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Abstract

A successive-approximations method is applied to the selection of network functions
having desired magnitude and phase variation with frequency. The successive trial
functions are specified in terms of the location of their poles and zeros in the complex
frequency plane. The first approximation is an estimate of suitable pole and zero posi-
tions which only roughly fulfills the needs of the problem. It can be made on the basis
of known solutions to other problems or through use of a set of curves which are
presented.

The deviation of characteristics of the first estimate from the desired characteristics
is determined, and changes in pole and zero positions are evaluated which tend to erase
these deviations in the succeeding approximation. A set of normalized functions is pre-
sented, relating changes in the magnitude and phase characteristic to changes in the pole
and zero positions. At the outset of the adjustment procedure, rough calculations based
on the normalized functions suffice to obtain rapid improvement in the approximation.

A far more precise but also more complicated algebraic process is applied to determine
appropriate pole and zero shifts as the approximation becomes closer. This process
adjusts the magnitude and phase characteristics simultaneously. The whole procedure
is very flexible and convenient, permitting the accommodation of practical constraints

not possible with other methods.






THE SELECTION OF NETWORK FUNCTIONS TO APPROXIMATE
PRESCRIBED FREQUENCY CHARACTERISTICS

1.0 Introduction

The approximation problem is a component problem of almost every network design.
The typical network design is the choice of a network which exhibits prescribed response
characteristics within tolerable limits. The prescribed response characteristics are
frequently graphical plots of the phase and magnitude of the desired system function given
as functions of frequency. Since system functions of lumped-element linear networks
are rational functions of frequency, the first problem of the designer is to select a real-
izable rational function which has approximately the prescribed magnitude and phase
variation with frequency. The choice of the rational system function is the approximation
problem, and a solution to this problem is the subject of this report.

The method of solution of the approximation problem presented is one of successive
approximations and it has a number of unusual characteristics of practical value. In the
first place, one chooses the complexity of the approximating function (the number of poles
and zeros) at the outset and successive adjustments always leave the number of poles and
zeros unchanged. One can approximate to magnitude and phase characteristics simul-
taneously. The approximating method is extremely flexible; one can easily impose con-
straints on the form of network to be obtained or on the nature of its elements.

The solution of the approximation problem is naturally divided into two parts. The
first part of the solution is the restriction of attention to the class of functions which are
realizable for a circuit of the type desired. For instance, if the system function is to
be a driving-point reactance, one's choice is limited to reactance functions, functions
having simple poles only on the imaginary axis of the complex frequency plane and having
positive real residues in those poles. Once one's attention is restricted to the class of
realizable functions, the second part of the approximation problem is to select from this
class of functions one which fulfills the requirements of phase and magnitude variation
within tolerable limits.

The difficulty of the approximation problem is dependent, among other things, upon
the constraints which are imposed on the class of functions to be considered. Increasing
the number or complexity of constraints ordinarily makes the approximation problem
more difficult. Practically, it is very desirable to be able to impose constraints to get
a network of a particular configuration, or containing elements of a prescribed nature,
etc. Clearly there is a need for flexibility in the approximation procedure so that con-
straints can be most effectively accommodated.

The system function of a lumped-element network, being a rational function of fre-
quency, can be expressed as follows:
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The quantities Aopr e M are the zeros of the function and xpl, .. are the poles.

. DY
It is apparent that the sycgtr::m function is specified within a constant mﬁiltiplier by speci-
fication of the poles and zeros of the function. The poles and zeros represent the most
convenient '"common denominator'' in terms of which requirements and constraints can
be expressed. The constraint that a network be of a specified form may ordinarily be
translated into a constraint on the pole and zero positions. For instance, lossless ladder
networks terminated in resistance have transfer impedances with zeros on the imaginary
axis of the A-plane and poles inside the left half of the A-plane. Furthermore, the be-
havior of the network expressed in terms of the magnitude and phase of the system func-
tion is readily related to the pole and zero positibns of the system function. Accordingly,
the approximation problem is, in these terms, to determine in the first part the possible
range in the complex plane of positions of poles and zeros in which range the specified
constraints apply. The second part is the selection, from the restricted range, of poles
and zeros which lead to the most satisfactory network characteristics. The method of
selection employed consists of a preliminary choice of pole and zero positions followed
by successive adjustments of these positions. Ordinarily, the preliminary function
chosen, or first estimate, only roughly approximates the desired characteristics. The
successive adjustments, specified in terms of shifts in pole and zero positions, are made
to reduce the deviation of the trial characteristics from the desired characteristics. The
method of successive approximations is really a systematic fitting procedure with each
successive trial producing a better fit with a function of the same complexity. The fitting
procedure is unique in that both phase and magnitude characteristics can be fitted simul-
taneously *.

Once the restrictions imposed by physical realizability conditions on the poles and
zeros of the approximating function have been determined, the remainder of the approxi-
mation procedure consists of two steps. The first step is the choice of the first approxi-
mation and the second is the process of successive adjustments leading to the final re-
sult. The two steps are distinct and can best be examined separately.

2.0 The First Approximation

The first approximation can be made on the basis of known solutions to similar prob-
lems which are roughly suitable to the given problem, or it can be made purely on the
basis of a set of curves presented at a later point in this report. When a designer uses

the solution of a similar problem as a starting point, wide experience and ingenuity have

*The implicit relation between magnitude and phase characteristics is well known. If

the magnitude characteristic is completely specified over the whole frequency range from
zero to infinity, the corresponding minimum-phase characteristic is implicitly and in-
flexibly determined. If one specifies the magnitude characteristic over a fraction of the
spectrum only (as is ordinarily sufficient for practical purposes), or specifies it less
exactly, more freedom is obtained in choice of the phase characteristic. The approxi-
mation method described here uses the available freedom to obtain suitable approxima-
tions to both phase and magnitude characteristics over a fraction of the complete
spectrum.




a strong effect in decreasing the labor since a good first approximation reduces the
amount of work to be done in the ''fitting'' step. A brief survey of previous contributions
to the approximation problem is useful in providing a stock of first estimates on which to

draw for particular problems.

2.1 Survey of Previous Contributions

The problem which has received the most attention and yielded the simplest and most
satisfactory solution is that concerned with filters in which the characteristic desired is

that sketched in Fig. 1. Early low-pass designs of such filters (due to Campbell and
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rational functions. Cauer (1,2) and
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Bode (3, 2) introduced methods of ob-

-‘E*—Iw,z i_,z”'z taining rational functions identifiable
as the reactance of the branches of
mfel;ys'ﬁl ” T symmetrical lattices for which lattices
T i }_Ef_ the propagation function exhibits fil-
vy e tering characteristics. Since the

. ‘ps : quantities on which Bode and Cauer
Fig. 1 Ideal low-pass characteristic and cir-
cuits to which it might apply. primarily focused attention in the ap-
proximation procedure were not the
rational functions indicated in Fig. 1, but rather some related functions (image imped-
ance and index functions), their work is more suggestive than directly useful to the prob-
lem at hand. Darlington (4) applied an approximation procedure to rational functions,
and the results are directly useful. He used Tschebyscheff polynomials in obtaining func-
tions of w (the radian frequency), which approximate the characteristic of Fig. 1. This
approximation gives uniform tolerance in one range and monotonic behavior in the other
(Fig. 2a). Darlington also used Jacobian elliptic functions to provide uniform-tolerance
behavior (called Tschebyscheff be-
TSCHEBYSCHEFF
- / BEHAVIOR - havior) in both pass and stop bands
(Fig. 2b).

A somewhat simpler approximation
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function than those used by Darlington

P was suggested by Butterworth (5). The

® characteristic corresponding to this

Fig. 2 Tschebyscheff behavior in filter char- function (Fig. 3) exhibits monotonic be-
acteristics. havior in both pass and stop bands, the
discrimination being higher the higher the order of the function.

The approximations mentioned above are treated in detail in the original reference
cited and in simple form elsewhere (6,7,8,9). The function, F, which has the magnitude

variation shown in Fig. 2a or 3 when expressed in the form (1) possesses no internal



zeros and an array of poles as shown in Fig. 4a or 4b respectively for functions of the
fifth order. The geometric figure on which the poles shown in Fig. 4a lie is an ellipse.
The cut-off frequency is only slightly less than the value of w at the intersection of the
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ellipse and the axis of imaginaries. Simple relationships between the level and tolerance
of {F| of Fig. 2a and the size of the minor axis of the ellipse of Fig. 4a are given in the
references cited. For the purposes of this report it is sufficient to state that as the
minor axis of the ellipse is decreased (the poles brought nearer the imaginary axis al-
ways along lines parallel to the real axis) the level of F in the pass-band increases as
does the tolerance. Increasing the number of poles® increases the level of |F| for a fixed
ellipse and the number of cycles of variation of |F|in the pass band while it decreases the
tolerance.

From Fig. 4 it is apparent that the Butterworth approximation is a degenerate form
of the Tschebyscheff approximation in which the ellipse becomes a circle. One observes
from Fig. 2a, 3 and 4 that small shifts in the position of the critical frequencies of a
function cause marked changes in the characteristics of the function. This fact suggests
the study of the relationship between changes in pole positions and changes in the function
characteristics. This study and a method of successive approximations arising from it
constitute the results given in this report.

The function corresponding to the characteristic of Fig. 2b has internal poles which
are distributed on a figure slightly different from an ellipse. There are also internal
zeros distributed along the imaginary axis beyond the cut-off frequency.

