among a number of variables appears topologi-

cally as a cascade graph containing one sink and one or more sources. Figure 10(a) is

an elementary example. At least in principle, nothing prevents us from solving the

equation in Fig. 10(a) for one of the independent variables, say xl, to obtain the form

shown in Fig. 10(b). In terms of the flow graph, we say that branch 14 has been

inverted.

By definition, the inversion of a branch is accomplished by interchanging the nose

and tail of that branch and, in moving the nose, carrying along all other branch noses

which touch it. The tails of other branches are left undisturbed. The inversion of a

path is effected by inverting each of its branches.

Figure 11 shows (a) a flow graph, (b) the inversion of an open path 1234, and (c) the

inversion of a feedback loop 343. To obtain (c) from (a), for example, we first change

the directions of branches 34 and 43. Then we grasp branch p by its nose and move the

nose to node 4, leaving the tail where it is. Finally, the nose of branch q is shifted to

node 3. Branches 12 and 32 are unchanged since they have properly minded their own

business and kept their noses out of the path inversion. Topologically, the two parallel

branches running from 4 to 3 are redundant. One such branch is sufficient to indicate

the dependency of x 3 upon x 4 .

The inversion of an open path is significant only if that path starts from a source.

Otherwise, two expressions are obtained for the same variable and two nodes with the

same number would be needed in the graph. In addition, inversion is not applicable to

a feedback loop which intersects itself. The reason is that two of the path branches

would terminate upon a common node. Hence the inversion of one would move the other,

thereby destroying the path to be inverted. Such paths as 234 and 23432 in Fig. 11(a),

therefore, are not candiates for inversion.

The process of inversion, as might be expected, influences the topological properties

of a flow graph. Of greatest interest here is the effect upon the index. Graphs (a), (b),

and (c) of Fig. 11 have indices of two, zero, and one, respectively. In general, paths

parallel to a given path contribute to the formation of feedback loops when the given path

is inverted, and conversely. Hence, if we wish to accomplish a reduction of index we

should choose for inversion a forward path having many attached backward paths but

few parallel forward paths.

3. The Algebra of Linear Flow Graphs

A linear flow graph is one whose associated equations are linear. The basic linear

flow graph is shown in Fig. 12. Quantities a and b are called the branch transmis-

sions, or branch gains. Thinking of the flow graph as a signal transmission system,

we may associate each branch with a unilateral amplifier or link. In traversing any

branch the signal is multiplied, of course, by the gain of that branch. Each node acts
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as an adder and ideal repeater which sums the incoming signals algebraically and then

transmits the resulting signal along each outgoing branch.

3. 1 Elementary transformations

Figure 13 illustrates certain elementary transformations or equivalences. The

cascade transformation (a) eliminates a node, as does the star-to-mesh transformation

(c), of which (a) is actually a special case. The parallel or multipath transformation

(b) reduces the number of branches. These basic equivalences permit reduction to an

index-residue and give us, as a result of the process, the values of branch gains

appearing in the residual graph. Figure 14 offers an illustration. The residual nodes

are the source 1, the sink 4, and the index node 2. Node 3 could be chosen instead of

node 2, but this would lead to a more complicated residue. The star-to-mesh equiva-

lence eliminates node 3 in graph 14(a) to give graph 14(b). The multipath transformation

then yields the residue (c).

For more complicated structures the repeated use of many successive elementary

transformations is tedious. Fortunately, it is possible under certain conditions to rec-

ognize the branch gains of a residue by direct inspection of the original diagram. In

order to provide a sound basis for the more direct process, we shall define a path gain

as the product of the branch gains along that path. In addition, the residual gain Gjk is

defined as the algebraic sum of the gains of all different residual paths from j to k. As

defined previously, a residual path must not pass through any of the residual nodes which

are to be retained in the new graph. It follows that each branch gain of the residue is

equal to the corresponding residual gain Gjk of the original graph. Moreover, if the

residual graph is an index-residue, then each Gjk is the gain of a cascade structure and

contains only sums of products of the original branch gains. For index-residues, there-

fore, the gains Gjk are relatively easy to evaluate by inspection.

