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Abstract

A distributed system that stores name-to-address bindings and provides name resolution to a network ofcomputers is presented in

this paper. This name system consists of a network ofname services that are individually self-configuring and self-administering. The

najTie service consists of an agent program that works in conjunction with the current implementation of the Domain Name System

(DNS). The DNS agent program automatically configures a Berkeley Intemet Name Domain (BIND) process during start up and

dynamically reconfigures and administers the BIND process based on the changing state of the network. The proposed name system

offers high scalability and feult-tolerance capabilities and communicates using standard Intemet protocols.

1 Introduction
As we approach the close of their second decade of use, the underlying technology of the Internet, specifically the TCP/IP

protocol suite, has shown a tremendous resilience that attests to the fiamers' foresight. Their achievement is even more remaikable when

one considers that this architecture was conceived at a time when there were remarkably few network hosts, very low bandwidth links,

and relatively few types of digital transactions. Computer mobility was unheard of and corporations and campuses were generally

centralized at a single geographic location.

Today, the Intemet is rapidly approaching a billion hosts; link bandwidths vary irom paltry himdred bits per second to gigabits

per second; links carry real-time voice, video, and data trafBc including financial, medical, criminal records, which place demands on

privacy as well as performance; host mobility is commonplace, and organizations are now geographically distributed are connected by

virtual private networks. With the advent of "titemet Ready" embedded processors, we can expect these increases in size, diversity, and

fluidity ofthe Intemet to continue.





The underlying architectural concepts of the Internet are as sound now as ever, but weaknesses (growing pains?) are to be

expected as the hitemet continues to evolve. One such area involves address space management in the presence of host mobility, micro

networks (e.g., home networks), and network reconfiguration. We begin the discussion with a brief historical perspective on address

management, recap the state ofthings today, and explore an alternative for tlie ftiture.

In the infancy stages of the hitemet, address space management was deceptively simple. It was envisioned that all interfaces

on all hosts would have unique, permanently assigned IP addresses' . Thus, large blocks ofaddresses were assigned to an institution or a

corporation to administer as they saw fit. The size of the allocated block was determined by the organizations expected needs and fell

into three classes. A, B, and C. This approach worked exceptionally well since it distributed the management ofthe four billion available

addresses among the participating organizations giving them both the responsibility and authority for managing a portion of the address

space. Although such allocations were wastefiil^, the perception was that the available 32-bit address space was inconceivably large.

A few years ago this inefficient management of address space lead to a short-term crisis; it appeared that the then

"inconceivably large" address space was being rapidly exhausted One ofthe solutions, IPv6, offered a presently "inconceivably large"

128-bit address space as an alternative. Although several IPv6 implementations are now available, IPv6 has not—and in feet might

never—displace IPv4 and its paltry address space.

One of the ways that the "address space crisis" in IPv4 was averted was the rethinking of one of IP's initial assumptions—the

desire tor a globally unique, permanent address assignment for every host interface. It is arguable whether this change in assumptions

was a conscious effort or it occurred accidentally, but address space management changed fijndamentally with the introduction of

DHCP, masquerading firewalls, and VPNs. We now routinely violate the permanency and even the uniqueness ofaddress assignment

by recycling IP addresses both temporally and spatially.

Such Q^ansient assignments have, however, exposed some undesirable artifacts in other protocols; specifically, TCP's concept

ofa connection is integrally coupled to the invariance of source and destination address as presented in the packet header. Hence, the

loss of a DHCP lease (e.g., by a dropped PPP connection) effectively severs any open TCP connections. Mobile-IP is, in large part, a

work around for TCP's dependence on address permanence. It offers TCP the illusion ofa permanent IP address while simultaneously

providing routing changes based on the changes in IP address. (With MobilelP, Mobile hosts retain their permanent addresses but their

packets are transiently tunneled to the "care of address ofa mobile agent at their point ofattachment to the network.)

Excepting experimental subnets in the 1 92. 1 68.x.y address space

A Class A address allocation contains 16 million host addresses





Dynamic address assignment is, however, an exceedingly powerful technique that offers solutions to not only tlie shrinking

address space problem, but the larger address space management and network configuration problems as well. Route aggregatioa for

example, could be optimized if address reassignment were possible. ATM (Asynchronous Transfer Mode) protocols took such

dynamic address assignment to the logical conclusion making all interfece addresses locally assigned and explicitly supporting the

concept of trunking, and thereby avoiding the address space problem in its entirety.

One might ask why the concepts of interface addresses and host names are both preserved The two techniques are

conplementary and address different problems. Internet addresses, the 32-bit values that appear in IP packets, provide a convenient,

fixed-size, short hand indication ofa packet's destination and, tiierefore, prescribe its migration through tiie network. When the address

space is carefijUy administered, addresses also provide sufficient information for route aggregation or "trunking", routing traffic based on

only a few bits of the address, which greatly reduces the size ofrouting tables in both hosts and routers. This shorthand representation is

compact and very convenient for machine processing.

However, numeric addresses, whether permanently or transiently assigned, are an exceptionally inconvenient representation

for humans. Dynamically assigned addresses only exacerbate the problem Host names provide much better mnemonics—as well as a

much larger total address space and tlie opportunity for many-to-many name-to-address mappings as well as dynamic address

assignment

Presently in the Internet, dynamic address assignment has been applied primarily to end-user machines using either DHCP or

Mobile IP, and IP masquerading is used in firewalls at the enterprise boundaries. Virtual servers (where a single virtual URL maps to one

of several physical hosts) offer another example of dynamic address binding, though the implementation differs in details. Although

such uses have shown the power of dynamic address binding, we still do not exploit dynamic address binding to obviate address

management in networt: design.

Setendipitously, the early inclusion of this mnemonic "cmtch" which allowed named hosts has also provided tiie cornerstone

for dynamic address assignment The hierarchically organized DNS servers universally accomplish the mapping between the large and

mnemonic name space and the smaller and compact addresses space, b order to reap the benefits of a more dynamically assigned

address space; we will need a more fluid name-to-address mapping than in presently available.