That networks having band-pass characteristics can be derived from those having low-
pass characteristics is well known (6, 9, 10). It is enlightening to view the low-pass to
band-pass transformation by comparing the maps of critical frequencies for correspond-

ing low-pass and band-pass transfer functions. Band-pass characteristics and the map

*For odd numbers of poles, one always lies on the negative real axis; for even numbers
of poles, none lies on the real axis.




irl of critical frequencies corresponding to the
low-pass case of Fig. 2a and Fig. 4a are shown

in Fig. 5. For the case in which the mean fre-

- - quency (wc) is large compared to the bandwidth
L&w"—“ (wo) the poles in Fig. 5b fall on an ellipse just
@ half the size of the corresponding ellipse of
Fig. 4a (see reference 6 for proof). If the
o on e mean frequency (wc) is not large compared to
| the bandwidth (wo), the poles of the band-pass
e transfer function no longer fall on an ellipse.
* Those nearest the origin are warped slightly
closer both to the origin and to the imaginary

i/s ZEROS axis.

RE OR @ That the magnitude and argument of a ra-

(b) tional function are related to a potential dis-

tribution in a two-dimensional field problem is
Fig. 5 Transfer characteristics and
map of critical frequencies for band-
pass network corresponding to Fig. 2a as an aid in solving the approximation problem.
and Fig. 4a.

well known. This relationship can be exploited

The relationship arises through the fact that
the real and imaginary parts of the logarithm
of a rational function are conjugate potential functions. This point may be easily ap-

preciated by considering ln|F| from Eq. 1. The relation of Eq. 2

m n
In|F| =Inh+ ) In|x-x |- ) In |x -\l (2)
i=1 i=1

to a potential distribution is evidenced through considering an infinite conducting plane
(identified with the \-plane) to which a unit current is supplied at some point in the plane.
If the coordinates of the point at which current is injected are those of xo, the potential
at any point \ is given by C ln(1/|x - )‘ol)' The conductivity of the conducting plane is
determined by C. If a set of negative current sources are placed at points corresponding
to the xoi's of Eq. 2, and a set of positive current sources are placed at points corre-
sponding to the )‘pi's’ the potential resulting along the imaginary axis of the \-plane is an
exact measure of In |F|.

Hansen and L.undstrom (11) used an electrolytic tank with probe current sources rep-
resenting poles and zeros to set up two~dimensional potential distributions corresponding
to rational functions. They proposed the tank as a convenient calculating device to get
plots of the magnitude of rational functions for specified pole and zero positions. Tﬁe
author (12) used an electrolytic tank to solve approximation problems. The procedure
was simply to find, by successive trials, a set of positions for the current sources lead-

ing to the desired kind of potential distribution along the imaginary axis. The method,



which is one of successive approximations, is simple and enlightening. With a small
amount of adjustment one frequently can arrive at a good answer, and there is great
flexibility in imposing arbitrary restrictions on the positions of poles and zeros of the
function. A difficulty with the method lies in the fact that at times adjustments must be
made to yield a compromise between conflicting requirements. For instance, a devia-
tion from the desired characteristic at one frequency may suggest a shift in current
sources of one nature, while the deviation at another frequency suggests a different kind
of shift. In such a situation the designer finds himself essentially trying to solve a set
of simultaneous equations by trial, and he may find the solution a slow task.

The method of solution of the approximation problem presented in this report is quite
similar to the experimental solution by successive approximations. However, here the
characteristics of successive trials are computed from curves. Successive shifts of
pole and zero positions are made as the result of an algebraic computation. Each shift
is chosen to remove the deviations of the preceding trial from the desired characteristic;
appropriate compromises are made whenever it is impossible to reduce all deviations

simultaneously.

2.2 Computation of Phase and Magnitude Characteristics for Specified Pole
and Zero Positions

Normalized curves are used for the computation of the characteristics of the suc-
cessive trials. The same curves may be used as a guide in the choice of the first approx-
imation. The process of normalization is easily understood by considering the logarithm
of F (F is defined in Eq. 1).

InF =1n|F| +jArg F (3)
m n
1n|F|=lnh+Z 1n|x—xoil-z 1nl>»->»pi| (2)
i=1 i=1
m ) n
Arg F = Z Arg(\ - xoi) - Z Arg(x - )‘pi) (4)
i=1 i=1

The consideration of the logarithm of F is convenient in that it makes the contribution of
each pole and zero separately evident. One observes that the sums in Eq. 2 and also in
Eq. 4 are really made up of only two kinds of terms, terms corresponding to conjugate
complex critical frequencies (poles or zeros) and terms corresponding to real critical
frequencies. The distinction between zeros and poles is merely the distinction between

plus and minus signs associated with the components in the sum.




For the complex critical frequencies, one may write the following from Eq. 2 and
Eq. 4*.

In [F | =1n|x - x_[|x-X_| (5)
and
ArgF_ = Arg(n - XC)(X - 'Xc) (6)
in which
A, =0, jo, - (7

If one divides F, by wi Eqs. 5 and 6 may be written

F (o}

ci. A _Tc_ N,
In —|= 1n o o e +j (8)
w c c c [
c
and
F (o3 (e}
= c _ N e _ M _ e,

w C C C
C .

Since one is ordinarily interested only in real frequencies, Eqs. 8 and 9 become

|F| . .
c_ jw c Jjw _ e
In — in el ot (10)
w C C
(&)
and
jw % jw %
Arg F = Argl -5 -\l " T - (11)
C C C C

Clearly In IFCI and Arg Fc are easily found as functions of w for any xc if one has simply
plots of lanCI /wi and Arg Fc/wi as functions of w/wc for appropriate values of the para-
meter O‘C/wc. Figure 6 gives sketches of families of curves corresponding to Eqs. 10
and 11. An accurate set of curves of the same nature is given in the appendix**.
Through use of the curves in the appendix one can readily obtain plots of ln]FCI and

Arg Fc as functions of w for any complex value of xc. Figure 6 is instructive in connec-
tion with the approximation problem. It is apparent that critical frequencies close to the
imaginary axis in the complex frequency plane cause much more violent changes in the
magnitude of the function for nearby real frequencies than do critical frequencies re-
moved a considerable distance from the imaginary axis. Accordingly, if one is choosing
a function which is to exhibit abrupt changes in magnitude at some range of frequencies,

the suggestion is definite that critical frequencies with small displacement from the

*In the following F¢ will always represent the product of a pair of factors with complex
conjugate zeros, A and X..

**A1l logarithms in the curves are to the base 10 and all arguments are given in degrees.
In the text, log refers to the base 10 and ln refers to the base ¢; Arg is the angle in
radians unless specifically stated otherwise.
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imaginary axis be placed near the range of jw where the change is desired. From Fig. 6
also it is clear that such critical frequencies cause rapid phase shift at the same time
they cause an abrupt change in magnitude. This situation is a manifestation of the im-
plicit relationship between magnitude and phase.

The second kind of terms mentioned in connection with Eqs. 2 and 4 are those repre-

senting a critical frequency falling on the real axis of the complex frequency plane®.

In|F | =1n|x - a] where o is real. (12)
Arg F,_ = Arg(\ - O'r) (13)

If one divides Fr by 0. and sets A = jw, the result is

F .
1n E:E =1n :Jo%*' 1 (14)
and
A Fr _ . . . B jw
rgta_; (= Arg F, if o is negative) = Arg _—c,r +1) . (15)

The sketch of Fig. 7 indicates the form of variation of 1n|Fr| and Arg Fr for any real
critical frequency, O, Corresponding accurate plots for computational purposes are
given in the appendix. The sketches of Figs. 6 and 7 are given for critical frequencies
in the left half-plane. The same curves are useful for critical frequencies in the right
half-plane since the logarithm of the magnitude of F, or F is unchanged if the sign of
o, or o, is changed and only the sign of the argument of Fc or Fr changes when the sign
of 0, Or O, is changed.

2.3 AnIllustrative Example

To illustrate the choice of the first approximation, a function of the form

1 1

F = - , :
Ata, 07O 0 Jep)h -0y F Juy)

16)
3 z (
AT+ azx + a1

will be chosen. The characteristics to be approximated are described in Fig. 8. It will

be required that the approximating function
LOG o IFI -ArgF

I have three poles, have approximately a
w_ linear phase shift over the range 0gwg 1 and
i have a logarithm of magnitude which de-
° 0% ° 05 creases linearly (approximately) with fre-

Fig. 8 Partial specification of require- quency such that |F| at @ = 1 is half of F] at

ments for illustrative example. w = 0. The magnitude of the argument of

*In the following Fr will always represent a factor with a single real zero, O



at w = 1 is immaterial so long as its variation with frequency is linear. The level of
log10 |F[ is not specified. A large number of functions of the form represented in Eq. 16
will have characteristics of approximately the nature indicated in Fig. 8. Some of them
approximate the magnitude characteristic well and the phase characteristic badly; some
approximate the phase characteristic well and the magnitude characteristic badly; others
fall between these classes approximating both phase and magnitude reasonably well. Be-
fore one can make a final choice of approximating function, some measure of quality of
the approximation must be formulated. Such a measure of quality is given at a later
point; at this point it is necessary only to choose any function of the form of Eq. 16 which
has roughly the characteristics desired and to proceed from it as a starting point.
Knowledge of the functions used for Butterworth filter characteristics suggests that
a function with poles distributed on a semi-circle as in Fig. 4b will give roughly the kind
of characteristics desired. Hence a first approximation is

. 1
F(\) = X+ T o0 (x 7 050 T30, 866)(x ¥ 0. 50 =50 865) (17)

Figure 9, which is a plot of log |F| and Arg F for Eq. 17, indicates that the first approxi-
mation shows a too slow decrease in magnitude with frequency. Hence some motion of
the poles from their semi-circular distribution is desirable. The choice of the first

-ArgF
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approximation is quite arbitrary and different first approximations will lead to substan-
tially the same end result. The closeness of the first approximation influences the length
of the adjustment process which is the next step in the procedure; good first approxima-

tions decrease the number of adjustment steps required.

