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Abstract

We study a stochastic control model of a two-stage production process with flexible work-

stations. The cumulative productions of both stages are governed by two Poisson counting

processes with random intensities parameterized by production capacity and flexibility re-

spectively. An optimal barrier policy is characterized by the critical values which indicate

when one stage of production shoiild be turned off, when one station should be switched to

assist the other station and when to switch back to its regular task. Both the conditions for

optimal barriers and the expected total discoimted profit arc explicitly determined. Thiis,

the economic value of resource flexibility can be measured by the difference in expected

utility a firm can optimally realize by possessing it.

Key Words: Flexible Resource; Poisson Process; Intensity Control; Barrier Policy.
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1. Formulation of the Model

Accompanying with recent advances of microprocessor-based manufacturing technologies, the

flexible manufacturing systems of the jnesent and near futiu'c reduce the changeovers between

products to a matter of seconds. The questions of how to manage the flexible resources and how

to quantify the value of flexibility bee ome increasingly important. The j^resence of the flexible

resources affect not only the market competition among firms but also the internal control of

production processes. The economic value of the resoxirce flexibility will not be acciu'ately captured

by ignoring either of the two. As a first stej), the paper develojis a stochastic control model to

study the economic value of flexibility in the decision theoretic framework, that is, the difference

in expected utility (profit) a firm can oi)timally reali7,e by possessing it.

In general, the economics of multiple-use resources can only be discussed in the context of

a model that has uncertainty, seasonality, or in general terms, some sort of variability. It is also

necessary that one's model explicitly recognize the existence of more than one type of task or

processing requirement within the firm. Thus, to consider any issue in the economic value of

resource flexibility, we must consider a multi-stage process (some sort of network structure). A

simple model of two-stage, two-task production process is considered as follows.

Consider a production process that consists of two work stations, 1 and 2, two tasks, producing

an intermediate good 1 and a final good 2, and an inventory storing intermediate goods. Station

1 cau produce good 1 at an average rate a, or it can produce good 2 at rate (^ja (0 < i^i < 1).

Similarly, station 2 can produce good 2 using good 1 at an average rate /?. or produce good 1

at rate (^2/? (0 ^ 1^2 ^ !)• Suppose the management monitoring the production rates within the

range of their maximum rates, and can also switch either station frnjii one type of production

to the other. In the context of service infhistry, one may think of the model in terms of that

service is completed only when two presetiucnced requirements are finished and the inventory is the

customer wait. The cumulative input (prochiction of good 1) and output (production of good 2) are

represented by two increasing non-negative integer-valued stochastic processes A — {A((),< > 0}

and B = {B{t),t > 0} , where A(t) and D(t) denote the amount of production 1 and the amount

of production 2 in the time interval (0,t]. Then the inventory level at time t is

Z{t) = x + A(t) - D(t). (1.1)

where x is the amovmt of inventory at time zero. We assume that

A, B are independent Poisson processes with random intensities {ai,t > O} and {/9/,t > O}.

(1.2)

That is, {A{t) - J^a,ds,t > 0} and {B(t) -
J^, ft,(ls,t > 0} are martingales, and a, and /?, can

then be viewed as the actual production rates of i)roducts 1 and 2 respectively.



Given the capacities n aiul /?, and the ineasnremont of flexibility (S, and />2 (selected at time

zero), a feasible operating policy is defined as a pair of storhastir pif)resses (at, ft,) that jointly

satisfy the following:

(1.3) (ai) and (/?,) are left continuous and have right-hand limits,

(1.4) (ai) and (fti) are adapted with respect to Z,

(1.5) < a, < a • l(o,/9](/?/) + (« + hft) Uo)(Pi) ^nd < ft, < ft l(o,„l('^^) + (P + -^i") ' l{o)(a(),

for all t > 0,

(l.G) Z{t) is non-negative for all (.

Condition (1.4) implies that q, and ft, are functions of (Zia),.^ < t). This says that the

control that the firm exercises at time t is based on only the historical information before time t.

In condition (1.5), for any set S, ls(>'') i? fui indicator function, i.e.,

.1, if .<.G.9;
^^"' '0, otherwise.