This paper addresses the key issues associated with modifying DNS to enable more dynamic address assignment.





2 Overview
The Autonomous Network Management initiative attenpts to develop a collection of protocols and software tools tliat will

enable networks to be rapidly configured and maintained by untrained personnel. Industry efforts such as DHCP and the lETF's

ZeroConf Working Group have attempted to address some issues related to automated configuratioa but these are focused exclusively

on providing a solution for endhosts and they ignore other network conponents. TTie approach taken by us to automate the network

planning and management task splits the problem into four inter-related subtasks: address assignment; host name registration; network

augmentation; and resource redistribution for load balancing. In this paper, we focus on the first two aspects. Our approach focuses on

providing dynamic interface address assignment for all network assets, so that the network components can themselves efficiently

renegotiate addresses each time the network is extended. To facilitate the latter, a more flexible DNS hostname to address bitiding

scheme must be incorporated.

For more than a decade, the Berkeley Internet Name Domain (BIND) has been the de facto standard for DNS

implementations [28]. Nearly all modem networks use the public domain BIND iinplementation or commercial products derived fi'om

BIND. In fact, BIND has become virtually synonymous with the industry standards that define the DNS architecture. The DNS

specification was written to allow product interoperability and thus permit and encourage flexibility in each DNS implementation. Thus,

it is possible to develop new DNS implementations with added features, while remaining compliant with existing standards.

In particular, it would be desirable ifa DNS service could be run with no lengthy configuration process and no need for user

intervention after it has started. TTie current implementation ofBIND requires a network administrator to write several configuration

files in order to fijnction correctly. These configuration files tell BIND the zone it is responsible for, the location ofother DNS servers on

the network, and the location ofthe root name server Setting up this configuration can be a tedious process, as every time a new host is

added or removed fi-om the network, these files must be updated. In addition, if the network topology changes (such as by adding or

removing name servers or by merging two networks togetha), significant changes are required to the configuration of BIND as the

DNS zones and ownership ofthe zones may have changed too. This is certainly not ideal for home networks or networks consisting of

mobile or wireless clients. In a home-networked environment, hosts are frequently leaving and entering the network as appliances are

turned on and off, or as new hosts are added. Mobile clients also will join and leave networks often as they are transported across

network boundanes. In an ideal environment, hosts should be &ee to join and leave the network, and should immediately gain access to

the services; this requires that tiie DNS be able to configure itselfon a dynamic basis.





3 DNS
TTiis section describes the hierarchical naming system and distributed architecture of the current DNS standard. It also

examines the operations involved for performing updates to the network.

DNS was developed in 1 984 by Paul Mockapetris as a distributed database that could resolve the address ofany computer on

the network [22]. It was created to replace the ASCI] host files that associated host names with their respective IP addresses. These host

files resided on every host in the networic, and ifa name was not listed in the file, that host could not be reached As the internet grew to

become a woridwide network, the process ofmaintaining the host files became increasingly unwieldy, leading to a growing need for the

DNS.

The DNS directory can be thought of as a tree, with each node on the tree representing a "domain" [1], Each domain is

identified and located in the tree by its domain name, which uses the familiar dotted notation (www.mitedu, for example.). As we read

the domain name from riglit to left, we can follow the path down the DNS tree to the correct node (See Figure I ). The "edu" domain is

one ofmany top-level domains; others include "com", "gov", "org", and "uk". The flill and unique domain name ofany node in the tree

is the sequence of labels on the path from that node to the root

The liierarchical tree ofdomain names can be referred to as the domain name space. Eiach domain in the space has host data

associated with it These host data are defined in resource records. There are many different types of resource records, the most

common being the address-record (A-record), which associates the domain name with an IP address.





Figure 1 - DNS Hierarchy

The other distinguishing characteristic of the DNS architecture is its distributed implementatioa DNS servers may be

operated by any organization that owns a domaia Each DNS server is given authority for one or more "zones". A zone is a collection

ofone or more DNS domains tliat share the same parent domain, along with the associated resource records. A DNS server receives

autiiority over a zone when the network manager responsible for the domain that contains that zone delegates the authority to that

particular DNS server. Therefore, the DNS infrastructure is distributed both geographically and administratively [28].

3.1 Name Servers

Each zone in the domain name space has at least two name servers authoritative for it, a primary one and a secondary one.

Authoritative name servers are the only name servers guaranteed to contain the correct resource records for their zone. When querying a

name on the Internet, a resolver can only be assured that the address is correct ifthe answer comes from an authoritative name server for

the zone that is being queried (See Figure 2). To improve performance, other name servers may cache resource records, but each cached

entry has time-to-live to prevent staleness ofdata A name server stores all the resource records for the zone for which it is authoritative.

The primary name server is an authoritative server for its zone(s) and reads its zone data from frie zone files [ 1 ] . When changes are made

to the zone's resource records, they must be made to the primary's zone file. This data is sent to secondary name servers upon request

A secondary name server is also authoritative for its zone(s); however, it obtains its zone data via data transfers from other name servers.

A secondary name server interrogates the primary or other secondary servers periodically to determine if its zone's data have changed. A

network administrator can set the period of this interrogatioa A single name server can act as both the primary and secondary server for

two or more different zones.
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Figure 2 - Resolution of www.mit.edu through DNS (from |12|)

3.2 Dynamic DNS and Zone Transfers

The original DNS specification was written with static networks in mind It was assumed that hosts would join and leave the

network infrequently. However, in modem networks, computers are fiw to join and leave the network, and many new devices are being

connected. In order to deal with dynamically changing networks, several extensions to DNS have been implemented Specifically,

RFC 2136 [34] defines the DNS Update protocol that allows for dynamic updates to the DNS. A dynamic update is a deletion or

addition ofresource records to a zone. It can be sent by a DNS client, DNS server, or a DHCP server (see Section 4). The iipdaie signal

is sent to the primary name server, which receives the signal and permanently updates its zone file. The signal may be sent to the

primary server directly or passed through one or more secondary servers until it reaches the primary. When a primary server fiJfills an

update request it can use the notifi' signal to inform its secondary servers that the zone information has changed.