3.0 Successive Adjustments

Once the first approximation is chosen, attention is shifted to the problem of deter-
mining the changes in pole and zero positions required to effect the desired changes in
the approximating function. One observes that the number of variable quantities which
may be adjusted is equal to the total number of poles and zeros. In the illustrative exam-
ple above these are three adjustable quantities, o;, o, and w,. In that instance one wishes

2 2

to choose the combination of values for Ac AO’Z, and sz which together change the

1:
characteristics from those of Fig. 9 to characteristics much nearer those of Fig. 8.
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A study of the influence of elementary shifts of the critical frequencies, Aoy by itself,
Ao, by itself and sw, by itself, is an enlightening guide to the choice of the combination.
This fact suggests the study of

9 log |F|’ 9Arg F 9 1og|F1
80’1 301 30’2
etc. since
AC) AO'Z - Aw,
- 9 log F 9 log ¥ 9 log|F|
o o , o
(for small changes) 3 log| F a0, +2 log || AOC. +mg—lﬂ AW, . (18)
80‘1 1 80‘2 2 3w2 2
Similarly,
~ 9 Arg F 9 Arg F 9 Arg F
A Arg F = (for small changes) ——a—o—f‘i—— a0y + ——5-0—%-—— AG, + ——a—u—’g;— Aw, . (19)

Fortunately, the use of the logarithm of F has separated the influence of individual criti-

cal frequencies as indicated by Eq. 2 and one has, for instance

8log|F| _ -9 log|\ - g}
30’1 80'1

(20)

From Eq. 20 it is apparent that the derivative functions can be normalized and presented
in curves just as was done for the logarithm and argument curves in Section 2.2. Fur-
ther discussion of the use of the derivative curves will be given subsequent to the devel-

opment of expressions for the derivative functions.

3.1 Normalization of the Derivative Functions

From the foregoing one appreciates that the functions which it is sufficient for all

cases to consider are:

9 log|F | 9 log|F | 3 log |F_| 3 Arg F 9Arg F dArg F
C Cc r C C and r

90 2 ow ’ a0 ? 00 ? ow 90,

C C r C C r

(see Eqs. 5, 6, 7, 12 and 13). At this point expressions for 9 loglFC |/a o, and 3 Arg Fc/
9 O, will be developed in detail and the expressions for the other derivative functions
(which are developed by similar techniques) will be stated without proof.

InF (\) = In|F ()| +jArg F,(\) . (21)

Since FC is a rational function of \ with real coefficients, for \ = jw,

~11-



ch,x:jm ('”iww
F_(\) F (\) - - |F, (x)lx . =F (\) FC(_X)ijw
In|F, x)lx . =3 InF () FC(-X)|x=jw

(22)

(23)

(24)

71
In IF (jw)| = { -0, + jlo- w )] [—0’ - jlw - wc)][ o +jlwtw )] [-0' - o+ wc)]}
2 2
ln[ +(w—w)][0c+(w+wc)] (26)
9 2 2 2 2
9 In|F | adc[dc+(w_°’c)] o‘ch("H-‘"c)J
00 2 2 2 2
c Z[GC+(w-w)][Gc+(w+w)]
2 2 2 2
_ O'C[0'0+ (w+ wc) ] + o*c[o'c+ (w - wc)]
[0'(2: + (w - wc)z][ci AR )2]
2 O’C{:Oi + wi + wz]
= 2
TN (27)
c
The derivative may be conveniently normalized.
Z()"c o‘c 2 2
— =] +1+ el
91n |FC] w, “c “e
= : (28)
80’C Fc 2
2
“c
20 |fo, 2 2
aln|F,| o, \w/ T'*\%; o)
c 80‘c Fc 2
2
w

C

In terms of the logarithms to the base 10 one has

-12-
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A sketch of w_3 log ch |/80'c as a function of w/wc for various values of the parameter

O'C/wc is given in Fig. 10. A set of accurate charts corresponding to Fig. 10 are given

(-bLoc IFg! Yo 'lg'c =02
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w, DLOGIE,] % 0p as functions ofz— for various values of 'wﬁ

duwe C C

in the appendix. Figure 10 reveals that shifts in the displacement from the imaginary
axis of poles or zeros influence the magnitude of the function most in a frequency range
nearest the critical frequency being shifted. Through use of the charts in the appendix
one can predict accurately the influence of a shift of a critical frequency. Alternately,
one has suitable information for prescribing what kind of shift and how large a shift is
necessary to obtain a required change in the magnitude characteristic.

Through a procedure similar to that presented from Eqs. 21 to 30 one can obtain

1+ 2 ) - &
9 log IFC| ) 2 W, w,

“e T Be, 2305 2 . (31)

F
c
2
w
c
Equation 31 and the corresponding sketch in Fig. 10 indicates the influence on the

-13-



magnitude characteristic of a shift parallel to the imaginary axis of a conjugate pair of
critical frequencies.
The starting point to evaluate 8 Arg F_/90 is again Eq. 21.

InF (}) = 1n ]Fc(x)[ +j Arg F () (32)
If X = jow,
In F (-\) = lanc(x)] - jArg F (\) (33)
and
1 .
lnm = -lanc()\)| + j Arg Fc(x) . (34)
1 Fc()‘)
Arg Fc(x)| R LS c (35)
J A=jw
(jo - o, - ju )jw - o + jw)
1 c c c &
Arg F (X =<1 36
g Fl )‘xzjw Z e - 0, ~ Jo N-jw - o+ juw ) (36)
9 Arg F (o + ju_ - jw)(o. - jo_ - jw)
5| = o 2 1n A T ()| G ) (37)
c c c T I9% T c I
After a straightforward manipulation one has
E)AI‘gFC ij[di-wi+m2:[
55, = > . (38)

(O'i + wi - wz) + 40'(2:(»)2

Through normalizing the frequency with respect to ©, and multiplying by 57.3 so that

the units of Arg Fc are degrees for the curves, one has

o “ 2
© L) -1+l
9 Arg Fc(degrees) w, (wc> ("’c>
@, o =57.3X2 5 (39)
c F
c
A
w
c
Through a similar procedure
w %
9 Arg Fc(degrees) 57.3 x4 ?Jc' “’_c
“e dw B 2 (40)
c F
c
2
w
c
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Figure 11 shows sketches of wc(a Arg Fc/a O'C) and wc(a Arg Fc/a wc) for various values
of the parameter o’c/wc. Figures 10 and 11 give complete information on the influence

on magnitude and phase characteristics for any shifts of a conjugate pair of complex

critical frequencies.

200
dargF.
we doe
0 9 Arg FC
3 Fig. 11 Sketches of v ———5?C——
9 Arg F
. w
and w ———— as functions of —
C ow W
c c
400 —. . c
for various values of;— .
c
- wg DArgF,
duwe

In an analogous manner to that just presénted for conjugate critical frequencies one

can determine the corresponding derivative functions for real critical frequencies.

o, 3log |F,| _ 0 41
3G, Z
2.305 [1 +<_“’_> J
o
r
wC
9 Arg Fr 57.3 -0,
~9y 80‘r - o \2 : (42)
! +<F>
r

Figure 12 presents sketches of —o‘r(a Arg Fr/a O'r) and —o’r(a loglFrl/B O'r). Accurate plots
for computational purposes are given in the appendix for functions corresponding to

Fig. 11 and Fig. 12.
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e _ .
o, —_8_6—1,_ as functions o ~o,
[oX-]
-0, DArgF,
da;
00 0‘5 L‘O I.‘S

——

“or

3.2 Illustration of the First Stage of the Adjustment Procedure

The preliminary step to stating what changes should be made in the pole and zero

positions is the sketching of the derivative functions for the case at hand. A convenient

medium to illustrate the process is the illustrative example of Section 2. 3.

One observes

that the deviation of the magnitude characteristic from the desired is much more serious

than that of the phase characteristic.

Accordingly it is appropriate for the first adjust-

ment to base the choice of changes on the deviation of the magnitude characteristic alone.

Figure 13 shows plots of the desired change in the magnitude characteristic and the de-

rivative functions.

dLOG|F|
o0,

04

peSIRED A L0G |F|

[oX]

On the basis of Fig. 13 one estimates the size changes to be used to

dL06|F|
oo,
-08
dL06 |l
dw,
oo l o0 | w—~
w-- Fig. 13 Derivative curves and de-
sired change in magnitude character-
-08 istic for the example of Fig. 9.

(LEVEL OF A LoG [F|
IS ARBITRARY)
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give the desired changes in the magnitude characteristic. For instance, it is clear that
any positive increment in o will cause an improvement since the first estimate gives
insufficient amplification in the low range. Rough calculations suggest the values A0y =
0.2, A0, = -0.2 and hw, = -0.1. Figure 14 shows the second approximation correspond-

ing to these changes. As long as it is obvious without a more precise method how to

LOG |F| -ArgF

ol 150t ---DESIRED GHARACTERISTICS <
+0. [P~ X APPROXIMATING FUNCTION _.-%

~ P A\ - PLANE
Y »7 -0.7,0766
S ¢ - x
ooo}- 100} N ~
b
~ X
NS
X
I ~
-ol0} e ~o
so} -
- Sy
Ve ~ N
'
-0.20 Pid S
P ~ MAP OF POLES
-0.25 o 1 1 1 1 L
o 0.2 04 06 08 10—

Fig. 14 Second approximation to the characteristics of Fig. 8.

obtain improvement in the characteristics, one continues to use this simple method of
adjustment. Fortunately, for many problems, specifications allow considerable toler-
ance and one arrives at sufficiently close approximations without going to a more ac-
curate method. Actually, as the present example illustrates, the simple procedure care-
fully applied leads to a very nice approximation. After a few more adjustments of the
nature of that illustrated above, one arrives at the characteristics of Fig. 15.