The feedback graph of Fig. 15(a), for example, has an index-residue (b) containing

four branches. By inspection of the original graph, the residual gains are found to be

G13 = g1 2 g 2 3

G 1 5 = g1 2 g2 5

G 33= g3 2 g2 3 + g3 4 g4 2 g2 3 + g34g43

G 3 5 = g3 4 g4 5 + g3 2 g 2 5 + g3 4 g4 2 g 2 5 . (5)

Notice that there are three different residual paths from node 3 to itself and also from

3 to 5. We must be very careful to account for all of them. There is only one residual

path from 1 to 5, however, and this is 125. Path 12345, which.we might be tempted to

include in G 1 5 , is not residual, since it passes through node 3.
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3.2 The effect of a self-loop

When a feedback graph is simplified to a residue containing only sources, sinks, and

index nodes, one or more self-loops appear. The effect of a self-loop at any node upon

the signal passing through that node may be studied in terms of Fig. 16(a). The signal

existing at the central node is transmitted along the outgoing paths as indicated by the

detached arrows. The signal returning via the self-loop is gx, where g is the branch

gain of the self-loop. Since signals entering the node must add algebraically to give x,

it follows that the external signal entering from the left must be (1-g)x. The node and

self-loop, therefore, may be replaced by a single branch (b) whose gain is the recipro-

cal of (1-g). When several branches connect at the node, as in Fig. 16(c), it is easy

to see that the proper replacement is that shown in Fig. 16(d). Quantity g is usually

referred to as the loop gain and 1-g is called the loop difference.

Approaching the self-loop effect from another viewpoint, we may treat Fig. 16(b) as

the residual form of Fig. 16(a). This is not, of course, an index-residue. The gain G

of (b) is the sum of the gains of all residual paths from the source to the sink in (a). One

path passes directly through the node, the second path traverses the loop once before

leaving, the third path circles the loop twice, and so on. Hence the residual gain is

given by the infinite geometrical series

G = 1g+g +g +g2g3+ - (6)

which sums to the familiar result. The convergence of this series, for Igl<l, poses

no dilemma in view of the validity of analytic continuation. The result holds for all

values of g except the singular point g = 1, near which the transmission G becomes

arbitrarily large.

The self-loop-to-branch transformation places in evidence the basic effect of feed-

back as a contribution to the denominator of an expression for the gain of a graph in

terms of branch gains. In our algebra, feedback is associated with division or, more

generally, with the inversion of a matrix whose determinant is not identically equal to

unity.

3. 3 The general index-residue of index one

If we restrict attention to a single source and a single sink, then the most general

index-residue of index one, or first-index-residue, is that shown in Fig. 17(a). Other

sources or sinks in the system may be considered separately, without loss of generality,

since the system is linear and superposition applies. A knowledge of the self-loop-to-

branch transformation enables us to write the (source to sink) gain of graph 17(a) by

inspection. The gain is

G=d + bc (7)1 -a'
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When the total index of the graph is greater than one, as in Fig. 17(b), it is still a

simple matter to find the gain, provided each imbedded feedback unit is only of first

index. For graph 17(b)

ef + bcf
G g + - d (1-a) (l-d) (8)

With practice, the gain of a graph such as that of Fig. 15(a) can be written at a glance,

without bothering to make an actual sketch of the residue. The principal source of error

lies in the possibility of overlooking a residual path.

Of special interest is the theorem that if each feedback unit in a graph is a simple

ring of branches, the gain of that graph is equal to the sum of the gains of all open paths

from source to sink, each divided by the loop differences of feedback loops encountered

by that path. For illustration, we shall apply this theorem to the graph shown in Fig. 18.
There are nine different open paths from the source to the sink and each one makes

contact with the feedback loop. The resulting gain is

G = ah + bdh + cgdh + aei + bdei + cgdei + aefj + bdefj + cj
1 - defg (9)

3.4 The general index-residue of index two

Again taking one source and one sink at a time, we shall study the most general

second-index-residue shown in Fig. 19.