In order for multiple name servers to maintain consistency of their records, zone transfers are performed on a periodic basis. A

zone transfer is the transfer of resource records from a primary name serva to a secondary name server. A fiiU zone transfer occurs

when all resource records are sent Instead ofsending all the resource records, it is possible for the primary name server to perfonn an

inaemental zone transfer. This will transfer only those records updated since the last zone transfer. A secondary name server requests

an incremental zone transfer and a primary server chooses whether it will perform a flill zone transfer or an incremental one. It is

recommended that fiill zone transfers be performed no more than once every 1 5 minutes and at least once every 24 hours [3].

TTie following is a brief example of how the current version of BIND propagates changes to the resource records to all

authoritative name servers. The process is illustrated in Figure 3.

1

.

The primary server receives a request for the addition or deletion of a host This may come from administrator manually

editing the zone file, or through an update message received. If the update message is received at a secondary server, it will

pass it to tfie primary server if it knows its locatioa or to another secondary server. This is continued until the primary server

receives the update signal. Once the zone file is changed, the serial number ofthe file is incremented

2. The primary name server reads the edited zone file. The fiiequency at which the server rereads its zone file and checks for

zone changes is a configurable parameter ofBIND.

3. The primary server will send a notify message to all known secondary servers. The primary server will wait some time

between sending each notifi.' to reduce the chance ofmultiple secondary servers requesting zone transfers at the same time.

4. Ifthe secondary server(s) support(s) the notify signal, a zone transfer is immediately initiated. Otherwise, the secondary server

will discard the notify and wait until the next scheduled zone transfer time.

5. The secondary serva then notifies any other secondary servers that may be dependent on it for zone ttansfers. This multi-

level transfa is continued until all secondary servers have received the changed records.





Secondary

DNS Server

Figure 3 - BIND Updates (from [28|)

While the dynamic update system may lessen the amount of administrative work for the name servers, it does not make them

administrator free. Each name server in tine network must be configured witii tiie address of either the primary DNS server or other

secondary DNS servers for its zone. Name servers are not tree to join and leave the network. Ifa secondary name server is added to the

network, either die primary DNS server or otiier secondary DNS must be configured to recognize ttie presence ofthe new secondary

name serva so tiiat die primary DNS server can receive updates propaly. Also, if tiie primary name server is removed and another

added in its place, an administrator mtist manually change the configuration of every secondary server so tiiat it is informed of tiie new

primaryDNS server. In addition, the current DNS system requires extensive initialization effort to ensure proper operation. Zones must

be properly allocated with specific primary and secondary servers and a clear domain hierarchy must be defined. These tasks all require

extensive knowledge and eflfort fiom an administrator.

The above problems are addressed by tiie system described in the next section. It uses a combination of an agent program

monitoring BIND and dynamic DNS protocols to maintain a tme self-configuring and self-administrating naming system.

4 Self-Configuring and Self-Administering Name System

4.1 Network Overview

The naming system described in this section was conceived as part ofa larger network system that is under development at a

company codenamed as Research Corporation in tiiis document The proposed design provides a fiill array of network services to tiie

hosts on die network This is done widi virtually no manual configuration and no administration. The network design allows for a groiqj
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of computers to be physically connected together (through Ethernet or other network media) and after a short time, they will all be

properly configured in a working network. On this network there will be two types of nodes: managers and hosts (See Figure 3 and

Figure 4). Managers form the backbone ofthe network and provide services, such as name to address resolution, to the hosts. Besides

tlie name to address resolution service, the managers also provide dynamic IP configuration for new hosts, discovery mechanisms for

new managers, packet routing, and a database ofall hosts in the system. The services directly related to the naming service are automatic

IP configuration and manager discovery, as these will be the services that the name system will directly interact with. The goal ofthe

network system is to allow any conputer, either a host or a manager, the fiwdom to join or leave the network, without flie need for any

external administration. The networi< should be able to detect the presence of a new node or the absence of an existing one, and deal

with either type of change in an appropriate manner, hi addition, the network system, and in particular the name system, should deal

gracefiiUy with the merging oftwo networks. Conflicts should be detected and resolved quickly.

In order to provide the self-configuring and self-administrating name service, each manager in the system is designed to run

three types of services: the IP configuration service, tiie manager discovery service, and the agent based name service. The IP

Manager 1

Name
Service

7\

iz
Manager 4

Name
Service

<^=^
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Name
Service
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Name
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Figure 4 - Sample Network
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configuration service is handled by a standard implementation oftlie dynamic host configuration protocol (DHCP). DHCP is a network

protocol specified by the IETF that provides hosts with configuration parameters for their IP interface [6]. This includes an IP address, a

domain name, a subnet mask, a default gateway, and a location of DNS server. DHCP also allows a host to retain a previously

Manager 1

Primary

Internal Root

Server

Managers

Domain 1

Primary

Server

Manager 2

Secondary
Internal Root

Server

Manager 4

Domain 2

Primary

Server

Figure 5-Name Space View of Systems shown in Figure 4

configured domain name while receiving an IP address. After receiving the necessary information finm a DHCP server, a previously

unconfigured host's IP interface has all the necessary parameters in order to begin transmitting and receiving on the network. DHCP

requires no prior configuration; as a host locates a DHCP server by broadcasting discover messages on the local network. All modem

operating systems and even most embedded devices support DHCP. Overall, DHCP meets the goals and design objectives of the

desired self-configuring and self-administrating network.