For example,

«l(o,/?l(/?f) + (a + '^2/?)l{o}(/?r)= {^"^,.
if < ft, < ft-

h^ft. if ft,
= 0.

Thus, condition (1.5) reflects the strategy space parameterized by the flexil)ility of the workstations.

Together with conditions (1.3), it also ensures that (a,) and (ft,) are integrable and predictable

with respect to Z . The restriction (1.6) implies that the i)roduction of good 2 has no choice other

than waiting if its demand of intermediate products can not be met from stock on hand. For the

justification of the formulation, see Bremaud (1981) and Li (1D8C).

To complete our fornuilation, we specify the cost structure as follows. Each final product is

worth /) dollars. We simplify the market side where the firm serves as a supplier Ijy assuming that

the demand for final goods is infinite. The plant incius a linear variable cost, Ci dollars per unit of

good 1 actually produced and C2 dollars per luiit of good 2 actually prochiced. The variable cost

may comprise material cost and also labor cost if workers are paid piece-rate. The selling price p

is assumed to cover the total variable cost of a final good, that is

;>>ci-fC2. (1.7)

A physical holding cost of h dollars per unit time is incurred for each unit of intermediate goods

held in inventory. Assume that the firm earns interest at rate r > 0, compoimdcd continuously,

on the funds which are required for production operations, and the production is planned over an

infinite time horizon. Therefore, given that the initial inventoiy is i, the expected profit is

/•oo

w(x) = E,{ r-"\pdD(t)- cidA(t)-C2dD(t)- hZ(t)dt]}, (1.8)

Jo



where E^ denotes the expectation conditional on Z{0) = x.

Applying integration by parts theorem to (1.8), we have

h
n(x) = v(x) - -, (1.9)

r

whe re

roc

v(x) = E^{ / e-''[qdB(t) - vnlA(t)]], (1.10)
./o

h _ h
q = p — C2 -\— , and w; = Ci H—

.

(Ill)
r r

The problem of the management is to choose a pair of control processes {a, ft) to maximize

the expected profit, eqnivalently t;(.r), such that assumi)tifui (1.1)-(1.2), and feasibility constraints

(2.3)-(2.G) are satisfied. By the Poisson assumption, the olijective function imder a feasible policy

can be further written as

v(x) = eAJ c-"(qft,-wa,)dt\, (1.12)

where q > w following from assumption (1.7).

2. The Barrier Policies

histead of solving the general intensity control problem set up in Section 1, we investigate a

class of feasible policies, namely, Imrricr policies, and establish some computational results.

By barrier policy, we require that station 1 works at its full cai)acity on its regular task,

producing good 1, until inventory reaches some level li, at this jxiiiit it either ceases production

or switches to assist station 2 until the inventory has been d(^i)l('f(Hl liy ^i units; similarly station

2 works at full capacity on its regtilar task, producing good 2. until the inventory is zero, then

it either waits or switches to helj^ station 1 until the inventory has been increased by 62 units.

There are three critical numbers, h, h^. and 62- The production of good 1 is turned off when the

inventory level is b and resumes its regular rate when the i)roduction of good 2 (maybe with higher

rate) brings the inventory down to h — ftj. On the other hand, the prodtiction of good 2 is ceased

at zero inventory level and resumes when the production of good 1 (again at an increased rate)

is accumulated to a level of 62- Obviously, only on-off strategies are allowed in a barrier policy,

namely

a,e{0,a,a + 6ift), /?, G {O, /?,/? + .^1 a},

and the essence of control becomes an optimal stopping problem.

To characterize a generic barrier policy, \vt E = {0, 1, . . . , 6} be the state space of the inventory

process Z, Ei = {b— hi, . . . ,h}, and E2 = {0, 1, . .
.

