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Abstract

Most literature in fractional factorial design is devoted to studying

the main effects of control factors. Recent studies in strategic planning

and concurrent engineering deal with completely different problems.

In designing a parallel process, knowing interactions among factors,

rather than main effects, is even more important. For a large num-

ber of control factors, resolution V fractional factorial design is often

large and difficult to find. This paper suggests a sequential procedure

to estimate all two-factor interactions. The procedure, in the worst

scenario, requires r? + 4n - 8 experimental runs. The number of ex-

perimental runs can be reduced substantially if some prior knowledge

of the system is available. The proposed procedure utilizes a series of

modified resolution IV designs and provides a systematic approach to

construct high resolution experiment designs for any large systems.

1 Introduction

In designing and strategic planning of a complex system, one often needs

to know interactions of many potential factors. For example, in concurrent

product and process design, the objectives are to consider simultaneously all
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elements of the product development cycle. Understanding of the interactive

relationships among design parameters will help in optimizing the product or

process design. In marketing, knowing the interactive relationships among

the different features of a line of products will help to reduce the competition

among the products themselves. In designing, knowing interactions among

different parameters will help to creat more parellel designs. In manufactur-

ing, when a system needs constant calibration, knowing interactions among

different control factors will help to optimize the calibration procedure. The

common feature of these problems is that understanding of all significant

interactions is essential for developing an optimal system.

Most existing research on two-level experiment design concentrate on es-

timating main effects. When all two and higher order interactions are neg-

ligible, the fractional factorial and two-level orthogonal P-B designs are two

popular resolution III designs. When two-factor interactions are present,

resolution IV designs are needed to estimate main effects. Webb(1968) and

Margolin (1969) proved that the minimum number of runs required for n

factor resolution IV designs is 2n. To estimate some two-factor interactions

in addition to main effects, resolution V designs may be needed. Resolu-

tion V designs often require a large number of experimental runs. Box and

Hunter (1961(b))gave the smallest resolution V designs for less than seven

(7) control factor. Addelman (1965) constructed a resolution V design for

17 factors with 2^''"^ runs. Some of the known results related to orthogonal

resolution III, IV and V designs are shown in Table 1.

Many statistical softwares provide resolution III and IV designs to a con-

siderably large number of experimental parameters. However, the complex

structure of resolution V designs makes generating resolution V designs for

a large number of control factors extremely difficult. For large system, there

is no general systematic method to construct two-level orthogonal resolution

V designs except for full fractional designs. This paper proposes a sequen-

tial design procedure using the available resolution IV design to estimate

all two-factor interactions involved one factor at a time. For n factors, this

procedure needs at most n~ + 4n - 8 experimental runs to have all interac-

tions estimated. Main effects can also be solved from confounding patterns.

Because it is a sequential method, any knowledge about interaction can be

used to reduce experimental runs.

This paper is organized as follows. Section 2 describes how to use res-

olution V design to estimate all interactions involving one factor. Section



Table 1: Minimum Number of Experimental Runs Required in Orthogonal
Designs

Number of Factors

4

10

11

Resolution III

16

16

16

Resolution IV

16

16

16

16

W^
"272r

24T2r

Resolution V ' ''

16

16

32

64

64

128

128

128

(1) For fractional factorial designs only

(2) For fractional factorial designs the number of minimum runs are 32

3 presents a sequential approach of estimating all two-factor interactions.

Section 4 presents some simulation results of the proposed procedures.

2 Estimating Two-factor Interactions by Res-

olution IV Design

Consider the following model

Y = ^L + 3X + X'^AX + t

where X = (Xi, A'2, ..., A'„)'-^ with values 1 or -1, and t is a term including
the cumulative efTect of other variables not included in the model and some
random noises. Assume that c is normal distributed with mean zero and
constant variance a^ and the different c's in each experiment are uncorrelated.
/i, vector and matrix .4 are the coefficients associated with grand mean,
main and interaction effects, respectively. The diagonal entries of matrix .4

are zeros.

We introduce Interaction Structure Matrix (ISM) which is characterized

by vector (3 and matrix .4 in the above model. The ISM is an n x n sym-
metric matrix that off-diagonal entries {i.j) are a,/s and diagonal entries

(z,0 are l3^s. Estimating all entries in ISM needs at least n{n + l)/2 ex-

periment runs. Our approach is to estimate one row at a time by modifying



an orthogonal resolution IV design. Assume that we are interested in in-

vestigating the main effect of Xi and all two-factor interactions involving

A'l.that is A'iX2, A'iA'3, .... XiXn. We first redefine these effect as Zi = A'l

and Zi = XiXi,i = '2,...,n. Applying resolution IV design on Z/s, we can

easily identify all effect of Z,'s free from all interaction effects of Z,'s. We
noticed that any two-factor interaction of X,'s are either main effect of Zj or

one of two-factor interaction of Zj's. Therefore, we can estimate all effects

of A'l, XiA'2, A'l A'3, .... A'l A'„ free from other main and interaction effects of

Xi's.

For an n (mod 4) factor, minimum resolution IV design is foldover Plack-

ett and Burman design. It requires '2n experiment runs. Therefore, we have

the following theorem:

Theorem 1 There exists a balanced orthogonal design which estimates in-

dependently the main effect A, and all interactions involving A', with 2n ex-

perimental runs ( n= mod 4 and n < 268). Futhermore. this is a minimum
balanced orthogonal design.

The proof is given in the Appendix.