The process ofmanager discovery is accomplished by having the manager discovery process p)eriodically broadcast "discover

packets" to each interface. These packets contain the source address and a unique network number that the manager resides on. All

other managCT discovery processes will receive the packet, and ifthe network number is known, the packet will be dropped ]f, however,

the network number is unknown, that manager will respond to the source of the "discovei^' with a "discover reply". This reply includes

the network number for the new manager. This allows the manager discovery process to inform the local name service of any new

managers that appear on the network.

The design and the operation ofthe name service are discussed in the next subsection.
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4.2 Name Service Interface

The name service runs on every manager in the system and consists oftwo concurrently running processes. The first is the

BIND implementation ofDNS. As stated before, BIND is currently used in the overwhelming majority ofname servers on the Internet.

It provides a scalable, stable, and fault-tolerant basis for the name service. The second process is an agent program that reacts to network

conditions and configures BIND automatically. Figure 6 shows the relationship and manner of communication between BIND, the

agent program, the other local manager processes, as well as other managers in the network. The agent program uses Berkeley UDP

sockets to listen for two different formats ofmessages. On port 53, the standard DNS port the agent program listens for DNS messages.

It acts as a filter for the DNS messages, sending queries directly to the BIND process, and processing update messages from the IP

configuration process. On port 54, the agent program listens for any agent messages coming fi'om either the manager discovery service,

or other agents in the system The agent messages allow an agent process to gain knowledge of other agents and offer a method of

communication between agents. The IETF has designated port 54 to be used for XNS Clearinghouse [27]. We chose to use port 54

because XNS is uncommon on modem servers. If this service is needed, another port may be specified for agent communication. The

details ofboth DNS and agent message processing are discussed in following sections.
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Figure 6 - Relationship between agent, BIND, and other processes (from |12|)

4.3 Internal Root Servers

The name servers in the system are only authoritative for the IP addresses of the subset of hosts configured by the naming

system. If the networi; is connected to a larger network, such as the Internet or other networks serviced by the naming system, DNS

servers outside the local network must be queried. With this in mind, the name system is implemented using the idea of internal root

servers. Certain name services in the manager network act as the internal root servers and are authoritative for the entire domain that is

serviced by the self-configuring naming system TTiese are not tnie DNS root servers as they are not authoritative for every domain

name on the Internet, but only for those that exist inside the domain serviced by the self-configuring naming service. So, as long as a

name service knows the location of at least one internal root server, the name service will be able to provide name resolution for the

network's name space. For example, ifthe entire mitedu domain is using the self-configuring naming system, a host in the Ics.mitedu

sub-domain may wish to know the IP address of a computer in another sub-domain serviced by the naming system (such as

mediamitedu). This host will query any local name system, and since the manager is not authoritative for the mediamitedu domain, it

will query the internal root server ofthe mit.edu domain. This server may resolve any domain name in tine mitedu domain by directing

the resolver to the proper media.mit.edu authoritative name server. For resolving names outside the domain, such as Intemet host names,

the Intemet root servers inay be queried.
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4.4 DNS Messages

The only DNS messages that the agent program processes directly are DNS updates. All other messages are simply directed

to the local BIND process on port 55. These messages will simply be DNS queries and BEND will process the query, retum an answer

to the agent process, which in turn will forward the response to tlie inquirer. The agent process is the only entity with access to the

BIND process. To all hosts on the network, it appears as ifBIND is running on the normal port.

4.4.1 DNS Update

DNS updates, however, reqtiire special processing by the agent DNS updates only occur when the IP configuration service

or manager discovery service detects the addition or deletion ofa host or manager on the network. The respective local manager service

then assembles the appropriate DNS update message containing the resource record that must be added, modified, or deleted and sends it

to the agent program. Although DNS updates may be sent to any DNS server that is authoritative for a zone, they will always end up

being processed by the primary master for the zone, as that is the only server that has the definitive set ofresource records for a particular

zone. As stated earlier, standard DNS implementations specify that any secondary server which receives a DNS update message must

forward it directly to the primary master if its location is known, or alternatively through the secondary serva chain until it reaches the

primary master [34]. The secondary servers will only learn ofthe update through notify signals originating fi-om the primary master.

To try to improve the efSciency of this mechanism, the agent program will examine the update message, and if it applies to

RR in tine zone that it is authoritative for, it will send it directiy the primary master for that zone. Each agent process has knowledge of its

primary master as this is part of its state information described in Section 4.6. When the agent program is not authoritative for the zone

receiving the update, then it must search for the primary master for that zone on the network. To do this, the agent program will send a

Start of Authority (SOA) DNS query to the local BIND process. The SOA asks the DNS for the address of tiie primary master for a

particiilar zone. Upon receipt ofthe SOA, BINfD will perform standard DNS resolution to find the information on the zone name. Ifthe

zone exists, BIND wiU return to the agent process the IP address ofthe primary master for the requested zone, and the agent process will

forward the update to that address. If however, the DNS iqxiate message ^plies to a zone that does not exist on the network, BIND will

retum the non-existent domain error flag (NX_DOMAIN), and the agent program will configure the local BESID process to be

authoritative for the new zone. The reconfigured BIND process will then process the update request This allows for dynamic creation

ofzones and is especially usefiol at resolving all naming conflicts when two networks are merged
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4.5 Agent Messages

Agent messages are used for inter-agent communication and as a mechanism for agent discovery. Figure 7 shows the

structure ofan agent message. It consists ofa three-tield header followed by a payload section. Tlie header fields are explained in

Table 1. The payload holds the data from the message. The data are specific to each Opcode. The data sent with each agent message

are explained in more detail in tlie following sections.