, ^2}- To be general, we allow cither work station

switch back and forth between joining the other production process and staying resting when its



regular prodviction process is ceased. An ordered seciiieiire of disjoint sets, K,i , /f,'j , . . . , if,,,,, , /<",„,,

with \Ka-\ =
J/tA-

^iifl \^ik\ ~
y'tk'

''''pi'f'sciits a division of set Ej, i = 1,2, e.g., Kn = {h,b —

1, . . . , ft — t/ii + l}, A'Ji = {''
—

J/ii ''~!/u — Vu + 1} <'*^- <^'iven production of good i [i ^ j)

is turned off, station i sits idcl and station j works alone jnoduring good j when Z[t) G Kn;, and

both stations work together when Z[t) G if,V For t = 1. 2, allowing /f,i = and/or if,',„^ = 0, the

choice of sxich a sequence represents all the possible order combinations of switching between using

station j (j ^ i) alone and using lioth stations. For notation sinii)licity, denote /f, = Uji.J.j/f,/;.,

K'- = u'l'^iK'i^, and j/,-
= Ei=i Va-. for »' = 1.2. It follows that "^^'^^ y'-^ = h,- - j/,-. The value

fc, — t/, represents the total imits that production j (j ^ i) turns out with the help of station i.

We also define
T[K) = m({t > 0,Z(0 e K),

T(S,K) = M{t > S,Z{t) e K},

for any stopping time S and any subset K Q E. Let

fo = 0, T„ = r(T'„-i.'')AT(r„-i.O),

t ^ T(T{f„-i,h),h - b,) AT(T{f,.-i.0)J>2).

< = r(r„_,,t), i?°„ = r(r„-i.n).

s:'„'^' = r(<„ft - fci), 5^;?"" = r(<,.ft2),

for I = 1, 2, A; = 1, . .
.

, m,- and n = 1,2

A barrier policy then can be written as, for ( > 0,

a, = a{lr.'At) + 1n,(0) + (« + '^2/?)1a-((). (2.1)

ft, = ftilKAt) + 1a',(<)) + (/^ + f>i^)lx[it)- (2.2)

where No = U^ o(r,., r,.+.], TV. = U^ ^ U';;^,, (^.^ /?•.]. and N'- = U^, U';^% {RLs^^'] for

i -= 1,2.

In fact, the inventory process Z under a barrier policy is constructed by switching among five

Markov processes: a difference between two Poisson processes with intensities n and ft respectively,

two negative Poisson processes with intensities ft and ft-Vfiin respectively, and two Poisson processes

with intensities a and a + S2P respectively.

Proposition 2.1. The va/ue fuucfioii v{x) under a barrier j)oIiry deBiird in (2.1) and (2.2) is of

the form

v(x) = -(qft -wa) + i(x), (2.3)
r

where

v(x) = avini(x) + a{w + {>iq)u\(x) — ftqu2(x) — ft(q + 62V')u'2(x), (2.4)



TOO
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u'-(x) = E,{ e-''l:,.,{f)dt}.

Jo

(2.5)

(2.G)

Proof. Note that

1a'„(0 + 1a',(0 + 1a';(0 + 1a',(«) + 1a-(0 = 1- (2.7)

The propositiou follows by pubstituting (2.1) and (2.2) into (1.12). roi)larinR 1;\'„ using expression

(2.7) and collecting terms.

Tims, the value function under a barrier policy obtains by computing u, and u'-. We take two

steps in the computation. First compute the Laplace transforms of the hitting times T{b) and r(0).

Then, show that u, and u- can be expressed in terms of them.

Denote the Laplace transform of a hitting time by

0(x.y) = E,
-rT[y)

Then

Proposition 2.2. For < x < h.

qib — x] e{x)

9(1') f>)'

where
f \ —7 * —J

g(x) = (itPi - a P2 ,

r.(x) = (/,^j - (C p2.

pi and P2 are the two roots of the qimdmtic equation

a . ft

r = p'-^
a + ft + r ' a + ft + r

with < pi < I, P2 > I, for r > 0,

a. = 1 - {(ip^'riri.p^')'"-", a* = 1 - (^.P^'r (riiP;')'"-"

d. = i- U2P2r{n2r2)'"-'\ d' = i- U2Pir(n2Pi)'"-'\

and

(i
P

-, 6 = f/i =
ft + h<^

12 =
n + dift

(2.8)

(2.9)

(2.10)

(2.11)

ft + r Q + r ft + fiia + r a + 52ft + r

Proof. We shall only prove the first equation in (2.8) and the second follows from a similar argument.