—ArgF
----DESIRED CHARAGTERISTICS
1501 X APPROXIMATING FUNGTION
LOG |F| P
// x
030} § >
~
~ /X
ool ~ P -
- ~ '
020 -~ -
x\</
X,
040 50| RN
shd re PN
2 N
- ¥
0.00 g N
R o s L ) ) ) ~ g MAP OF POLES
o 0.2 04 06 08 e

Fig. 15 Approximation to characteristics of Fig. 8
obtained by the first stage of the adjustment procedure.

The method of adjustment illustrated in the foregoing paragraphs becomes ineffective
in complicated situations. For instance, the deviation of the characteristics at one fre-
quency may indicate one shift of a pole while the deviation at a different frequency may
indicate an entirely different shift. In such a situation it is difficult to prescribe appro-
priate shifts of the critical frequencies. If one tries to prescribe the shifts by the simple
procedure illustrated, he finds himself in the predicament of one trying to solve a set of
simultaneous equations one at a time. Incidentally, this same difficulty is encountered

in solving the approximation problem with an electrolytic tank. A further defect of the
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simple method of adjustment, and with the electrolytic tank as well, lies in the fact that
one stops the procedure when he cannot obtain further improvement. He may be uncer-
tain as to whether or not someone else can obtain a better approximation by stumbling
upon a more appropriate combination of critical-frequency shifts.

At this point a more precise method of adjustment is illustrated which will handle
the difficult cases. Moreover, it gives the designer a very strong signal when he has
arrived at the ""best'' approximation (he will have had to define a criterion for 'best',
however). Finally, it will tell him whether he can substantially improve the approxima-
tion by asking for a different level of magnitude or an added increment of phase shift

which is linear with frequency (different time delay).

3.3 Final Adjustments of the Positions of Poles and Zeros

The problem which must be solved more adequately in the final adjustment of the
position of poles and zeros is the choice of Ag's and Aw's in Eqs. 18 and 19. The means
employed to prescribe the shifts must account for the effect of all shifts simultaneously.

At this point it is helpful to consider the derivative curves and to observe that changes
of 10 to 20 percent in the pole positions cause rather small changes in the derivative.
This fact indicates that in Eqs. 18 and 19 the derivatives may be considered constant for

small changes. Equations 18 and 19

~ 8 log|F| 3 log|F| 9 log |F|
A log [F| = e Ac) + 5o, AT, + 3o, Aw, (18)
~ OArgF 8 Arg F 9 Arg F
ALOGIF| dArgF
a0, do, W
10 K 0 10
% 65 1.0 T1o
W (a)
ALOGIFI dArgF
acrz ao-t
10 100 Fig. 16 Sketches of derivative func-

tions for the pole positions of Fig. 15.

% 05 1.0 % 05 1.0
w— (b) w—
JLOGIFI AargF
dw, W dw,
e 05 1.0 100

(© o 05 10

W
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DagF o oen suggest a mathematically convenient formula-

© tion of the problem of final adjustment which is

OS2 most simply understood by reference to the

problem of Fig. 15. In Fig. 16 are shown plots

Fig. 17 Desired changes in magnitude of the derivative functions corresponding to the
and phase from Fig. 15. critical frequency positions of Fig. 15. Figure
17 shows plots of the desired changes in the magnitude and phase from that illustrated in
Fig. 15. (Note that a constant change in level or a linear change in argument may be
prescribed in addition to the changes of Fig. 17.) The problem of the choice of Ao, Ao,
and Aw, is the choice of these quantities such that, when the functions of (a) of Fig. 16
are multiplied by the proper A0;, those of (b) are multiplied by the proper AO‘Z and those
of (c) are multiplied by the proper bw, and the sums formed in accordance with Egs.

18 and 19, these sums approximate the functions of Fig. 17 in the best possible manner.
Clearly 'the best possible manner' is in general not a perfect fit. One criterion of ''the
best possible manner" is that the integral of the square of the deviation subsequent to the
chosen shifts be a minimum. The method of choosing Ac,, AC, and Aw, for such a cri-
terion is well known. One forms a set of normal orthogonal functions from linear com-
binations of the derivative functions and evaluates the optimum Aoy, a0, and Aw, by the
evaluation of appropriate integrals. However, the formation of the normal orthogonal

functions is so laborious because of the evalua-

3L0GIH %“;’I‘F i tion of the integrals that the method is entirely
o 2 1.0 impractical.

l l I I ] I An alternate method which is based on the
0 -100 same kind of approach but is far simpler is that

of approximating at a set of points rather than at

Q
e
lo
)

3o, 30 ©  every point from w = 0 to w = 1. The labor in-

*° 0 volved in forming the normal orthogonal functions
arises because of the fact that one uses an infi-~
° % Y nite set of samples to get an average. It is easy

O ()
to see by consideration of Figs. 16 and 17 that,

JLOGIFI 3ArgF
dun w= due if one finds the sums of Eqs. 18 and 19 matching
° * well with Fig. 17 at five or six points on the
range from w = 0 to w = 1, the match will be good
" @ P @~  elsewhere as the derivative functions and the de-
sired deviations are smooth. The labor involved
in matching at eleven points (six on the magnitude
ﬁ;“"' DESIRED ﬁA'”DES.RED curve and five on the phase curve) is very much
ol I o lo.  reduced. To formulate the procedure of solution
-0.01 (@ suppose a set of points have been chosen from

Fig. 18 Values of functions of Figs. the range w = 0 to | and the values of the func-

16 and 17 at selected matching points. tions of Figs. 16 and 17 are indicated at those
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points as shown in Fig. 18. One is under no compulsion to choose the same matching
frequencies for the magnitude and argument curves though he is choosing Acy, AC, and
Aw, which apply to both at the same time. Ordinarily it is expedient to choose matching
frequencies where the worst deviations occur or where the derivative curves are large.
In any event one guides the choice of matching frequencies to fit the needs of the particu-
lar case.

The ordinates of Fig. 18 are of two different kinds; some are in terms of logarithms
to the base 10 and some are in terms of degrees. Before proceeding one must put all of
the ordinates on a common basis. In the problem at hand a deviation of 0. 05 in loglF[ .
will be said to be as serious as a deviation of 10 degrees in the argument. Accordingly
all quantities referring to arguments should be divided by 200 to have the quantities on a
uniform basis. One appreciates at this point that if the magnitude or phase at a particu-
lar frequency is more important than others it may be given a heavier weight. If in Fig.
18 the phase shift at w = 1 is to be more closely controlled than at other frequencies the
ordinates of argument curves there might be divided by 100 instead of 200, for instance.

A compact notation for the functions of Fig. 18 (after weighting) is vector notation.
The ordinates of the functions define vectors of eleven dimensions. Call FD a vector in
11-space associated with the weighted ordinates of (d), Fo’l a vector in 11-space asso-
ciated with the ordinates of (a), F 4, a vector associated with (b) and F , & vector asso-
ciated with (c). For the situation illustrated in Fig. 18, one has the following vectors.

FD = +0.010, -0.010, +0.004, +0.008, -0.006, -0.006, +0.030, +0.024, -0.004, -0.027, -0.027

FO’l = +1.08, +0.87, +0.54, +0.33, +0.22, +0.15, ~-0.29, -0.37, -0.33, -0.29, -0.25 (43)
43

FO‘Z = +0.29, +0.33, +0.40, +0.56, +0.76, +0.98, +0.059, +0.11, +0.17, +0.13, -0.055

sz = -0.69, -0.69, -0.71, -0.73, -0.64, -0.33, +0.065, +0.15, +0.26, +0.44, +0.60

The problem to be solved, expressed in vector terminology, is to select Acrl, Ao‘2 and

sz such that

FDg LG F 4+ A0, F, + Aw, F . (44)
The A's found to solve the problem stated in vector terms are appropriate to be used as
shifts of pole positions. Clearly the approximation can not be made exact in the general
case when the number of dimensions is greater than the number of adjustable quantities
as is the case here, eleven being larger than three. Accordingly, one must establish a
measure of approximation and on the basis of it choose the A's. A mathematically con-
venient and physically practical approximation is that in which the sum of squares of
deviations at the points considered is minimized. In vector terms the A's are chosen

such that
[FD - A0 F g + A0, F , + Aw, sz] . [Same] is minimized. (45)

The solution for the A's of Eq. 44 is most conveniently done by choosing a set of

normal orthogonal vectors which are linearly dependent with Fc'l’ Fo,2 and sz and first
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approximating FD with them. Finally one is led to the A's of Eq. 44. A simple set of

normal orthogonal vectors is:

F

a . F

nl 11 ol
Fra 21 Fq t 3, Fp (46)
Fpy =83 Fgp v a5 Fptass Fp
The a's are chosen to fulfill the following relationships:
Fop-Fop =1
F, -F,=0 F,.F,=1 (47)
Fnl’Fn3=O FnZ'Fn3=O Fn3'Fn3=l

The solution of the equations above, or similar equations for a case of any number

of poles and zeros, is fortunately simple. The first row of Eqs. 47 involves only ar,

and one solves for a,. first. The second row (using the numerical values of a“) in-

11

volves a,, and ass- The third row involves (using numerical values for a a, . and

117 721

and a It is simplest to solve the equations from top to bottom. If one

32) 8310 23, 33’
considers any row of equations of Eqs. 47, he finds that only the last equation is quadra-
tic. The equations preceding it in the row are linear. Further they can be solved one at
a time. For the third row for instance, the first and second equations are of the form
My d3) ¥ M85, v My3355 =0
(48)
Mp2832 T ™33, 7
Hence one can solve for a,, in terms of az; and then for aj, in terms of azj- Finally
the third equation in the row is quadratic but is in terms of ass only. By considering the
equations in the proper order one completely avoids the solution of general simultaneous
equations.
The simplicity indicated above applies to the determination of orthogonal vectors re-
gardless of the number. The degeneracy of the equations of the form of Eq. 48 arises
from the special manner in which the orthogonal vectors are obtained.