Message I D; Opcode ;S/R flag I Header

PayloadOpcode specific Data

Figure 7 - Agent Message Format

Table 1 - Agent Message Header Fields

Header Field





Table 2 - Opcode Values

Opcode





Primary Master for

zone a.mit.edu

Primary IVIasterfor

zone a.mit.edu

Primary Master for

zone a.mit.edu

Primary Master for

zone a.mit.edu

Figure 8(a) - Merging of two previously unconnected networks with name conflicts begin witii new physical

connection joining the two.

Figure 8(b) - Agent programs in both networlts receive discover messages informing them of the newly

discovered managers.

The becomeslave message can also be used to make an agent a slave for a zone. However, while theforceslave message is

only used between two competing primary servers, the becomeslave can be sent to any agent in the system. It is not used for elections,

but only to notify agents ofnew primary servers. Ifa new primary server for a zone leaves the network and a new one is elected, the

becomeslave message is passed to all the old slaves of the former primary server and to the slaves of the loser in the electioa The

becomeslave message informs them ofthe new primary server and allows the agents to reconfigure themselves accordingly.

The getroot message is used by agents to share the internal root server information. This is usefiil when a new unconfigured

agent is introduced to the system and wishes to know the internal root server. The getroot fimction operates on the basis that any
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configured DNS server that is queried with the getroot message will have a reference to a root server, this root server can be anotha

server or the root server itself TTiis assumption is valid because the server is either authoritative or not authoritative for the particular root

\n the tbnner case, the authoritative root server will simply return its own information to the querying server. In the other case, it will

have a root server reference that will be used to query for the relevant zone information.

Primary Master for

zone a. mit.edu

Primary Master for

zone a. mit.edu

Primary Master for

zone a. mit.edu

Primary Master for

zone a. mit.edu

Figure 8(c) - The conflicting primary master servers send each other negotiatemaster messages.

Figure 8(d) - The winner of the election sends a forceslave message to the loser.
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Primary Master for

zone a.mit.edu

Slave for zone a.mit.edu

Figure 8(e) -The new slave performs a zone transfer with the master.

4.6 State Information

To assist with the agent tasks, each agent stores state information about itselfand other managers in the network, as well as a

log ofall messages it has received In particular, the agent will keep a record for all managers that it knows to exist on the network. This

server record contains the name, IP address, a uniqiie server ID, and a status flag that tells if the server is configured or just starting up

(See Table 3). Each server record is placed into one or more ofthe following categories:

• Own Servers - contains the agent program' s own server information.

• Known Servers - list ofserver records for every managCT on the network.

• Root Servers - server records for every domain root server on the network

• Newly Discovered Serveis - list of recently discovered managers. Once the agent processes the discover message, the server

record will be moved to one ofthe above categories.
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Table 3 - Server Record Fields

Server Record Field
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Figure 9 - Startup Scenario

4.7.2 Configured

Once an agent has entensd the Configured state, it is ready to handle any name resolution query on the network. Even if it does not

have the requested name in its database, it can query the internal root server and find an answer by working recursively down the DNS

tree. When the agent is in the Configured state, it listens for queries, DNS updates, discover and leave messages, and (if it is a primary

master for a zone) periodically runs the getSlave functioa The getSlave fimction is used to find more slaves for a primary master. For

every zone, the agent is a primary master for the getSlave fimction will check tie zone information to see ifmore slaves are needed. If

more slaves are needed, the agent picks a random server out ofthe Known Servers list that is not already a slave for the zone. It then

sends a becomeslave message to that server.

The behavior of the agent in response to both DNS queries and updates is described in Section 4.4, The arrival of a discover or

leave message signals a change in network topology, as managers have either joined or left the network. In the case of a discover

message, there are two options: the discovery of a configured manager, or the discovery ofan unconfigured inanager. The case of the
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discovered unconfigured manager is rather simple as an agent need only record the seirer record of the new manager and respond to

any gettvot messages it may receive. When a configured manager is discovered, the process is slightly more complex.

Configured managers are discovered when two configured networks are joined. Network unions are revealed by the inanager

discovery process as two managers will have different network IDs that were previously unknown to tlie otha manager. In tliis case, it is

possible to have a conflict where two managers are primary masters for the same zone. Therefore an agent needs to have a mechanism

to detect and resolve this conflict

Figure 10 iUustrates the procedure that is initiated when a configured agent receives discover messages. When an agent is a

primary master for a zone and receives a discover message with information on new configured managers, the agent will send a getroot

message to the newly discovered server with highest ID (the server ID is used so that only one server is contacted, any other metric could

be used as well). Only primary masters need to participate in the conflict detection scheme, as any slave's master will detect the conflict

and transfer the new network information in a fiiture zone transfer.

Zone conflicts can only occur if the two networks have different internal root servers. Ifboth networks shared the same internal

root server, it would be impossible for zone conflicts to occur as a single DNS root tree will not allow flie same zone to have two

different primary masters. When the two internal root servers are different, an agent must make sure diat it is the only primary master for

its zone. Tlierefore, the agent will send a SOA query to die differing root server for every zone that it serves as primary master for. The

differing root server will then respond with the address ofthe manager that it considers to be the primary master for that zone, or an error

message indicating that it is not aware ofthe zone. If the SOA response is an error message or ifthe address matches the querying agent,

then no conflict exists. If the SOA message is an error, this indicates the other root server is not aware of the zone on the network.

However, it can still resolve names in that zone by recursing down the DNS tree from the top node.

If, however, the diiiering root serva indicates that it believes another managa to be the primary master for the zone, a conflict

exists and must be resolved. The conflict is resolved by the negotiatanaster master message described in Section 4.5.
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server is a slave or master for that zone. A database file contains all the name information for a zone, and there will be a separate

database file for each zone in the namedconff\is. If the namedcotffile or the database files are changed in any way, a SIGHUP signal

can be sent to the named process. This signal tells tienamdprocess to reread its configuration files and database files.