Define a function i() by

i>(x,y.z]
_ Pi - P2

pV
y—

-

P2

for x.y.z^ E. (2.12)



By Lemma 3.3.2.1 in Li (1984), we have

^:rle"'^'l|Z(r,)=n)] = i'{x,0.h). and iE.['~'^' l|z(T,)=ft|l ^ i'(x,h,0),

where Ti = T{0) A T(b) as defined above. Tims,

0(x,O) = i>(x,0,h)-\-i'(x,h.ri)0{h.O). (2.13)

Particularly,

${b - 6i,0) = i'{h -hi,0,h) + rl>(b - bi,h,O)0(h,O). (2.14)

Also note that

d(h,0) = ei'n\'~^'0(h-l>i.O). (2.15)

Substituting (2.15) in (2.14) and using (2.12), we o1)tain

el"r,J'-'"V'(''-6i,0,6)
^(6,0) =

i-eS"„J'-'"V'(6-ti,fc,o)

(1 - {LP2'r(niP2')''-") - (1 - {^^r:')"(>hP;')'-'-'")

(1 - UiP2')'HmrV)'"~")p:'' - (1 - UiP7')"i^hp:')'"~'")P2

9(0)

h

(2.1G)

9{by

The first equation in (2.8) for any x ^ E follows by substituting (2.1G) and (2.12) into (2.13).

I

Note that the Laplace transforms of the hitting times T(0) and T(h) are independent of the

switching orders when one production process is turned off and Z is in i?j or i?2 because the sojourn

times in Ey or E2 will not change as long as t/i (|^'^i|)- J*"*^' ''i- ' = 1- 2, are fixed.

Proposition 2.3.

Ai e(x,b) ,, ._ a; 0{x,b)

X, 6(x,0) X', 0(x,0)
«2(i) = — •

:

—

..„ >,,-„,.,, ^. - "2(2;)
-

(2.17)

r i-e2^'^^-''^fl(62,0)' '' ' r l-e2''h'~'"0{b,,Oy

where

k=l
(2.18)

k=i



fori = 1,2.

Proof. By the definitioii of a banirr policy ((2.1) and (2.2)), for oacli n and k. /?j„ — 5^,, is the

sojourn time in the states, {l, . . . , t/u}. ff"" ^ Poisson process with intensity /?, and 5/,, — i?j„ is

the sojourn time in the states, {l, . . . , t/u}i for a Poisson process with intensity /? + i^ia. Therefore,

E[r-^^^l.-'i..^] = er- and E[r-'^''^ -"'"^] = ,/,"

.

Also note that R^ „_^i
— i?i.„, the time between process Z's two consecutive entiy of the state h,

n = 1,2,..., are i.i.d. random variables. Hence,

OO III
I

c "•>•

yoo . ^' '"1

= if;X;^.[l-e-^'<-^-']£;,[e-'<.e-^n=.'"'"-'^'"%-^^.'-'<^'"-^'^
*" n=l *=1

-mi c»

''

A-=l fi=l

*"

i)=n

r l-ef'r,;'-'"/?(6-ft,,6)'

The rest of the proposition can be similarly proved.

I

Propositions 2.1, 2.2, and 2.3 give us the explicit form of the value fmiction imder a barrier

policy.

3. When to Nap and When to Help

In a barrier policy, if production of good t is stopjied, then station r can have a break while

station j {j j^ i) is producing its assigned j/,- units. The question is when these coffeebreaks should

be, assuming that the parameters h, bi, 1)2, j/i f^ud j/2 are fixed. In other words, we want to determine

what is the best order combination among all the possible choices, (/C,i, /<'|i, ..., K,„,,, /<",,„_),

t" = 1,2.

Let

mi = 2,^11 =0,K;i = {^.''-1 6-Vi + l},/i:i2- [h-Vi h-h, + i],k',2 = ^,

m2 = l,k2i = {0,L...,U2-l],k'2i = {t/2 62-1}.
(3.1)



Proposition 3.1. For fixnl b, hi, rihI )/,, i = 1,2, the })nniri policy with the switching order

choice (3.1) is the domiiicint strategy.