For the illustrative example at hand, one has the following:

a;; = 0.5902
ay, = -0.3608 a,, =0.748 . (49)
az; = 1.063 as, = 0.6356 azy = 1.463
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F_, = +0.6374, +0.5135, +0.3187, +0.1948, +0.1298, +0.0885, -0.1712, -0.2184, ~0.1948, -0.1712, -0.1476
F, = -0.1144, -0.0200, +0.1335, +0.3177, +0.5010, +0.6870, +0.1331, +0.1958, +0.2248, +0.1862, +0.0355 [ (50)
F,_, = +0.3228, +0.1250, -0.2103, -0.3609, -0.2191, +0.2997, -0.1756, -0.1038, +0.1376, +0.4180, +0.5768
Once the normal orthogonal vectors are selected, one approximates FD in terms of
them.
2c,F . +c +c,F 51
Fp=Ee Pt Fnt 3ty (51)
This approximation involves choice of the c's such that
- {c + c +c,F . ame 52
[FD ( anl ZFnZ 3 n3):] [S ] (52)

is a minimum. This problem is particularly easy to solve since the vectors used are

an orthogonal set. Once the c's of Eq. 51 are selected one can obtain directly to the

optimum values for Ag,, AG, and Aw,- Considering Quantity 52 and observing the ortho-
2

1’ 2
gonality of the vectors one has

) 2 2
[ ][ ]—FD.FD-chFnl.FD+c1-2can2.FD+cZ
- 2¢c,F F +c‘2 (53)
3Fp3 - Fpt e

To minimize Quantity 52 one determines the c's by setting the partial derivatives with

respect to g, 0, and w, of Eq. 53 equal to zero. This step gives

9 i i

“‘“acl[ ][ ]—ZCI-ZFnl.FD—O

2 =2c,-2F . Fn =0 (54)
8(:Z : 2 n2 " "D )

2 =2c,-2F , . Fy = 0

3¢, : 37 2Fp3 - Fp

One observes that the second derivatives of Eqs. 54 with respect to the c's give 2 and

accordingly c's chosen to satisfy Eqs. 54 give a minimum of Quantity 52.

1]

Consequently,

(55)

Finally, Eqs. 55 lead to the optimum pole shifts indicated in Eq. 56.
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AO'l = Cla11 + cza + 033.31
ac, = Cya,, T Caas, (56)
bw, = 3233
In connection with the illustrative example being considered one has
¢, = 0.00175, A(J'1 = -0.039, 0’1 = -0.439
c, = 0.00086, Ao, = -0.024, , = -0.474 (57)
c3 = 0.0374, Amz = -0. 055, w, = 1.011

A plot of the characteristics of the

LOGIFI

-Arg

F

approximating function given by Eq. 57 is a part of

Fig. 19. One can see by comparison
of the 0's and the x's how the final

0400
160} adjustment has changed the characteris-
0350} & tics. Quantity 52 changed from 0.0033
N ; y
1ot \\ ,’,’é to 0.0021. In this case the improvement
/
0300 @ /, . .
20h- \\ Appgyo)g‘rgnao /// X CHAR. OF FIG. IS has been qu1te small; this was to be ex-~
q \ AN é . . .
02sol N N / \\ A o crar conespoNo: pected since the example is simple and
\@ h¢ / i ; . .
wool- ¢ \ / the first stage of adjustment is very ef-
\ N A GHAR. GORRESPOND- . L
0200 AN N ING TO £@S. 72 fective in simple cases. However, one
801 N ,>
o N D LINES ARE CHAR- ini it is i -
ansol- .~ 7\ DOTTED LINES ARE O now can state definitely that it is impos
. ))( AN APPROXIMATED. . . - .
6ol & Na sible to obtain a better approximation to
,/ \ \ . . :
+0100}- 7 2 N the "o'" characteristics of Fig. 19 by
g \ \ . X
4ok A// S N further shifts of the poles. It is neces-
0.050 \ A
rooser / %\ sary to recall that the measure of quali-
20
Y . .
+°‘0°0t N ty of the approximations has been chosen
/ . . . .
-0025 o L l L L h and the approximation arrived at is best
0 0.2 04 0.6 08 l‘bo

Dif-
ferent weightings of magnitude and phase

in the sense of the chosen measure.
Fig. 19 Characteristics of approximating
functions. characteristics would have resulted in

somewhat different approximations.

In cases where the first stage of approximation gives a far less satisfactory result
than that of the accompanying illustrative example, it may be necessary to use more than
one adjustment in the final state. This will be necessary only if the shifts required are
so large that the derivative functions change a large amount. A simple method is given
presently to compensate for changes in the derivative functions for large shifts. However,
the compensation is not exact and one may wish to carry through the final stage of the
adjustment procedure again with the correct values of the derivative functions to obtain

the optimum result.
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3.4 Further Topics in Connection with the Final Adjustment Procedure

Further useful conclusions can be drawn from the results presented above. The
measure of seriousness of the deviations is B, - Fy (or Quantity 52). As Fp - Fp (or
Quantity 52) is decreased the quality of the approximation is increased. For the optimum
choice of ¢'s according to Eq. 55 one sees from Eq. 53 that the corresponding sum of
deviations squared is reduced by the sum of the c¢'s squared.

At times it may not be desirable to make the total shift which is specified by the c's.
In the event that a shift is used which is k times the optimum shift one has the following

sum of squares of deviations. (See Eqs. 53 and 55.)

g = ke), c,p=ke,, etc. (58)

- 2 2 2
[ ][ ]'FD'FD'chanl'FD+°1f‘2°2an2'FD+°2f ZeggF 3 - Fp t C3p

_ 2 22 2 22 2 2 2
—FD. FD-2c1k+k 01-2c2k+k 02—2c3k+k 3
3
2 2
=FD.FD—(2k-k)Zci . (59)
i=1

The second part of the last equality in Eq. 59 indicates the change in the square of devia-
tions caused by the shift in poles. Consideration of Eq. 59 reveals that the maximum
improvement occurs for k = I as it should. Any value of k between zero and two results

in improvement. Larger values of k increase the square of deviations.

3.41 Compensation for Changes in the Derivative Functions

When one chooses the c's of Eq. 51, he assumes the F's are constant vectors. How-
ever when the c's lead to large changes in the pole or zero positions, one may find that

the change in the approximation is not represented by the vector

chnl-l- cZFnZ + ... canm

but is instead represented by

cl(Fnl + AFnl) + CZ(FHZ + AFnZ) +...c (F

m + Aan)

nm

since the value of the derivative functions has changed. If this is the case, the c's
chosen do not lead to the best approximation and one needs to choose slightly different
values. The problem then is to change the values of c to compensate for the change in

the values of the F n's. This means that one should cbnsider

(°1+ Acl)(Fnl + AFnl) + (c2 + Acz)(Fn2+AFn2) + ... (cm + Acm)(an +Aan): Fy
(60)
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In Eq. 60 F;+ aF
positions indicated by ci's. Appropriate values of the Aci's may be obtained by neglecting

is the mean value of the vector ¥ ni 28 the poles are shifted to the

the second order terms in Eq. 60. Accordingly,
m m

Fp - Z ¢iFni - Z ciaFn - (61)
i=1 i=1

Because of the orthogonality of the F n's one can write immediately the appropriate values

I

Achnl + ,:\.C?_FnZ + ... ACanm

of Ac.,
J
m
ch = Fnj - Z c; AF ;) - (62)
i=1
One recognizes that
m
) e ATy
i=1

is the difference between the adjustment in characteristic actually obtained and that which
would be obtained if the derivatives were constant. In difficult cases the compensation
procedure just outlined reduces the number of stages of the final adjustment procedure

and proportionately reduces the computational labor.

3.42 Choice of Level of Magnitude and Total Phase Shift for

Best Approximation

In the choice of the desired changes in the magnitude and phase indicated in Fig. 17
an additional constant increase or decrease in level of magnitude or an added change in
the phase shift which is linear with frequency may be applied without violating the re-
quirements being approximated (Fig. 8). To approximate a different level of magnitude
or a different linear phase shift is appropriate if these changed characteristics can be
better approximated. The implicit relation between magnitude and phase actually enters
this situation. For a prescribed level of magnitude (Fig. 8) over the frequency range of
interest there is a most compatible linear phase shift over that range which can be best
approximated.

To investigate the question of added magnitude it is appropriate to define Fm’ a vec-
tor which added to FD gives a unit added constant change in magnitude. For the illustra-
tive example,

¥ _=1,1,1,1,11,0, 0, 0, 0, 0. (63)
Fp is a vector which added to FD gives a unit added linear phase shift.

Fp=0, 0, 0, 0, 0, O, 0.2, 0.4, 0.6, 0.8, 1.0 . (64)
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The problem is to determine how much magnitude and how much phase shift to add. One
should ask for the vector change FD + kmFm + kap in which the k's are chosen con-
stants to make the best approximation possible. To study this problem it is first desir-

able to recognize that FIn and F_ are best approximated by

p
F . EmF, ,+m,F ,+mF ., (65)
and
Fp = pF P, F o, tP3F (66)
where
m =Fy - Fy pp=Fy - Fp
m, =F ,.F_ Py = Fpp - Fpb - (67)
msz = Fn3 ' Fm b3 = Fn3 Fp
For the present illustrative example
m; =+1.88 p = -0.523
m, = +1.50 p, =+0.427 . (68)
m, = -0.0428 py = +0.917
It is simple to verify that FD + kmFm + kap is best approximated by
3
Z (ci +k m, + kppi) Foi
i=1
For any choice of km and kp the sum of deviations squared (Ds) is
3
D, = Fp +k F_+ kap - Z (c; +k m; + kppi) Foil - [:Same] . (69)
i=1

The variables in the above expression are km and kp. Equation 69 contains a great deal
of information. One can say, by considering it, how changes in magnitude and phase shift

influence the quality of the approximation. For the illustrative example,

aDb
s = -
—a—E-I-l-; =0.375 km + 0.782 kp 0.00722 (70)
aDs
~a—lz;—=0.782. km+l.806 kp+ 0.0106 . (71)

By setting Eqs. 70 and 71 to zero and solving one finds the optimum km and kp. This
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gives km = 0.33 and kp = -0.15. However, these changes lead to shifts of the pole posi-
tions which are too great for the derivative functions to be approximately constant. If
one used these shifts he would find the errors introduced by the changes in the derivative
functions would consume the advantage indicated and it is necessary to proceed to the op-
timum by smaller steps. Less drastic changes may be made on the basis of Eqs. 70 and
71. One can find the most desirable changes in km for any specified change in kp. As
an example if one sets kp = -0.025, he finds that the best km is 0.0715. This corre-
sponds to the choice of poles indicated below.