The agent program controls BEND through the use of the namedconf&e and database files. During start-up, the agent program

will use a Peri script to generate a nconedconf&e and the appropriate database files. Once these files are generated, the agent program

will automatically start the «a?wec/ process. BIND is then ready to answer queries and to handle updates to the name database. Once tlie

namedpmcess has started, the possibility exists that the name service will need to handle another zone. The agent program will append

that zone information to the namedconf&e, create the appropriate database file, and send a SIGHUP signal to the named process. With

the agent program in control, BIND will always be configured properly to store names and to handle all the network name resolutions.

4.9 Implementation Notes

The agent program was implemented using Gnu C++ on the Unix operating system. The program consists ofa set ofclasses

that control the state of the agent and store network information. The main class for this agent program is the Agent class. The Agent

class controls the flow of the program and handles the input and output ofagent and DNS messages. The UDP protocol was used to

send and receive agent and DNS messages, and the standard UNIX Bericeley socket library was used to create the necessary UDP

sockets. The Agent class retrieved messages by using a select call on each socket to check the availability ofdata on the socket Also,

callback flmctions were used to perform time-dependent and periodic events.

The Agent class uses a number ofstorage classes that store the state ofthe network. These storage classes include the Servers

class, the Doinains class, and the MsgLog class. The Servers class helps to store what other managers and name services exist in the

network. The Domains class helps to store what zones the agent is authoritative over. The MsgLog class stores information on the

messages that have been received by the agent program. The C++ standard template library (STL) was used extensively in the

implementation ofthese storage classes. In particular, the map, the list, and the vector template classes proved to be very usefiil in storing

information.

To generate the configuration and database files for named, embedded Perl was used. Embedded Peri allows a C++ program

to call Perl commands and subroutines. All ofthe Peri commands and subroutines required to generate the named files were placed in a

file called agent.pl, and the agent program used embedded Perl to call the subroutines in agent.pl every time the named configuration

files needed to be changed
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4.10 Security Concerns

The current implementation of the system has no security mechanisms built in. Securing a network designed to be

configuration-iTee and administrator-free creates a conflict, as any meaningful security mechanism will require some sort of

configuration [37]. The best that anyone can hope to accomplish is to minimize the configuration overhead necessary to keep tlie system

secure. For a closed environment such as a corporate intranet, perhaps the easiest security model is to have none at all, simply relying on

physical security mechanisms to control access to the machines [32]. This will work well for an environment that is well controlled and

where one can physically control access to the network. Ifa corporation only allows approved machines and approved users to plug into

tiie Ethernet, it is impossible for an outside intruder to gain access to the network.

However, as wireless networks become increasingly popular, controlling physical access to networks becomes impossible

[14]. Insecure wireless networks allow anyone in range to send and iieceive data This allows for theft of services (such as an individual

using his or her neighbor's internet connection), as well as the potential for malicious hosts to be introduced to the systera

Another reason for incorporative security capabifities is when the network managed by the agent-naming system is connected

to another larger network, such as the Internet Ifthe system is left insecure, any host in the world could atterrpt to violate the network's

security mechanisms.

When a network is managed by the agent naming system, it should be at least as secure as a standard IP network. That is, the

agent naming system should not open up any new holes into the DNS systera Currently, most DNS implementations are completely

insecure, relying only on redundancy and physical security [35]. DNS servers are kept in a trusted, safe location and distributed

throughout the network. Normal DNS servers only allow administrators at the physical machine to change the configuration ofthe DNS

server. However, because the agent naming system allows other agents to change its configuration, it is prone to attacks from outside. If

a malicious user could introduce a "rogue agent" into the system, it could do significant damage.

The managers in the agent naming system have two main fimctions. First they provide IP configuration information to new

hosts that join the network, and second they provide the name to address resolution service for the network. Each of these services is

vulnerable to attack, and for a fiilly secure network, both must be secured.

There are two possible methodologies for securing the managers. The first is to use IPSec to provide network layer security for

all traffic [19]. The second is to secure the individual protocols that provide IP configuration and name to address resolution

[7][16][35][36].
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Using IPSec, all traffic between managers is authenticated and optionally encrypted [19]; this ensures that no inalicious user

can place a rogue manager into the network, tor it will not be able to authenticate itself In addition, hosts can authenticate inanagers, so

that when they receive their IP configmatioa they can make sure it is correct and that it came from a known managa.

The otlier option is to utilize secure versions ofDNS and DHCP. RFC 2535 defines DNS extensions that allow for host and

DNS server authentication [10], while RFC 3007 specifies extensions to [10] that will provide authentication for update messages [36].

Authentication for DHCP messages is currently being proposed by the IETF [7]. These protocols may prove to be lighter weight than

IPSec; however, they do not provide confidentiality ofdata. This is a deliberate design decision by the EETF because they believe DNS

data to be public [10]. Ifconfidentiality ofdata is desired, IPSec must be used to encrypt all data. IPSec may also be easier to implement,

as it is a broad solution covering all network traffic. The only reqtoirement is that the TCP/IP stacks ofboth the host and manager support

IPSec. When IPSec is not used for security, any additional services added to the system must provide their own mechanism and

protocol tor authentication.

5 Related Work

5.1 ZEROCONF

The Intemet Engineering Task Force's (IETF) ZEROCONF Working Groip is currently proposing a protocol to enable

networking in the absence of configuration and administiation [38]. Although they have yet to propose a specific implementation or

specification of the protocols, they have set a list of requirements for ZEROCONF protocols [15]. The goal is to allow hosts to

communicate using IP without requiring any prior configuration or the presence of network services. Of particular relevance to diis

paper is the name to address resolution problem. The ZEROCONF requirements specifically state that there should be no need for

preconfigured DNS or DHCP servers. In fact, the ZEROCONF protocols are required to work in the absence of DNS servers.

However, when these services are present, the ZEROCONF requirements direct that hosts should use tliem. Thus, the ZEROCONF

requirements offer temporary and inferior solutions to the name resolution problem until a complete name resolver is located, such as a

DNS server.