Proof. Denote by A, and Aj, t = 1,2, the functions defined in (2.18) under the order combination

(3.1), i.e.,

Ai - 111 (1 - Ci ), '^i
- 1 - »?i ,

, ^

Notice that in the vahic fiuiction, the order choice, Kii,K[^, . . .
,
affects the vahics of Ai and Aj

only, whereas the order choice, /<'2i, /C21, . •
.

, affects the vahies of A2 and A'j only. Therefore, it

suffices to prove

awXi + a{w + (^i7)Aj — awXi — a(vi + (^i7)Aj > 0,

ftqh + P{q + hw]\\ - pq\2 - P{q + ('>2W)^2 > 0-

Also note that for any order choice.

(3.3)

and

1 - '/, = z^'7, (1 - ni ), (3.5)

1=1

since X2^!'^j v.t =: j/,- and Efc^i v'a-
=

''t
- !/•• Hence,

QwAi + a[w + (*'i7)Aj — QwAi — a(w + (^i7)Aj

= a'^i7('^'i - -^1)

= "'^17 2^(1-^1 )'?! (l-r/i'*)>0,
it=i

ftqXi + ft(q + ^2«')'^2 - /?7'^2 - ftiq + ('>2V')'>^'2

= PS2W{\\ — A2)

= Phw2_^i2 ^2 (1-^2 )(l-'/2 )>0'

if (5i > and 62 > 0-

I

Suppose the management feels that the upstream station fleserves a break when the work-

in-process inventory reaches a upper limit and the downstream station deserves a break when the

inventory is down to zero. Proposition 3.1 suggests a "iirinciple of coffeebreak" for the management

of the flexible workstations: when the inventoiy hits the upper limit, the upstream station (station

1) should first switch to lielji the downstream station (station 2) and then take a break; when the

8



iuvciitoi7 is empty, the downstream station should take a l)ieak first and then switch to help the

upstream station.

Proposition 3.1 rules out many dominated strategies and henre significantly reduces the strat-

egy space in our search for the optimal barrier policy in the following section.

4. The Optimal Barrier Policy

Using Proposition 3.1, the set of barrier policies of interest can be characterized by five critical

values, /), hi and j/,-, i = 1, 2. That is, station 1 stops its regular task and switches to help station

2 when the inventory level reaches the upper limit b, station 1 starts a break when the inventory

level is down to & — />! + t/i until station 2 works alone to bring inventory down to b — hi, and

at this time, station 1 takes on it regular task and the normal production resumes. On the other

hand, station 2 starts a break right away when the inventory level hits zero until station 1 brings

the inventory up to y2, at this point, station 2 switches to help station 1 bringing the inventory

level further up to b2. and then switches back to the production of good 2 (its regular task).

By Propositions 2.1 - 2.3 and (3.2), we can write the value function luider a dominant barrier

policy in terms of the five critical values.

v{x)
awnl^-'^{i -

ei") + a(w + Siq)(l - r,!'-"' ) ,Lr\ - d' p'.
J

a*il,p\ — atd*P2

a^d py —a dtp2

y^^ _L /9^^ _L X ...^fViM „''2-!'2\„ „-(*-•') ^•„~(*~^)
(4.1)

where a. (61,1/1), a*(6i.t/i). ''(''21 1/2). ^ik^I f'*(''2,J/2) ^i''' defined in (2.11).

Proposition 4.1. In an optimal bHiricr policy, it mii.sf iiave i/i = </2 = 0- ^" other words, an

optimal policy must fully utilize the flexible resources.

Proof. Suppose imder an optimal barrier policy, we have rti = 0, and fti
=

ft in certain state x

(x > 0). Let T be the first time the inventory level decreases by one unit, 5 = T(T,x), the state

reaches x again after T, and ii(x — 1, x) be the expected i)resent value starting in state x — 1 and

following the optimal policy over the i)criod (T, 5]. By the strong Markov and renewal properties

of the process, we have

"^^^=l-ii;,le--]^,_i[e--]<''-^^- EAe-r^
x/,. + u(x - 1, .))

Note that v{x) > if and only if p - C2 — xh/ft + u(x - 1, z) > 0. There must be the case that

p — C2 — xh/ft + u(x — 1,1) > since there is a barrier policy that can guarantee zero profit.