O’l = ~-0.414
o, = -0.418 (72)
wy = +0.973

By integration of Eqs. 70 and 71 over the appropriate ranges one would predict the im-
provement in DS to be about 0.0006. The characteristic corresponding to Eq. 72 is
shown by A's in Fig. 19. The sum of squares of deviations for this choice is 0.0018 ac-
cording to the calculation of the characteristics of Fig. 19 from the normalized curves
in the appendix. The correlation between predicted and calculated deviations cannot be
too great since small inaccuracies in reading the curves substantially influence the devia-
tions which are themselves small.

The result obtained in Fig. 19 is not the absolute optimum. One can proceed to the
optimum by further steps of the kind just completed, using the accurate values of the
derivative functions for the pole positions of Eq. 72. In a practical problem one must
balance the need for precision in the result against the labor involved in obtaining the re-
sult. If one is unable to obtain good elements whose behavior is close to ideal, it is as
needless to carry the approximation problem to the finest point as it is to specify the
dimensions of a house to thousandths of inches. As has been pointed out previously, the
first stage of the adjustment procedure is sufficient for most problems; however, when
one needs to obtain precise results, the method given is applicable as far as one needs
to go.
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Appendix

Two rational functions are considered.

(&) F,=(x- )=
)‘c = O'C + jwc
(b) F.=\-o0,

The functions 1og10’ Fc‘ , 10310| Frl , Arg F_, and Arg F, (normal-
ized) are shown in Set 3 and Set 4 plotted as a function of A = jw. In
connection with the function Fc’ families of curves are given for a
range of values of the parameter -O"C/wc. All logarithms are to the
base 10, and all arguments are expressed in degrees.

The rates of change of the functions of Set 3 and Set 4 with shifts
in the zero positions of F,or F are given in Set 1 and Set 2.
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Set 2

9 Arg FC 9 Arg F,
w, —_8_6':— and W, —370— as functions of

w
o for a range of values
C

-0
of the parameter TC .
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Set 3

%] -0,
Log10 ——-(?f— as a function ofz— for a range of values of the parameter Tc .
w c c
c
F

as a function of -_—‘g—.—
r

r
Log10 5';




—~ Lond e Lo -~ — o~ hond
-
) 2] ~ © ['e) ) o - Q
a (o] ) o (o] o S o¢2
-3 & ~— ~ -~ P’} pd n
: ™ . T m : £ 1o 2 T Mo
| : i T i i i 55 2as: t T f 7 HH
,_ C F : FH t : w = T Hif i H e
i LT ; i ; T ke / ! HEE
3 i : N 355 g g2t . A
i : e } ;
b i : H it iE ! ] :
& F 2 18 328 8281 et T T ans auay JRY 4S8 & H H i}
: o B - r H m e
£ H T | i : f E e
BIEA B 2 s e i / :
i o ] i 3 ja: T AT A% 8t & m
ge! i Eay T HE T o m eeldzs:
HEh i i s g L iiv g FPbEE P
H Feidid .
1 r : T 58 i8S H S
HHE Gl B A53 1N i B a2 358 R0 Sis T B i 3
HiiEea s i ffii il 1§ a7 il
R e R i “ I J S
TEEHERT : : b : I S
Y AgT e EE i HE 5 3E i HH
e Sad £R0% REL sk - 53 & deinit
S ikt oy e E iE B an A A i H Hm
HE i it t : § i - (@]
T i - 53 i s
b 3 i i e J i i
EE SE1 (ieh TS, B8 EELESHLIEEL R A8 :
: + ¥ 2 i3 P
i ; i £ i i 19l
i s e Hi iREE
Hi ied s et & 50 5 ]
T L + t : i i
i3 aati ol H : : ; :
0 e s 1 G R RE : i i H i
iR B i 1 il wiill B H: i
i 82t 5 1 i i if21 158 e & SRR
i i SR e S i e
T T T H i 3 T
2 G : t i e 1 | i
i JEE4 (154 NS (SEE ISE BHRY iR ek St : T HES
; ! 23 3856 E o di : & H 53 s aseint H
i + ! if: Hi TR 2 53 I SRR 1
it 2 ! i 2t i S 513 A O e i § i R
i i 2 i i i ! i : Mm S - —_
: N ; Sias i £ e i H 55
il R BE iy st " i i i Fssesimenatadt E (@]
AU : e R R R L
e H S 131 401, IED (0 104 n ek icean 43 i BT £ t i
f : £ FEE B BRI i ks t
B 5 B i = : 2 : H s HiE
A 1 il ! : = R i i
: HE S 5155 6 i i . i
pe: 323 i ; L :
. T i i R :
B k i Ee siaHaiast asesis
- i i i I
T ama, 2 inas anawa o: T
ik gl i IERRIE G S i
1 3 f et i G i i “ g :
" = = 1

-0.10f




0.4)
Q3)

2)
(e2))]

i i
i e i ; i ki ; i i i
f i) s i £ 2 T H e H tr £ i3 H
EEE R s i il i S i :
e i i m e s T
i i Ww wm .mﬁn‘ HE: e P H H B i1 asifies 355 7 HiH m. : 1 i t f}
B B £ it SEIE HIEG DsRER: I8 HEHE i 51t ! i igi i 5: B
1 da o4 SAEEE ERE cintal i T | B k S A geiseeac g Y i
i 228 18 T I (.” F i #HH T T + ﬁ o
+ Seis: fkcd 150 e | £54 I A HE i il : : i
ﬁ e £ s 881 iRt , 2 £as i1ad Fi 28 41 . g S2ae? 58 AL 4 : L i W : 1283
it i HHEE t g5 jistiE oo, H e EEEAERER H il L E i o
it , i ! 3t & i i HHLAELE H i 288 44 110", i i : i
i £ i i 1 i H fr :._. A A _HI aEii T m
H # i seeq | : £ i e e i 7 e :
SRS A e i i B il i i £
Bl Bm R i S S S e ; et i i
i ] i S diiii AT i ; gt # 1 G P
H SSaaZin: apzsegans sazatapaes ez T A it P i ~ T 0.
| e e e e e :
A B3k e ek 4 “ri”“. =i i ! i
i S A ; i i , o
B i ; T ; , U_U
i ( e : Bl W
hi t T A A e - - HEIE f
fft \ i SEREEST ife R A e e R e e H BIE HiH H ~~
i £ i i it AL i T [JREiEs : o
t e e gt A h i “ FHE ase:
b = H mlw : i i, 33" 41 rH + siss i i it W W __
il AR BT A A A A t SE R e e ! H
] i st fiALA / i SRl 4 _ | i @
‘ Vi e e ,«, °
i i fiy ErAAPET e i : o
gL i / = j : e
pp i ; m s + = &
iy i : S
e R s e A ; i : :
HFAE A Hif : i s
f .5 i HiEE T +
: 'S 25 228 4 B iRtds e o f =] %
S8z e s ; g E
) o 5 o @
©¢ 99 ? .




0.l

0.08

0.06
004
0.02

= a © &
= o d
= & O [e)
e 1 S T : T l\; — Q
i S o ! i i s i
i it T 5 H = : -
! i L
tl Hi T T It ;. 8 23 - o
s ek i i i Sans T
i : HH HE ik i i
i e i fiims _ ¥
: it TR Y i g , _ g
H gl A , « m 5l Y
, ! ! { | AR N O
i MH ek R £200 = i ! i
e s i i i T H Sy i i dai
il B LT i e i) Baad T B e {Eki i B
S i i s
R i R SR 5 HEELE L
HH it 55 w fEis St X : t i i
e Hi R F . st JERt: o
T B E t FHE
s i A T ] i i 3
i 5 : ®
§ ; o= 3R £2 i i (o]
i 4N end shak d2c t a82 ia8E i -
: it i =4 ; i + : mnm
: i i i H I dul
T t 415y iES i HHE A U_
m,m T ‘:l ! T 1+ % a e i u.mm H HEL %
S i chig _ ] i i : i
Hrfhn i i S it | HHE b 3 5 m il it ¥
T , _ i j e dllpmis N
B w : L ! i ! : ] S
i il : X | A il s bt S i PRI
e i £ ! i i i g i il : i e i i
i , i , i i
i ] ¥ | : i i
i & i y t ; i e e
S i 1 i T SEaE
H : i ! i 1 i i e e S e ] i A i e mm
: St S &) B t i RS = : 18 5 : AL e
i T i s i & m,a H 5 i i H TR HifH] ©
A L & g i : L S
& i E T il i
i i ot
T ! 3 : § i} i ik i
H o i i i g : i
B i i H i ¥ i 2
e ) O
) - Q [ (&)
o