When n is not a module of 4, we use a larger available resolution IV

design. For example, if n = 11, we use a resolution IV design with 24 runs

without the last column in design matrix.

An example ( see Figure 1 and Figure 2) demonstrates how to construct

a design to estimate A'l. A'iX2, . . ., A'iA'„ for n = 12. The first step is to

use a cyclic shifting method to obtain Hadamard matrix of order 12 and

foldover the matrix to get 24 x 12 design matrix. Associate each column of

the obtained matrix to the main effect .Vi and all interested 1 1 interactions

respectively, as in Figure 1.

To obtain the design matrix for all A'/s, we multply each column with

the first one. The resulting design matrix is shown in Figure 2.
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3 A Seqential Approach to Estimate All Two-
factor Interactions

To estimate all interactions, we use a sequential procedure and estimate in-

teractions involving one factor at a time. At lih step, we focus on estimating

all interactions involving zth control factor. Since all interaction effects of

Xi with Xj.j < i has been estimated in previous steps, we set them as

constants in design matrix and use the procedure described in Section 2 for

Xi,XxXi^\, . .
.

, X-i^Xn- As result, all Xi,Xj,j < i are confounded with main

effect A'l and A'^A'^,^ > i can be estimated free from the other interactions.

The main effect can be solved from the confounding structure if necessary.

In case of n = 12, the first step needs 24 runs, and so do the second, third

and fourth. In the fifth, sixth, seventh and eighth steps, 16 runs for each are

required. The remaining three steps need 8, 8 and 4 runs. There are total

180 runs. In general, at most ri^ + 4n — S runs are needed to carry out the

procedure for the n-factor experiment.

Theorem 2 By conducting a series of resolution J V design given in Theomii.

1, estimates can be made of all main effects and two-factor interactions with

less than n- -I- 4n — 8 experimental runs.

The proof is in y\ppendix.

In the above procedure, main effects are estimated from solving confound-

ing structures. One may argue that the estimation of main effects is affected

by the confounding. As we mentioned at the beginning of the paper, we

focus more on interactions than main effects. Besides only few interactions

are significant in practice (Box & Meyer 1985). therefore we shall be able lo

have reasonable estimates of all main effects.

In many cases, engineers may have partial knowledge of interaction. They

may know that some interactions are zero prior to the experiment. Such prior

information can be used in our sequential procedure to further reduce exper-

iment runs. In any step, when an interaction is known to be insignificant, we

can set this interaction confounded to main effect. Therefore we may save

some runs. In this case, we may also manipulate the order of steps to avoid

wasting runs due to the constraint of module 1. The following algorithm

explains our strategies:



Xi X2 A3 A4 X5 Xe X7 Xs Xg X\o X\i Xu
X,



Table 2; Trace in Solving ISM(i;

Step



Table 3: The numbers of experimental runs needed in the sequential ap-

proaches

Factors



Table 4: Trace; of the Six-round Design Strategy for Model(2)

Sttp



Table 5: Random Level-setting of Constant Factors of the Six-nnmd Design

Strategy for .Model(2)

Step



Table 6: Simulation Results for Model(2)

Interactions



Appendix
Proof of Theorem 1: For n < 268 {mod 4) Hadamard matrix has been constructed

(See, for example, Paley(1933),Plackett and Burman (1964), Golomb and Hall

(1962) and Raghavarao (1971)). Hence there exists an orthogonal resolution IV

design for each n < 268.

Let n factors be Xi, .Y2, . .
.

, A'n and H be the resolution IV design matrix

with dimension 2n x n (Dey(1985)). Without lossing generalization assume i = \.

Associate the columns of // to the main effects, say X\ and all two-factor in-

teractions involving A'i,that is X\X2,X\X2,,...,XiXn, respectively. One may
obtain the uniqe settings of A'l, ^2, . .

.
, X„ by doing multplications of the first

column by all other columns. Since H is resolution IV design estimates of A'l

and A'iA'2, A'iA'3, . .
.

, AiA'n are free of other main effects and two-factor interac-

tions. Now we show that this is minimal resolution IV designs. Since the design

is to estimate A'l, A'iA'2, A'l A'3 X\Xn free from other main and interaction ef-

fects A'l, A'iA'2, A'lATs, . .
.

, A'l A'n is of full rank. Also grand mean,A'2, A'3, . .
.

, An
is of full rank by looking at the way of how to construct A'2, X3,. . . , Xn from

A^i, XiA'2, A'lXa, . .
.

, XiA',i. Recall this design is to estimate X\, A'iA'2, A'iA'3,

. . ., A'l A'n free from X2, X3, .... Xn. we have 2n vectors X\, X1X2, X\Xy,. .... Xi A'n

and grand mean, X2, -Y3, .... A'n are independent. So we at least need 2n experi-

mental runs.

Proof of Theorem 2: Conduct the modified resolution IV design discussed in above

theorem n times. Each time one obtains the completely estimations for one factor

(including the main effect and all two-factor interactions involving this factor). Af-

ter each step the number of factors decreases by 1 by letting this factor be constant

.

Let n = Am + k, where m is an integer and k = (J, 1,2,3. For m > 1. the total

number of experimental rtms needed is equal to 8A;(m-l-l)-l-32(m-l-...-f 2)4-8-1-8-1- 1

= Sk{m +\) + 16m(rTi -f 1) - 12 = ri^ + -In - k~ + Ik - 12 < n^ + 4n, - 8.
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