Now, choose an alternative policy whicli follows the optimal policy cxcejjt iu the state x where

f^i
= + ("ijQ. Denote by ^>'(x) the value function under the alternative policy. Then

v(^') = !!^
, _,si (?' - ^2 - T—7- + u{x- l.x))> v(x)

since r?i > ^1 and p — C2 — xh/(fl + f>ia) + u(x - l,x) > ]> - cj - xli/fl + u(x — 1, x) > 0. This

contradicts that the nominal policy is optimal. Hence, in an optimal barrier i)olicy, aj = implies

that Pi = P -\-
(^i«- We can similarly prove that Pi = implies that ni = a + (^2/^-

By Propositions 4.1, we can further reduce the set of \uidominated strategies to be the barrier

policies with three critical numbers A,-, i = 1,2, and h by assuming ;/,
= 0, i = 1,2. Under a

dominant barrier policy, the value fimction

a(w + {>iq)(l -m') (Lpl-d'p2
v{x) =

a*dtp\ — a^d* P2

p[q + 62W){\ - r,^') iup-,^'-'^ - a>2~"~''
(4.2)

r a^d pi — a dtp^

where

a.(/>i) = 1 - {niP2')'','i'(l'i) = 1 - (niPl')'' , '^(''2) = 1 - {^l2P2)'\d'(h2) = 1 - (fhPi)'"- (4.3)

Define

l(h-hiJ,2] = a4b,)d'(b2)pl - n'(b^)d4h2)p\. (4.4)

By Fact 5. in Apjiendix, we know that for any b,l)iJi2 such that b > bi A b2, l{b;bi,b2) > 0,

l(b — bi + 1;1,62) is strictly decreasing iu 61, and l(b — /*2 + i;''i-l) 'f' strictly decreasing in 62-

Thus, we can define bi be such that

l(h - ii + 1; 1, 62) > 0, and l(b - b^- 1, /<2) < 0, (4.5)

and ^2 be such that

l(b-b2 + l;/'i,l) > 0, and/(/)-?/i;/*i,l) < 0. (4.G)

Lemma 4.1. For any x and fixed h, 62. there is an optimal harrier ftj such that v{x;b\) =

ma.x{v{x;bl*),v(x,b)} where v(x;y) is the value function with by — «/ 'i"*^
''J*

's uniquely de-

termined by

A:i(^i + 1) < r~' !indki{b^)> —

,

(4.7)

10



«1 ''l = 1
.

ft(l-n2')n(ln)

n{hi) = nt(lii)a*(bi — 1) - a.C'i - l)a*(fti),

m,(6i) = (u(fti - 1)(1 - r/t') - a,(b:)(l - r?J'"M,

m'{b,) = a'(b, - 1)(1 -n\']- a'(b,){l - ryj'-').

ami ki is strictly decieHsinp; in bi for b^ < bi and is inrrrHsing in bi for b^ > bi.

Proof. For fixed b and ^2, compute

(4.8)

v{x;b,) - v{x;b, - I) = K, (kAbi) - 'L^)

where

rl(b;b„b2)l{b;b,-l,b2,)

since a(bi) > 0, e(x) < (defined as in (2.9)), and l(b\bi,b2) > by Facts 2., 4., and 5. in

Appendix.

We also notice that

,,;,,,, ,, «^f
'"^(1 - r„),r'^-^-^^V-""''^''a.(l)a'(l)^(/' - f'i + 1; 1.^2)

ki(bi) - ki(bi - 1 = 7

/?(l-r7h'i(''i)«(''i-l)

• li; n';((i - Pr)^'-'-" - (1 - p:')P2'-'~" - iPl' - P2'))] <
»l=:0

if and only if l{b - b^ + l;l,/'2) > since a.(l) > 0, a*(l) < 0. a(bi) > 0, and (1 - p2^)Pi -

(1 —
py )p2 > Pi

~ p2 fo'' a; > 1 ])y Facts 1., 3., and 4. in Api)cndix. Therefore, ki{bi) is

decreasing for 61 < hi and is increasing for bi > hi, and there are two possible local optimal points,

6J* (defined in (4.7)) and h (the corner solution).