Suppose that the self-loops are temporarily removed, leaving the simple imbedded

ring shown in (b). Graph (b) exhibits five open paths from source to sink, namely i,

ab, cd, afd, ceb; and the last four of these encounter the feedback loop ef. Hence the

gain of graph (b) is

G = i+ ab + cd + afd + ceb (10)
1 - ef

Now, in order to account for the self-loops g and h in graph 19(a), we need only divide

each path gain appearing in expression 10 by the loop difference (l-g) if that path

passes through the upper node, and by (l-h) if it passes through the lower node. Paths

afd, ceb, and ef, of course, pass through both nodes, and their gains must be divided

by both loop differences. The resulting modification of formula 10 yields the gain of the

general second-index-residue

ab + cd afd + ceb
G=i+ 1 - g 1 - h (l-g)(l-h)

ef (11)
-g) (l-h)

The derivation of this formula is important only as a demonstration of the power of the

method. To find the (source-to-sink) gain of any graph whose feedback units are no

worse than second index, we reduce to an index-residue; temporarily remove the self-

loops; express the gain as the sum of open path gains, each divided by the loop differ-

ences of feedback loops touching that path; and modify the result to account for
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the original self-loops.
The importance of the method justifies a final example. Figure 20(a) shows the feed-

back diagram of a three-stage amplifier having local feedback around each stage and ex-

ternal feedback around the entire amplifier. With the self-loops temporarily removed,

the gain of the residue (b) is

klgg2gk 2G g k g 2 g3 k2 (12)
+ 3 0g1

Since all paths appearing in expression 12 touch both index nodes, the actual gain of the

amplifier is

klk 2g lg 2g3

(1 - b l gl) ( - b3 g3 ) klk2 glg2 g 3
= g2(b2 + bglg3) (1 - b 1 (13)

1 -(1blgl) ( - b3g3)

3. 5 Graphs of higher index

The formal reduction process for an arbitrary feedback graph involves a cycle of

two steps. First, reduction to an index-residue; and second, replacement of any one

of the self-loops by its equivalent branch. Exactly n such cycles are required for re-

duction to cascade form, where n is the total index of the original graph. Transforma-

tion of more than one self-loop at a time is often convenient, even though this may

increase the total number of self-loop transformations required in later steps. In

practice, of course, the formal procedure should be modified to take advantage of the

peculiarities of the structure being reduced. The process effectively ends when the

index has been reduced to two, since the evaluation of gain by inspection of the index-

residue then becomes tractable.

Figure 21 shows two graphs containing high-index feedback units. With the self-loops

removed from the circular structure (a), the gain is equal to that of the single open
4 4

forward path kla k 3 divided by the loop difference of the closed path k 2a and we have

k a4k
G = 1 3 (14)

1 - k 2 a

Since both paths pass through every index node, the reintroduction of the self-

loops yields

k ak
1 3 4

G (1-b5 k 1 a k 3
G- (-b) 5 - klak3 (15)

kza (1-b) - k2a2 k2a

(1-b)5

The feedback chain shown in Fig. 21(b) is of third index. Instead of reducing it to
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an index-residue, we shall take advantage of the simplicity of the chain structure to

write the gain by a more direct method. First, with the last four loops of the chain

removed, the gain is

klk 2

G- 1 ab (16)

Now, the addition of loop a 2 b 2 modifies the path gain albl to give

klk
G = 1 (17)

a1 b1
1 21 - a2b

Addition of the remaining elements leads to the continued fraction

kIk 2
G 2

1 b1

2b2
1 ab (18)

a3 31 - a
a44
-ab

5b5

3. 6 Loop gain and loop difference

Thus far we have spoken of loop gain only in connection with feedback units of the

simple ring type. A more general concept of loop gain will now be introduced. We shall

define the loop gain of a node as the gain between the source and sink created by split-

ting that node. In terms of signal flow, the loop gain of a node is just the signal returned

to that node per unit signal transmitted by that node. The loop difference of a node is

by definition equal to one minus the loop gain of that node. We shall use the symbol T

for loop gains and D for loop differences. In the graph of Fig. 22(a), for example, the

loop gain of node 1 is equal to the gain from 1 to 1' in graph (b), which shows node 1

split into a source 1 and a sink 1'. By inspection

bc bc
T1 = a + 1 - 1 - d (19)