ZEROCONF protocols lace two challenges when determining name to address bindings. The first is obtaining a unique address

and/or hostname on the network. This is handled extremely well in modem networks by the use of a DHCP server, however,

ZERCONF protocols must not rely on the presence ofDHCP server. Therefore, the working group recommends using either IPv6 or

IPv4 auto-configuration mechanisms [14]. IPv6 auto configuration is vastly superior as it allows hosts to obtain a link local address

(useflil only on a single network) using address auto configuration [14] and a routable address by discovering routei? using Neighbor
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Discovery [24]. IPv4 auto configuration is still in the research state by the IETF, but the initial specifications allow a host to only get a

link-local address [4]. This will prevent the host Irom communicating with any device not directly on the same network as it Also,

while IFV6 provides nearly all-necessary network parameters such an address, domain name, default router, and DNS server location (if

present), IPv4 provides only an address. Thus, if a host configured with IPv4 auto configuration leaves a network and rejoins, it may

liave a new address, while a host configured by tPv6 will have a permanent method of contact, its domain name. While IPv6 clearly

offers more advantages, it is exjjected to IPv4 will dominate for some more time [4]. This is because IfV6 is relatively new standard

and the lack offiilly complaint IPv6 routers and hosts on most networks has prevented it fiom gaining widespread acceptance.

Once a ZEROCONF host has obtained an address on the network, it still needs to discover other hosts and resolve domain

names. The ZEROCONF requirements state that hosts should use multicast to resolve names in the absence ofa DNS server. In order

to support this requirement, an IP host will also need to listen for such requests and to respond when the request corresponds to the host's

own name. The IETF currentiy has two ongoing activities in this area: multicast DNS [II] and "IFV6 Node Information Queries" [5]. In

each case, aU hosts will run a "stub" name service that only responds when it fields a request for its hostname. The stub service does not

provide any name to address resolution for other hosts on the network.

While tiie naming service proposed in this paper may fit into the broad goals ofthe Zero Configuration Working Group, it has

several key differences. The most obvious one is that the ZEROCONF requirements are designed to work with a network composed of

entirely client devices, with no service providers or managers in the network. By design, the agent program is run on a network

manager, and provides DNS services for the entire network. While the ZEROCONF requirements specify that hosts need no previous

configuration, they do rely on more complete solutions such as DNS and DHCP for long-term operation and scalability. However, the

ZEROCONF Working Group has set no requirements that these servers be self-configuring and self-administrating. This is precisely

the problem that the agent program attenpts to solve. In a network managed by the self-configuring naming service described in this

paper, both hosts and managers are administrator free and may join and leave the network fieely. Therefore it is possible to have a

network that runs the agent program on the DNS servers and also meets the ZEROCONF requirements. Hosts could use the

ZEROCONF protocols to obtain an address until the discovery ofa manager. Once a manager is found, the host is flee to resolve any

name on the network using standard DNS calls.

5.2 Non-IP Networks

The requirements laid out by the ZEROCONF Working Group stress the importance of having computers networked

together "just work" in the absence ofservice providers such as DNS and DHCP [15]. Two protocols in use today provide this level of
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functionality. The AppleTalk suite of protocols is simple to operate in small networks. Plugging a group of Macs into an Ethernet hub

will get one a working AppleTalk network witliout the need to setup specialized servers like DNS [14]. As a consequence, AppleTalk

networks can be used in homes, schoolrooms, and small offices - environments where IP networks have been absent because they are

too complicated and costly to administer. NetBIOS provides similar fimctionality and ease ofuse on Microsoft Windows machines.

However, because nearly all computers used today are connected to the Intemet, they also require TCP/IP to be configured, as tliis

is the protocol ofthe hitemeL Therefore, the benefits ofAppleTalk and NetBIOS are overshadowed as application developers will need

to siqjport two protocols: TCP/IP to access the Intemet, and either AppleTalk or NetBIOS to access the local network. This is the

motivation behind our research as well as the ZEROCONF Woridng Group and other efforts to make the IP suite ofprotocols simple to

configure. Allowing developers to concentrate on one protocol for all communications will make application development simpler and

more efficient In addition, both protocols have issues when scaling to networks the size of the Intemet AppleTalk relies on broadcast

packets to perform name resolution, thus creating a large number ofunnecessary packets being sent to each host. A properly configured

NetBIOS network can be designed such that no broadcasts are necessary. However, NetBIOS relies on a flat sixteen-chaiacter

alphanumeric name space, which will undoubtedly lead to naming conflicts, particularly when networks are merged

5.3 Easing DNS Administration

The above solutions were all replacements for a fiill DNS system; eidier by using other methods ofname to address mapping

over IP or by using different protocols altogetiier. However, because IP networks and DNS have been integrated into nearly all modem

network systems, there have been other efforts to ease the configuration and administration ofDNS.

Researchers in Japan have attempted to tackle DNS administration problems by simplifying configuration tasks and eliminating

repetitive tasks through automation [13]. They developed a program with a graphical interface that reduced the work of a DNS

administrator. Their tool, called nssetiip, automates repetitive tasks such as generation a DNS database file from the machine's host file,

keeping the root cache file up-to-date, and maintaining the reverse address lookup table. To check the correctness of the configuration,

nssetiip contained a feature that checked if the name server was up and running. In addition, nssetiip provides a graphical user interface

for configuring the resolver and adding new hosts into the database. The nssetiip developers showed that it was considerably faster to

configure a name server using nssetiip than without it. They state tiiey have reduced the configuration time from two hours to three

minutes.

However, nssetiip does not truly reach the goal ofzero administtation. It simply provides a nice user interface and a good set of

default configuration values for BIND. Every time new DNS servers are added, an administrator must configure them as well as every
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DNS server already running on the network so that they are properly integrated into tlie network. The agent program requires no prior

configuration when DNS servers are added. Simply starting the agait program is all that is needed to be done; it will locate other

managers on the network and they will configure themselves accordingly, ail without user intervention. The rime it takes the agent

program to configure a name service is less than the time using msehip, and does not require a human administrator.