LGmma 4.2. For any x and Rxcd b, ftj, there is an optimal })Hrrier ftj -'^''c'j f^iat v(i; frj) =

n\SLx{v(x,b2*),v(x,l)} where v(x\y) is the va/iie function with 62 = V- ^'J'^ ''2* ''* imiquely de-

termined by

where

k2{f>l + l)<^—-^, andk,(b;)>^—-^, (4.9)
w + Oiq w + OiQ

k(b)=
a{l-r,\')d{b2)

'^ '^
mn'(b2)a4bi)p'2 - n4b2)a'(bi)p\y

d{b2) = d.(b2 - iyr(b2) - d4b2)d'{b2 - 1),
(4 10)

n(b2) = d'(b2 - 1)(1 - r;*') - d'(b2)(l - r,*^-^,

n,(b2) = d,(b2 - 1)(1 - r,5') - d4b2){l - 4-'-'),
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and k2 i!^ strictly increasing in 1)2 for h^ < b^ nnd is strictly increasing fnr l>2 > ''2

PtooJ. For fixed b and 61, compute

/ o + ('low \
v{x; b^) - v{x- b2 -l) = K2[ hib^) -

J- .

where v(x\y) is the vahie fmictioii with ^2 = Vi

^ ApM'^ + hq)P{n[b2)a»{b,)p\ - n,{b2)a*(b,)p\)c,{x)
^ ^^'"

rl[b,b,M)l[h\hi.b2-h)

since g[x) > (defined as in (2.9)), l{b; ftj, ^2) > 0, and

n*(b2)a.{h)P2 " "*(''2)'i*(''i)/'i >

due to the facts a. > 0, a* < 0, n'(b2) > and n,(b2) > hy Facts 2., 3., and 4. in Api)en(hx.

We also have

aril'-'-'d - r72)(l - ^?^ )^f'-'^^^-\/.(l)'/'(lK(fc " h + 1; ^'1, 1)

'^ '' '^ '
' ft({n'(b2}<u{b,)4 - n.(b2)a'{by)p\)((n'{b2 - l)a.(b,)r\ - n.(b2 - l)a*(''i)/i)

• lE^2(^2 -
/'I - ({P2 - Dp;'"'-'-" - (P: - 1)/'2'"'"'"'")1 >

11=0

if and only if ^(6- 61 + 1; 1,62) > since (1,(1) < 0, fi*(l) > 0, ^udp2-Pi < (/'2 - l)/'r'*'"^""'
"

[pi ~ l)/'2 ' ' ^"'' 2; > 1 by Facts 1., 3., and 4. in Appendix.

We conclude the proof by the same argument as in the i)roof of Lemma 4.1.

I

Lemma 4.3. For any x and fixed 6,, t = 1,2, fhcre ;.s iwique optimal harrier b* determined by

a + bou) ^ 7 + i^2W

)k(6* + 1) > ^—^-. andk(b')<- f-, (4.11)
w + SiQ (jJ + Oiq

where

- "(1 - n\')(aAf'iK{l>2)(i - P2')p;'' - n'(fn)<L(b2){i - p:')p2'')
(4^0)

ft(l-n'2')a,(bi)a*(h,)(r2'-p-[')

and k is a strictly increasing function of ft.

Proof. It can be calculate that

/ q -\- S-)UJ

v{x; ft) - v[x- h-l) = K\ — - k(b]
\w + oiq

where v(x\y) is defuied in (4.2) with ft = j/,

j^ ^ pIpI^x^uj + 6,q)ft,u(hiy('>l)(P2' - pT')
> Q

r/(ft;fti,ft2)/(ft- l;fti,ft2)

12



since a* > 0, a* < 0, e(x) < and pi < P2-

I

Proposition 4.2. There exists an optimal barrier policy with three critical numbers h' , 6,*, i — 1, 2,

which jointly satisfy conditions in Lemma 4.1.-4.3.

Proof. Given the monotonirity projierties shown in Lenuiin 4.1 - 4.3, it ran he shown that /**(/'!, ''2)

determined by (4.11) is bounded inflependent of the choire of /*,, and hence, there always a fixed

point sncli that conditions in Leiuiiia 4.1.-4.3. are satisfied.