Another quantity of interest is the loop gain of a branch. Preparatory to its defi-

nition, let us replace the branch in question by an equivalent cascade of two branches,

whose path gain is the same as the original branch gain. This creates a new node, called

an interior node of the branch. The loop gain of a branch may now be defined as the loop

gain of an interior node of that branch. To find the loop gain of branch b in Fig. 22(a),

for instance, we first introduce an interior node 3 as shown in Fig. 23(a). The loop

gain of branch b is the gain from 3 to 3' in (b),

T12 (or Tb) (l-a)(l-d) (2O)b)(1-a) () (0
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The loop gain of a branch can be designated by either a single or double subscript,

whichever is a more convenient specification of the branch. The double subscript is

usually preferable, since it avoids confusion with the loop gain of a node. The loop gain

of a given node (or branch) evidently involves only the gains of branches which are

coupled to that node (or branch). Hence, in computing T, we need to consider only the

feedback unit containing the node (or branch) of interest.

Having defined the loop gain of a node, we may extend the simple self-loop equiva-

lence to a more general form which may be stated as follows. If an external signal xo

is injected into node k of a flow graph, as shown in Fig. 24, the injection gain from the

external source to node k is

k 1 1
G_ _ _ _ _ (21)

Gk k

The very nature of the reduction process for an arbitrary (finite) graph implies that

the gain is a rational function of the branch gains. In other words, the gain can always

be expressed as a fraction whose numerator and denominator are each algebraic sums

of various branch gain products. Moreover, the gain G is a linear rational function of

any one of the branch gains g. Thus

G = ag + b (22)
cg + d()

where quantities a, b, c, d are made up of other branch gains. To prove this we may

insert two interior nodes into the specified branch g, as shown in Fig. 25(a) and (b), and

then consider the residue (c), which contains only the source, the sink, and the two in-

terior nodes. The gain of this residue evidently can be expressed as a linear rational

function of g. It is also apparent that if branch g is directly connected to either the

source or the sink, or to both, then the source-to-sink gain G is a linear function of

the branch gain g, that is,

G = ag + b (23)

where a and b depend upon other branch gains.

The foregoing results apply equally well to loop gains and loop differences, since T

and D, by their definitions, have the character of gains. Any loop difference Dk is a

rational function of the branch gains, a linear rational function of any single branch gain,

and a linear function of the gain of any branch connected directly to node k.

We shall now derive an important fundamental property of loop differences which is

of general interest. Consider an arbitrary graph containing nodes 1, 2, 3, ... , n, and

let nodes m+l, m+2, ... , n-l, n be removed, together with their connecting branches,

so that only nodes 1, 2, 3, ... , m remain. Now suppose that the graph is reduced to

a residue showing only nodes m-l, and m, as in Fig. 26. Branches a, b, c, d account

for all coupling among nodes 1, 2, 3, ... , m of the original graph. Sources and

sinks may be ignored, of course, since only feedback branches are of interest in loop
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(b) a b d

(C) m-I c m

Fig. 25 Fig. 26

The graph gain as a function of a par- A residue showing nodes m - 1 and m.
ticular branch gain.

difference calculations. Let us define the partial loop difference Dk as the loop differ-
ence of node k with only the first k nodes taken into account. By inspection of Fig. 26

D' = 1 - d bc (24)1 -a

D' : 1 -a (25)

and

D' D' = (-a) (-d) - bc. (26)rn-i m

If the numbers of nodes m-l and m are interchanged in Fig. 26, then

bcD' 1 - a b - d (27)