086

S

-o70}

-075§:

st

-0.85%

-115
5

-l.2

-1.25

-1.30

-1.35

-090 =
X T
e
!
if
Aok

~140¢

09

0.95

sle

1.05

LIS



1.5

-05%

-05

-060}

-Q65|

-070F

4%
£ 7
g T
ENCRUINGN mm
v n w
N
H , |
MR ‘, 5 w—w
]
o IRa T |
; - it
L :
T ik Mn ; ”_ﬂ”“
. i
& .t
i ,
i i EL | ,.
22 a2z W _mm W 2 3 mmwmm il n :.
- — - m o 3 “1 ﬂ :
g s s§ 4§ 38 8 ;




(o4)
(03)
0.2)
(©.)
©.0)

(0.7)
(0.6)

(1.6)
(L.5)
A (1.4)
(1.3)
(L2)

1.5

.4

1.3

1.2

i i i i ) ™
s as o d i 3 g t i s kit 5 TR i i X i .mm
et 3 : i e t X S : :
5 s - i i £ SRR i
A £ ﬂ_wm x f i e NN N 3 i i
£ ¢ ; E sE L HH i ; NN R ;
L SR i £ i it s htR s toh o ! HIREINEIN R i, BT o
i 1 \ + - AR ; : : SN i o i
4 B S S L i HE HREEE .mu BN ; s 1o 5 N w S
: H % i 7 : i i S gt i i
- ARk ! : : S B iR : X i E
T _. AR H 1 E : F £, o T :4“ B 3 1 i RN t X m ? 3
FHEH O e fE R i R i 3 i X b e HENT N PR NN i t
f H R A H
T i HE T H f 3115 £ t 2 s HN AL
THH e iy : s, TR Tazs ez
: i Yl LA BT : e i N NIRRT i :
£ H 5415 i i U e t iy H e N £ f NN R s
{ ! ; \ i h SR E 2 ik, ‘R R & ._
YT T 54 13 EENETINT P CH i T |
SEaagiqAeass HEET 3 i H 1 HNH R : it 3 H i t i B
i : L 425, U 8 B s R e £ i ; I
e s aies - : £ R St kL t £ i i : R} s
st o 5 ! Pk i EENEREER i T £ i it NEE : i S,
TEEETETER £ =t A | i i e e T : =RE + FRERT BRI SRR e
L e 4 i ; Beslecai ) _ , X } N
EiE iR s a1 e i TR : L ] ; o ! ; } H i X
it i iseeciii S B S s PRV i X
£ H i i HENis I Y ISV e T I K N
tateeRyiHiese e : Einni | \ ! ikt ) Tl 2
il i i = i T i £ HERHEGH H
faasseashajgasanas suzss puks T Sies: ; I S F 1 3 : H
e t B t Y ; - 5 £
H ..: ,+TT 7 TR £ R 1 §1i : A i A H N ”mw ”(“ £ T
F R it i ook R i i H RN
el 55 254 TR 1 Mg, TR ; £
eSSy IEREEEEE T | R i3 NN HINEEN RN RS
‘ ety ncad tese o i 5L 558, Fh i R IR L : Sisataae iod i N
H 53 il HE A P R H E + He 5882 - PR N R
{Bh S LRREEEEE S \ i i ATHRL SRRt R VBRI LECE SRS ERA AL U RS E i i = N
I HHHH N aE b o E : 1 B\ 1 T 1} 1 i 1 8 eanm i
‘%H ”M ‘.HAH“H‘L EeH HH t 81 ta e Een o AR it e S5 e V21 ‘B oa raush ug JT; i ot it eI T T T yx z i
R t a0 A, ; i (I : i ‘anl HXE ! Eit Sei toatet,
e T LR i 6L i i T T R I i N e =h
T ke BE 18 A ees ek t SEEEEd L veea G i A i i
T = EASEL FIEL R £5 TR O R R SR a5, 352 i Vel dais aiat S t R T o HEERH
ik : , T R R v : ; \
T e e : ik gl : R : I i VN R
b t Y S5 fesn cnsiSams e YR ERS WER v siom S o S en R sass o H T
IRt s dithnsas pptunanescosensuteacenns S LA Si0k dass gl g ie 1 HEATHTA i
TR T et T } iS4 S i s seE ; B S R s i
i T HH Ll i it i B ‘m\ w : o e il i i
i L R FLE | ey m
H TS HEREE Y e 0 HE ; ERETi sanaees: {
E S iR i Bh : il : 2 -
f i it HE i !
B ; o i | TR :
& i 1 i L
£ i i ! (hiER e
E i N - i X
it i A i | H
e L, (((((( ,,.w. Bl it i i H e
ﬁ E i i T i f ! t
I = ! ] R {
i k! £} 4 %j} 1  {RRERS t
i ” W FH T Nl | ik o
i b i T S RiliRES SN R Gl Vi e LY
i £=451 iR tescaat RUIEE o o \
- ! H R, i e g i, Rl e s I SR E N
,ﬁ, s 55 s et i R i i : fEdEs ik
HE X 2 i ..ﬂ it t it
it T s i il
b i : HAEE i st e,
& i | i d




(LO)
(0.9)
{0.8)
(0.7)

0.1)

20

1.9

.8

L7

.6

o7

0.65k:+ 7

0.60

0.50

0.45

0.35¢:

0.30

0.25

0.20

0.15

- —~
Lol Lond
g 0o T M
— = o~ > - e
il 1 f A N S Lol L : R E T E ! FE : :
f2i iteengt : 5 f HAE d t EafLisE asi R i BT t
} HYET o it t FRE T HT i { HEH t
, tass B E i i i i £ : T E T T
- il XA P f + : - F ;
I ; t + = i : = £ L i
i {3, 15e20s 1K1 £ samcadi tashis i 5L HEEEML, A ! TR 5 it i s f5s rezpa e ! i e
BT o R ! RHENTR | i : T T it H
i SN T s HE) INiH [ NN il i ] R il i £
352, Saagad vy frss it e, Gl E8 SR EEas qaARl\ esd o caa, sasid 1 £ RRmnE b= Bhihkn i T
AL ' | HIN R R : S di i .»,+“.n.u+ i i e e e e i i
S s e “ ikt it ik RN NN FrE Eca oceacacs : L E
S5 SR T T SHk = e S s e e i
E i i e A AR gt i ai Zh T SRR RN S i i ! 4 e e £
554 t2seaa HEH G i £ o T HE e ER, iR Ia ) Vs ciied St e ity : : S T e t 5
f N TR SHAHH TN [ ENE N TR iz T i HHETH H
sE3zisa ) N TINGERNE £y NHIT T ERR TR R fisss it sy e oy Rt f
i it Sace s il e o i i N AN T NN \ ; e = R T i Hr i
; i i i i i + ; HNEENT NERD e T i i :
; il : N Eh AT ‘it \ IV ERTERIR ) i : izt :
T J.IH a B ... 3 1 _+ x s fEFysaddasant. dipqa Eotces Vad i T i i 1 it tLens i lw]}...y e333sipas aaal IiH T i
it} 0] ; YRR L] TN TRTY T : : t
2 5 23300 ‘ Seas, sosndih aa s, samete Wl : fR4ci : S ; i 2 EeiLe
i ; ik e e L i HiE i i i t iEdi s i T
i i} siEe Lk} Tt = il i * T ] IR Er T it} : ; RS i
it i 3. HH B 255801 0 8. } i SEl asr e FHHTRE R Haaees
: I I IR N TN R i £
§ IR il el oh gt TR i : T i ! 38T haach, R it GG N il : ? : i
TR HHb fsszcy St N : N 85
i cessh. il AR L HEL R s i Tk Nk NN H
t : : 5 TRCTEN : ; H
: i t it i L e £ ] ek NONREHI] feseis :
38 pasezaznad iEERARREE, [Jics samsist a2 3, Sgistes SEEbtE Tnsien oetED, tanctasi ciuh] a2 i HH EEE s speasa
1 TR B H gease, LEERRES ada sl H a: !
H o E HREEHN il i : t 1 F +
SHHEE ! R i - 1 iek sased il i tescas ] + it |
B v s G e Wi S S e AR i . _ L
H T T : T 1l S5 SR TN + t T 1 H
N i & i 4 SN
| iiE Yl A ol £ CEONL T i e X - A i
i it SH I : T T ; E
! 55 gesc H £ He R IR A : e o T
it shsares e - T : ER A TN TR RN :
{hi - it et ol o 2iiEE senesat Caes: i SRR R asttan TE panna VAEE By vinnea 1R R MRNES L venetat FH HEHENH T N !
Hi Ee 4 ! HTH T i R s R R NG
it i i | Gl R TN RS it 2 IR i
L 4 M 8 1EsE EERE H 2 i s1ed !
H i 1 { FHR t BEnsas:
A HREE ] } g o t ik
5 sl i E8s: 3 i PN SN ES3Ese dassa aac
yids: 2 | 35: 5558241 531 : R ;
: 1 I i NP ; ! 1 i 3
i ShEt i e, MR e £ 3 igess ot ik L
N ,« i TR 1 i t T H
i iR i i i e NN 1 i i i :
& i ; i : , £ 24 IR 3
T T T jER] anssaas 4 1 N HH
e i e L s S : & = : i
i : P : i 5 i i i HIE i KN H
- R I T i X + SR Sk, CEeeatSEE Sid s ns e Ed i ataies : e e s + t
_ L s ddsitens 1 H o o + T i3 b
LT % ! S " i + + HE i i
i Sedses, SRR S e HE N AR R R N TRTHEER X it i
o t ases ) T T H T T mmxu mnumL 8
et T R e ! EHEG f i i
oV x HHE HHHNE +
i, i ; i N H £ £ NG H Hi
: ,_ : i i B e g S S S 3 ;
1 . i il s { T THH Hisiins SERERL: 8358, 258 o t o i (ym H
Sin f s H T H E mm#m %u £ H £ H H m FHH A H
T e X i 3 i f i f
SSesHia BN 2 RS HEk B HEG . : 2
Eif) Heee et et HAEH o £35S NERfaiad ntRea ! it A Mn B w. ih 2 2 H
i X SR R LR i H i = m iif : 3
8 et : R H i i