I

5. Conclusion

In this paper, we propose a stochastic control model to study the managerial issues regarding

flexible resources. With respect to a class of feasible policies, namely barrier policies, we present

general computational results, identify the dominating strategies in the real time allocation of the

flexible workstations which can serve as a i)riuciple in the management of the flexible production

system, and find the conditions which explicitly determine the oi)timal barrier policy. The impor-

tance of the barrier policies lies on the fact that the optimal barrier policy is an ojjtimal Markovian

policy in the sense that the state space consists of inventory and workstation status. However, the

completeness of the optimal barrier jiolicy (whether it is optimal among all the adai)ted policies)

needs further investigation.

13



Appendix

We list the following facts as tlic refcrcucc of Section 4. and most of the proofs are immediate.

Lemma 5.1.

-1 ^(^2 + i^l) -1
a^l) = I - t]iP2 = T—-^

— (l-/'2
) > f''

/7 + (^lO + r

a (1) = 1 - tup^ = —— —-(1 - Pi ) < 0.

rf^l) = 1 - f?2^2 = —
, r n

,

(1 - /'2) < 0.
a + O2P + r

(/ (1) = 1 - ri2Pi = r— (1 - ^1) > 0.

a + O2P + r

Lemma 5.2. a«() anci d'{) arc strictly incvcHsing hikI (i*() niul '/*() nrc strictly decreasing.

Lemma 5.3. a(bi),'m.t{hi),m' (hi), d(h2), 11,(1)2) 3«(i ""(''2) ^t-o positive and increasing for h{ > 1,

i = 1,2. Consequently, a,(bi)/(i* (hi), (1 — r?i' )/a,(/*i) an*/ (1 — r7i')/a*(6i) aie jncreasing^ in fti,

and d'(b2)/d,(b2), (1 - r?*')/(/.(f>2) a^'i (1 - f;2')/rf*(''2) a''^^ nirrea.sinff Hi /<2.

Pror)/.

a(fti) = a,(bi)a*(hi - 1) - a^bi - l)'i'(/'i)

6,-2

= r?i' a.(l)n (I) 2_^(r]iPi p^ ) (p2 -
Pi ) > 0,

11=0

m,(6i) = a.(6i - 1)(1 - r/J') - a.(6,)(l - ti\'-')

>-^(i - r,iK(i) Ei^i^rM-d - ^r'''-'-'") > 0,

m*(6i) = a*(bi - 1)(1 - r,J') - a*(bi)(l - n^'-')

A, -2
„ , - 1 ,

.

^ . / . >

11=0

d(b2) = d,(h2 - l)d*(b2) - d,(b2)d'(b2 - 1)

*2-2

= n'r'd.(i)d'(i) j2i'i2PiP2)"(p'r'-" - p\'''-") > 0,

n=0

n*(62) = d'(b2 - 1)(1 - r,^') - d'(b2)(l - r;^-M

*2-2

= ri2'~'(i - ri2)d'(l) J2in2Pi)"{i - p'r'-") > 0,

n.(62) = rf.(ft2 - 1)(1 - r,*') - rf,(62)(l - r,*^"')

63-2

ii=n

14



Lemma 5.4. g(x) > 0, c(x) < 0, g(x) is increasing mid r(x) is (lrcrr;isin<r in x.

Lemma 5.5. For any b, 61,^2 sncii that b > bi A 62, '(''; ^i. ''2) > 0, l(b - b^ + 1; 1, 62) is strictly

decreasing in bi, and l(b — /)2 + 1; ''! 1) ''' strictly decreasing in b^.

Proof. By Proposition 2.3.,

u\[x) = E,{r e-''\^-.{t)dt)
Jo

_ 1 - r??' d4b,)p',-d'(b2)pl

r ' a'(bi)d,{b2)p\-a4bi)d'(b2)p\

- 'h pi P2 <^{^)

r l(b\bi,b2)
>0,

which implies /(ft;ii,/'2) > since e(x) < 0.

The second assertion follows from that

l{b-bi + l:lb2)-l{l>-l>i\l,f>2)

= a4l)d'(b2){l - P2)p''2~'"^' - a*(l)./.(''2)(l - Pi)p\''"^' < 0.

The third assertion can be similarly proved.
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