D' = 1 - d (28)

and the product given in Eq. 26 is unaltered. Since this result holds for any value of

m, and since a sequence may be transformed into any other sequence by repeated adja-

cent interchanges (1234 can become 4321, for example, by the adjacent interchanges

1243, 2143, 2413, 4213, 4231, 4321), it follows that the product

A' =D'D'D' D' D'A I = D1D2D 3 .. D DI (29)m 1 2 3 i- m

is independent of the order in which the first m nodes are numbered. With all n nodes

present, we have D' = D and
n n

A = DDD' D' D (30)1 2 3'' ' n- n'

Quantity , which we shall call the determinant of the graph, is invariant for any order

of node numbering. Equation 30 shows that the determinant of any graph is the product

of the determinants of its imbedded feedback units, and that the determinant of a cascade

graph is unity.

The dependence of A upon the branch gains may be deduced as follows. Let g be

any branch directly connected to node n, whence it follows that Dn is a linear function

of branch gain g and that the partial loop differences Dk are independent of g. Hence
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bo

3 3

x2 = axI + bx 3 x1 x2 X3 _ 92 93 k2

(a) (b) (a)

Fig. 27 Fig. 28

Branch inversion in a linear graph. The result of path inversion in Fig. 20(a).

A is a linear function of g. Since the numbering of nodes is arbitrary, A must be a

linear function of any given branch gain in the graph. The determinant A, therefore, is

composed of an algebraic sum of products of branch gains, with no branch gain appearing

more than once in a single product.

From Eq. 29 and Eq. 30 we see that Dn is the ratio of A to AIn 1 Since the node

number is arbitrary, we may write

D (31)
k Ak

where Ak is to be computed with node k removed. Once A is expressed in terms of

branch gains, Ak may be found by nullifying the gains of branches connected to node k.

The introduction of an interior node into any branch leaves the value of A unaltered.

To prove this we may number the new node zero, whence D' = 1 and the other partial
0

loop differences are unchanged. It follows directly that the loop difference of any branch

jk is given by

D A(32)
jk j k

where jk is to be computed with branch jk removed, that is, with gjk = 0.

Incidentally, if we write the linear equations associated with the flow graph and then

evaluate the injection gain Gk by Kramer's rule (that is, by inverting the matrix of the

equations), we find from Eq. 21 and Eq. 31 that A is just the value of the determinant

of these equations.

3. 7 Inverse gains

We have already seen how the form of a flow graph is altered by the inversion of a

path. For linear graphs it is profitable to continue with an inquiry into the quantitative

effects of inversion. Figure 27(a) shows two branches which may be imagined to form

part of a larger graph. The signal entering node 2 via branch b is bx 3 . The contri-

bution arriving from branch a, then, must be x2 - bx 3, since the sum of these two con-

tributions is equal to x2 . Hence, given x 2 and x3, the required value of x is that

indicated in graph (b).

The general scheme is readily apparent and may be stated as follows. The inversion
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of any branch jk is accomplished by reversing that branch and inverting its gain, and

shifting any other branch ik having the same nose location k to the new position ij and

dividing its gain by the negative of the original branch gain gjk.

For gain calculations, the usefulness of inversion lies in the fact that the inversion

of a source-to-sink path yields a new graph whose source-to-sink gain is the inverse

of the original source-to-sink gain. Since inversion may accomplish a reduction of

index, the inverse gain may be much easier to find by inspection. For illustration, we

shall invert path klglg2 g 3 k2 in Fig. 20(a) to obtain the graph shown in Fig. 28. The new

graph is a cascade structure of zero index. By inspection of the new graph, the inverse

gain of the original graph is

1 1 I( 1 b3 k g Il b2 

G -g 3 g2 bl) (1 b2 ]- ._ - - - (33)2 9392 92 1 3g9 1

Simplification yields

1 1 Flb

k -2 G - b b - b b (34)

which proves to be identical with Eq. 13.