1.5

2]
008




i _m _m g “ _ <
: H : i
e i
1
|
: HiH i T
N £ : + it ; f Hedi
:m T T aas s
B i R : e
i ar m £ + ”.un aat
Y ; it : E
% i i ;
HHT 5 s i
S R EE S : : i
L Lt X T i ; : i 21 fi: n
i 3 ] i i ! e o
L SR HiH : 1 t : T
FH e HE : : o o b
i TS 3 H : I + TR 1+
N 1 H ot g T
o LR - : jrifanaid : i :
i 4 i s e e 3
55 e ! i { i i i 7 ;
i T N TR i ; - t
Hds R H : = +
e e et e i |
: if M !
! 1 i ¥ 3t
i HIN T : Q
il A T | i3 i £2ii T
s : . S P o s ; B H £
i : : i ; SRS i m i
5 t = 7 : f =i SEEged
: ; N i t T - i H
i : ; i
e ; ; - AL £
1 1 b; 1 =% ERERE Rnnws B o 1 IBRS S nuni:
i ; i i i RS |
B i T - DTS Siisiscias
| : s , It r
i bl TS A T 1] T
I TR N i i it : : i
! iR S T : ©
£ : e e i - i e
i ! U 5 4 N
: 5 i t i e
EE: - fRRE sy =2 ees) 1 e H
- s 5 L B fetics
i) i o i TR i
i H bt § 128 : £
T i SRl L
i 1 Eaitin T L A
i f £ £ : S e
L PR ] ; £
e ;i : S -
H ; it i H b i
£ = : Y 5 i
pH : T i i 25 1 ;: S5aant i o
; : i 1 e i i i G

.20

0.70}:

GR

0

0.50

o481




v v
o F 5 " Siststatesates e 4 :
3 T : inas H E and e as u
HEHHEE tH Ht i e i
3 n H H H H o
i i i b
T
£ H £ ! H H
o 38 Frr HHH H TR
i i SIS
E i A2, HH : . HHH t THIHH o
] T i SHEH 0
] : 2 i e THEEHHETH
2 T +H FHT
HHH 5t f i it
SRS £ i i i
i i i i e
il f i S i Hh SeEe s el i
= Al = . i
HH 1% F : 1 H s e
THER T HHE HE S e 5 t u,ﬂm
T T frt X, tH 8 + i tH ~
il HIH ! TR T i £ f £ i ¥ A
il e S ifidas : : ;i it
E B S iR e i i . i
Bh T aEseths. §8E: 5 1 £ HH HHHE
i i HHES i3 1 I8 +H HH
i i £ : 2258 SAE et il FEEEEEE HH
# 5 1 i
; — S i 5Kl 3
T H HF T F 1 i HHHH HHH H 2! N H mw mm H w“%
it i B il 4 I : s
m“ i 3| : e s N T : SRR it
Hl FE NG 5
ibal 2" N saeddsl;
S I H i a5 Ees ik N Q 53 Ex2unsat, FEEEED o.
T S S : 7 H ©
aa i f Hi m L B xvuﬂr JH yna)
8t Hit e 151 .wnvw Hi
Hi] i i i Hi HH i iest i o st UEISHIE T
£ : : EE : e k
o £ L T FH Y 1 : RRLELER
T = 2 + T H : B ; a3 g it t Faasis H
H G il e i : i e caets i 1t + : 1 i
il HEE i ! i i _ ik ,¢ i
T IS 331 S
: H BH at 158 1 b M o
e T i £ B
H T H i HiE HRilifes i e ni ! S
,,,,,, Bl : i I ; i + Ht H =
| s i e o 4 ijagass T , 3 it i
] TEsEssseds ansze: RESEAssEe pmssendas SMARzdngd ou H + = H N i
= rhet yaas: e : T i ssiti 5
g I T H e o HHH T ™ ™ T
5 1 e e o Hi : ; THEHE
mEE i A e i ! i ST
(T T T : B g T ! t S
H I 1 ; i e ans it T HH it iy n T
i i B an el i e BB g e e : i
SR caR R v e T ; i i3 i
H T et 2 Stk i i i | ET i
E3asnassses: TS : H ;i 4 5 o.
it I sk H T 5 e ¥
| it et R B e R i iR : i T T i R i 00
¥ : e e e e e e R s e e i [ i H ____ T o =8
il : i i 2 2 S u (o] 0 [ =
[ Q Q ] M o : = = =
0 : ~ @ ) 0 & < bk pik = = = =
: — -— — — —




2.25

2.10

1.90¢

.88

TRy T St T it i ~
Sesient eIt tatet i HE i
HH i s i e it
£ i ; H
7 H i}
R Sieacicat i HE e
el HEsda HEEH P S 4
5 1 -
e i i i N i
= i t : e asasaunus e : L
. _ i o
B : : i i i
T e I T i
s H + f ; :
i H : ~
5y T 1 ] -
: : HoTH ! i | H : i
: : R - T s : :
i i i i H + H H + |
: i i it e fRd s cadsh e et e t P g i i
= i : d i : ; i - :
i i i H ; 1 f FrHFEE i R s B i ; ]
i1 i Sii fatcic: ; iR | i
L : ] : e et SRR H ©
i i | sEiteisis
- i
H T I ;
T Sasstsiiad it e g
i T At ahazans fRadhasa sue: HHH
o -
i s
feeseaeees edd R
see, T T H
|||||| H T Ssenauass, + t
,,,,, e : i E
.... N R T
£ i : E R SEEpe IR ha ey i
st ay : T i
Eji | i HHIEEE i i
R TR i g et £ £
SRssdEERinisa i t sgseicit X ThE :
HoHE s S E S h ] i £
i i L P i T
L S R i i 1
IR £ ! : i
a8l yans aat I aent
s - i R 5 ,, i H
o S £58 -
e et B ; S 1 ]
I i T : : i
HiE S s i E = O
TR ; Tl HHE T ! e =
G s ety T R
w, i + it i ..* . : HhHH
i e i3 et AR e e : i : : _ S
T Eag S5 sy e s e ; : 1528 ; t : N
: Hibeihy ﬁH i st est s Etindsl s i nEsiaee f 2| il i i ; £
AT EERT st o e e e et i i i SR i
i HHEER LR | i ; ; 0 o H i i : TR “
[7ed

1.86



288 ) Fela))
Fel))
ﬁ LOGy, | s
2.8
275 i
27
2.6
26 - =
20 2 22 24 25




075
070
06
0.

T T g T T TS T 0
3 ; i i i i it
i i s m i S £
n FHH HHH Hid H T 1 =
£ i H Siesisiich : it et e R it i
- e : i :
g i ! e
H i
HHH H“ a8 H
i i i H
t Shseise et B
el : : : it 5 Urf
T : & a1 TR PR R
e FE s 2 o £ Tl L
H ruasaiagicassasanyuae; : + Hre [\
i e HEH i 1
| ! T T bt B,
HH " FHHIE 52 FHTH .“Y I_T%y}+, fisdEsas i .y((,_ 3!
it ik mEERH i £ H HHHH e e e s
T gy inasEmey T = 1 T T ISEEs aasgERBERE fues: HTT HHa
: 5 5 3 RETHO EfjEEtta s riRed: i B
;i _ H i £ S ] H Eiasssses RisE:
Bl falssesscii T i i - S b e
i ; : : 5 : e
T t : HHH t T
eI il Bkin it it i it s § | W i R e T S i Rete
; S ] T it i ! }
B e e et o HH F i Hond 1 HH T jHiE
e n S :
E ji ! H P R HHEE ! ] | TS
L H S SR ot ] e : t TR ! T | i t
TS - H : B ; st isities Siastasisesis t
H R : AR e S e he s e (s et i i ik THEHE il H I EEI
b e cegnf AR T il ! Hof T sl Ea
H ek e e = f ; : - - 4]
R S i SR S e :
Rl = FEEE ] B =H ] THIAET T b HEEH R EE
0 [e) [7e) ) [e) 2] O O W o
Irs) < [12] 2] o N = T = m
o] o o o o c © © ©




25

20

15

10

.
I i 1 i T it
-'r FH B _—.:) ..«: H H o
HH ﬁu H H £ e
i 2 i HE i} i
H uuuml
: P
P A eezies
H m # T H
il f H i HHHT H H } H HH
T H 3% jaa
- f : i i
HHE ; i ! i f
328 i T azzanat: I
5 B T it i i
i : S | i T £ i _
i NS it s
mu mm t T i H
, L : o
e it T i i =
S A e !
H i T T ¥ i gae T
i s . ; PR
H t } T
3 SHERED R i a2 1okE: ; H
t b § } ] e
: ,..A 4 t m : m sos ou: | .M;
f TS it t 1 H I
Hh i B ! e HITER ! - :
f i : S
! i i : - E
| i : E it :
i 2 : T pE s A i £ {
£ : i iR i SE{SILE: pEc s :
i i : o Hp , it i e e e s ,
i : : e s o iR 1 £
: : i AR ! ! 8 R s
i ; Rt | S L ] st s i ces i
i i i e = e ; i : :
e ! iz il 4 i
T 1 i
! f i LI s gt =LA it i
i AT st el e HHE i
i - i it ) S
R il HH t T
it i i i i i |
S HE : e
f + = - e T e
8 sz i i oo - A iR HEEEE
nnas: : : T i i
B : : it i £ i i
t : T REIna itz Heis
paa: T s ot T 1o T it
6 0 o 0
o o0 @
o o] (o]

1.4
140
1.3
075

070




Set 4

-0
Arg Fc as a function of %— for a range of values of the parameter _w_c .
c c

. w
Arg F asa function of _—o—_; .
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