5.4 Commercial Solutions

Tliere are several commercial products available today that aim to simplify the operation and administrarion ofDNS servers.

Most provide solurions that include both DHCP and dynamic DNS in a single software package. These products are aimed at

corporations that run a large intranet with their own DNS servers. By including both dynamic DNS and DHCP, they allow hosts to

fieely join and leave network with no manual configuration. DHCP will assign the new host an IP address, and send DNS update

signals to notify DNS server of the new host so that it may be located on the network. Figure 1 1 shows the integration between DNS

and DHCP in the commercial solutions with the addition of remote administration. Some popular products include Lucent QIP

Enterprise 5.0, Check Point Meta IP 4. 1 , and NTS IP Server.

Remote
Administration

through web browser
Commercial
Product





It is important to note that Meta IP includes some changes to the standard DNS protocol to allow for additional functionality.

Specifically, the developers of Meta IP developed a proprietary way for primary and secondary servers to notify other slaves of zone

updates. However, recent BIND irrplementations support the notify message which provides similar functionality [33]. Because the

agent name service runs BIND, it also supports this feature.

The NTS IP Server is built finm the ground up and is not based on any previous implementation of BIND. This allowed the

developers to implement two proprietary extensions into the DNS protocol. The first DNS extension developed by NTS allows servers

to Iiave "peer backups". These are essentially duplicates of the server, and unlike secondary servers, they are always consistent with the

main server. Essentially, "peer backup" allows for more than one primary server. Thus ifone fails, the other is available for updates.

The other DNS extension allows for zone "co-serving". A zone can be split into a number ofpieces each served by a different server.

However, any of the servers may be queried and may appear to be primary master for the zone. They will communicate amongst each

other and return the correct answer to the resolver. For larger zones, this may lead to a performance improvement as the load can be

balanced amongst a number of different servers. However, these extensions are not Internet standards, and only those servers runnuig

the NTS IP Server will be able to use them

S.4.1 Comparisons to the agent name system

In addition the products described above, there exist other similar solutions to ease the administration and operation of DNS

[ 1 8][25]. Nearly all ofthese vendor products oflFer features that appeal to the corporate environment These features include user profile

support, directory services, and remote administration. While these features are certainly advantageous in the corporate environment,

they do not pertain directly to the name system In addition, the goal of these commercial solutions is to provide a central point of

administration for the entire network.

In contrast, the agent name system takes a decentralized approach to the administration of the network. No one manager is in

charge of the entire management and most network operations, such as creating a new zone and electing a new master require

communication amongst multiple managers. The decentralized approach allows for the relevant portions of the network to be involved

in the decision making process.

Anotiier key difference between the agent name system and those described in this section is the procedure for introducing new

name servers into the systeriL Both the commercial systems and the agent name system require no administrative input when hosts join

and leave the network. However, only the agent name system allows servers to do the same. In all of the above products, extensive

reconfiguration is required when a server exits orjoins the network.
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While most of the commercial products provide a method to handle update messages while the primary server is down, none of

them provides a pennanent solution like the agent name system. They simply store the updates until the primary comes back on line or

allow the secondary server to process them. However, if the secondary also fails, the updates will be lost In contrast the agent name

system quickly promotes a new server to primary allowing all updates to be recorded permanently. Networks managed by the

commercial solutions must be carefiilly planned so that the master/slave server relationship exists for all zones. Servers must be

configured so that they are aware of the locations of the other servers. In the best case, the commercial products provide a human

administrator a nice graphical user interface for performing the necessary configuration. In the worst case, manual editing of the

configuration files is needed. Whatever the case is, the agent name system provides a simpler solutioa No human administration is

necessary when name servers exit orjoin the network, as the managers will communicate amongst themselves and adapt dynamically to

the changing network topology. In addition, the agent name system solution works usually existing DNS standards and

implementations. This ensures compatibility and takes advantage ofthe proven stability ofthe existing implementations.

5.5 Performance Comparison

The agent program is able to autonomously configure a DNS process without any human intervention. To accomplish name

service configuratioa multiple agent programs communicate with each other and exchange information, and based on information fi-om

other agents, an agent will generate the named.conff\e and call tiie named command. No human is required to configure the name

services, and configuration is done in a decentralized inanner. This is different fi^om existing configuration solutions in industry and

research.

Name service solutions in industry require humans to manually install the server software and configure the server to act as a

name server For example, there is much planning and modeling involved in the configuration process of the Lucent QIP Enterprise

system [20]. In order for the QIP system to work effectively, physical and logical relationships between network objects and users have

to be determined. This can be a time-consuming process for a network administrator. With the agent program, the only thing to do is to

run the agent program.

5.6 Memory Usage of Name System

The two components ofthe name service, the agent program and the BIND process, took up approximately 2.4% ofthe total

memory of the machines used for testing the name system. The machines used for testing all had Intel Pentium 450 MHz processors

with 128 Megabytes ofRAM. To show the memory usage ofthe programs, the agent program was run on a machine, and the program
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lop was run to give a memory and CPU usage report. The output of the lop program is shown in Table 4. As shown in Table 4, the

agent program occupied 1 .7 Megabytes ofmemory and the BIND process, nanied, occupied 1 .4 Megabytes ofmemory.

Table 4 - Output of top: Memory usage of name service

Size
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A Appendix

A.l Name Service Information

The agent program stores information about all the name services in the system The agent obtains this information through discover

messages from the manager and by asking other agents in the system. The information stored for an individual name service is shown

below.

Server Record Field





agent program uses these four server groups to quickly look up information about the other servers in the network and to exchange

intbrmation with other agent programs. The four groups can have overlapping serva records and are shown below.
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