A simpler example is offered by Fig. 21(a). Inversion of the open source-to-sink

path gives the structure shown in Fig. 29. By inspection of the new graph, we find

1 4 1 b4 11 k2 (-b) 5 k2
_ = _ rk- _ _ - (35)
G k La\ak kk3 a k13

3 1kl k 1 1 1 3 kk3

which checks Eq. 15.

3. 8 Normalization

In the general analysis of an electrical network it is often convenient to alter the

impedance level or the frequency scale by a suitable transformation of element values.

A similar normalization sometimes proves useful for linear flow graph analysis. The

self-evident normalization rule may be stated as follows. If each branch gain gjk is

multiplied by a scale factor fjk' with the scale factors so chosen that the gains of all

closed paths are unaltered, then the gain of the graph is multiplied by f 2 f 2 3 .. fmn'

where 1, 2, 3, ... , m, n is any path from the source 1 to the sink n.

Figure 30 illustrates a typical normalization. Graph (a) might represent a two-stage

amplifier with isolation between the two stages, local feedback around each stage, and

external feedback around both stages. The normalization shown in (b) brings out very

clearly the fact that certain branch gains may be taken as unity without loss of gener-

ality.

4. Illustrative Applications of Flow Graph Techniques

The usefulness of flow graph techniques for the solution of practical analysis
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Fig. 29

The result of path inversion in Fig. 2 1(a).
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Fig. 30

Normalization.
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Fig. 31

Flow graphs for a cathode follower.

2 3

El o Eg 15E9 4 E2

- 1 A

(a)

2
5

E E2
7

(c)

EO

(d)

4
9

Fig. 32

An amplifier with grid-to-plate impedance.
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problems is limited by two factors: our ability to represent the physical problem in the

form of a suitable graph, and our facility in manipulating the graph. The first factor

has not yet been considered. We turn to it now with the necessary background material

at hand.

The process of constructing a graph is one of tracing a succession of causes and

effects through the physical system. One variable is expressed as an explicit effect due

to certain causes; they, in turn, are recognized as effects due to still other causes. In

order to be associated with a single node, each variable must play a dependent role only

once. A link in the chain of dependency is limited in extent only by our perception of

the problem. The formulation may be executed in a few complicated steps or it may be

subdivided into a larger number of simple ones, depending upon our judgment and knowl-

edge of the particular system under consideration. No specific rules can be given for

the best approach to an analysis problem. Therein lies the challenge and the possibility

of an elegant solution. Whatever the approach, flow graphs offer a structural visuali-

zation of the interrelations among the chosen variables. It is quite possible, of course,

to construct an incorrect graph, just as it is entirely possible to write a set of equations

which do not properly represent the physical problem. The direct formulation of a flow

graph from a physical problem, without actually writing the chosen equations, requires

some practice before confidence is gained. It is hoped that the following examples, taken

mostly from electronic circuit analysis, will be suggestive.

4. 1 Voltage gain calculations

Figure 31(a) shows the low-frequency linear incremental equivalent circuit of a

cathode follower. Suppose that we want to find the gain E 2 /E 1 in terms of the circuit

constants. Proceeding very cautiously in small steps, we might construct the graph

shown in Fig. 31(b). This graph states that Eg = E1 - E2, E' = .Eg - E2, Ip = E'/rp,

and E 2 = RkIp . Alternatively, were we able to recognize at the outset the direct depend-

ence of E 2 upon Eg, then graph 31(c) could have been sketched by inspection of the

circuit. The more extensive our powers of perception, the simpler the formulation.

Powerful perception (or a familiarity with the cathode follower) would permit us to

construct graph 31(d) directly from the network shown in Fig. 31(a). The reader is

invited to evaluate the gains of graphs 31(b) and 31(c) by inspection and to compare them

with 31(d).

Another example is offered by the amplifier of Fig. 32(a). For convenience of illus-

tration, the impedances and the transconductance have been given numerical values. In

this circuit the grid voltage influences the output voltage both by transconductance action

and by direct coupling through the grid-to-plate impedance. To avoid confusion between

the actual voltage Eg and the factor EE appearing in the transconductance current, it

is very helpful to designate one of them with a prime while we are setting up the graph.

This distinction splits node E . It is a simple matter to complete the graph with a

unity-gain branch representing the equation E' = Eg, which effectively rejoins the node.
g
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The direct application of superposition, with voltage E 1 and current 5Eg treated as

independent electrical sources, each influencing the dependent quantities Eg and E2,

leads to graph (b) of Fig. 32. The gain from E to Eg, for example, is the product Df

a transconductance 5, a current division ratio 4/9, and an impedance 2, as measured

with E = 0.

An alternative approach, actually equivalent to classical network formulation on the

electrical-node-pair-voltage basis, gives graph 32(c). Here E 2 is expressed as a

function of Eg and E . In accordance with superposition, the gain from E' to E 2 must

be computed with Eg = 0 (rather than E 1 = 0, as in the previous graph). Hence, in this

particular calculation, the impedance presented to the current source does not include

element 2. The other independent electrical-node-pair voltage Eg is expressed in terms

of E1 and E 2 , as shown.

Graph 32(d), a third possibility, is actually the simplest and most elegant of the

three. Responding to a certain physical appeal, we express E 2 in terms of the two elec-

trical sources, as in graph 32(b). Taking advantage of the fact that E 2 and 5Eg are

across the same electrical node-pair, we formulate Eg in terms of E and E 2 as in

graph 32(c). This has topological appeal, since the resulting feedback loop touches both

open paths from E 1 to E 2. As a result, the graph gain is a simple fractional function

of the branch gains. The verification of graphs (b), (c), and (d) of Fig. 32 and the eval-

uation of their gains is suggested as an exercise for the reader. The answer is -8/7.

If symbols are substituted for the numerical element values in the circuit, the suitability

of the structure of Fig. 32(d) for this particular problem becomes more apparent.

4.2 The impedance formula

Suppose that the input or output impedance Z of an electronic circuit is influenced

by a certain tube transconductance in such a manner that the effect is not immediately

obvious. To find Z we must introduce a set of variables and write the equations relating

them. Let us choose the terminal current and voltage, I and E = IZ, together with the

grid voltage E of the offending tube, as shown in Fig. 33(a). The graphical structure

which naturally suggests itself, perhaps, is that of the previous problem, Fig. 32(b),

(a) (b)

Fig. 33
The circuit and graph for terminal impedance formulation.



with a source I and a sink E. Since E and I are located at the same pair of terminals,

however, it is just as easy to express E in terms of E' and E, rather than E' and I.

This choice gives graph (b) of Fig. 33, which is particularly convenient for our present

purpose. Notice that the structure of Fig. 33(b) is obtainable directly from that of

Fig. 32(b) by inversion of the source-to-sink branch.

The three gains of interest in Fig. 33(b) are

Z= (E) = the impedance without feedback
E' 0
g

Tc = = the short-circuit loop gain = T

E = 0

TO c = the open-circuit loop gain = T 1 + T 2.

(36)

(37)

(38)

The terminal impedance is given by the graph gain

Z
Z = ° = Z

T 
1 _

-T1

1 -T 1 )50 -T 1 - T
(39)

which may be identified as the well-known feedback formula

SC

Z = g
o 1 - oC

g

(40)

Our conclusion is that flow graph methods provide a relatively uncluttered deri-

vation of this classical result.

Flow graph representation also brings out the similarities between feedback

formulas for electronic circuits and compensation theorems for passive networks. Con-

sider, for comparison, the determination of the input impedance of the circuit shown

in Fig. 34(a).

EII-ZI E Z L4.i
A1

(a) (b)

Fig. 34

The effect of load impedance upon input impedance.
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(a) (b)

Fig. 35

Two discontinuities on a transmission line.

Superposition tells us that the branch gains of the accompanying graph, Fig. 34(b), have

the physical interpretations

zc (Ii) = open-circuit input impedance = a (41)

Zc=( = open-circuit output impedance = bc + d (42)
2 I = 

Zc = = short-circuit output impedance = d. (43)

E =01

By analogy with the previous problem

sc
+ ZSCZ 21 +z

oc ZL
Z1 = 1 oc

ZL
ZL

_ zoc/ZL+ z2
L Z 2

4. 3 A wave reflection problem

The transmission line shown in Fig. 35(a) has two shunt discontinuities spaced 0

electrical radians apart. A voltage wave of complex amplitude A is incident upon the

first discontinuity from the left. We desire to find the resulting reflection B and the

transmitted wave E. Let C, D, C', D' be the waves traveling in opposite directions

just to the right of the first obstacle and just to the left of the second. In addition, let r

and t denote the per unit reflection or transmission of a single discontinuity.

The accompanying graph 35(b) is self-explanatory. The only feedback loop present

is the simple ring CC'D'DC. By inspection of this graph, the over-all reflection and

transmission coefficients are

B tlr2 e
r + (45)

A 1 - rr 2e 2 0
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t t e -j1 2
A = - jze

1 - rr2e
(46)

4.4 A limiter design problem

Figure 36(a) shows a vacuum-tube circuit commonly employed as a two-way limiter

or level selector. The static transfer curve shown in Fig. 36(b) exhibits a high-gain

central region limited on each side by cutoff. In the neighborhood of point p, where both

tubes are conducting, the linear incremental circuit of Fig. 36(c) applies. If we design

the incremental circuit for infinite gain, then the transfer curve becomes vertical at

point p, and the switching interval is made desirably small.

Assume for simplicity that the voltage divider feeding the second grid has a resist-

ance much greater than R 1 (or let R 1 denote the combined parallel resistance). Now

let us attempt to formulate E1 in terms of Eo and E k by superposition. With Ek = 0,

the ratio E 1 /Eo is simply the gain of a grounded-cathode stage. Similarly, with Eo = 0,

the first tube becomes a grounded-grid stage driven by E k. This gives us branches 01

and kl in the flow graph shown in Fig. 36(d). Branches 12 and k2 follow the same pattern

for the second tube. We must now formulate E k in a convenient manner. One possi-

bility is the computation of the two tube currents -E 1 /R 1 and -E 2 /R 2 , whose sum may be

multiplied by Rk to obtain Ek, as shown.

e2

NO

(a) (b)

M1 Eg1 Eg2 / Et 
R

2

, A

Rk k£E 

(C)

' R kp R2

_ I

E, I R1 'kE E 2/ E2

R, R R _
(p, ) R P2- I)R2rpl+RI \ I/ rp2 R2

Ek

Fig. 36

A cathode-coupled limiter.
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The resulting graph is of index one, and either Ek or Ik may be taken as the index

node. The index-residue would have the familiar form shown in Fig. 17(a). For infinite

gain we need only specify that the loop gain of node Ek (or node Ik, or branch Rk) must

be unity. By inspection of the graph, the three paths entering Tk are kl2k, klk, and

k2k. Hence

k(4L + 1)42R1 1 + 1 1L + 
T = R _ 1 = 1 .47)k k (rp + R ) rP 1 + R 1 rp 2 + r R . (47)

It is a simple matter to solve this equation for the desired value of the voltage divider

parameter k.

5. Concluding Remarks

The flow graph offers a visual structure, a universal graphical language, a common

ground upon which causal relationships among a number of variables may be laid out

and compared. From this viewpoint the similarity between two physical problems arises

not from the arrangement of physical elements or the dimensions of the variables but

rather from the structure of the set of relationships which we care to write.

The organization of the problem comes from within our minds and feedback is

present only if we perceive a closed chain of dependency. The challenge facing us at

the start of an analysis problem is to express the pertinent relationships as a mean-

ingful and elegant flow graph. The topological properties of the graph may then be

exploited in the manipulations and reductions leading to a solution.
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