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Errata

The last expression in the numerator of Eq. 21, p. 7, should
read (4-j).

The notation in Fig. 3, p. 8, should read X2 _- 1.

Author' s Correction

Substitute the following paragraph for the last paragraph of
Part IV, p. 9s

The expression for 2, Eq. (15), is frequency dependant,
and can assume values greater than unity. The full consequence
of this has not yet been examined. It would appear, however,
that the increased shot noise at high frequencies and long
transit angles is due to a species of amplification such as one
has in a klystrono Measurements are now being made on the noise
induced in a cavity by an electron beam, and it is hoped that the
results will allow a direct check to be made on Eq. (15)
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SHOT NOISE IN BEAM TYPE TRAVELING-WAVE AMPLIFIERS

L. D. Smullin

ABSTRACT

The noise figure of a beam type traveling-wave amplifier is derived

by computing the current and velocity fluctuations in the beam at the

beginning of the helix and comparing the power induced in the growing wave

to that due to thermal noise. The result of including both current and

velocity fluctuations which are related to the initial velocity fluctuations

at a space charge limited cathode is that the noise figure of the tube is

inversely proportional to the gain parameter C. The d-c beam current and

voltage have only secondary effects on the noise figure.
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Notation

e electronic charge 1.59 x 10-19 coulomb

m = electronic mass - 9.03 x 10-31 kg

1 = e/m 1.76 x 10ll coulombs/kg

e = dielectric constant of space = (36) -1 x 10-9 farad/m

k = Boltzmann's constant = 1.37 x 10 23 joule//K

c = velocity of light in space = 3 x 108 m/sec

Io = d-c beam current

I = total circuit current (amps)

J = total circuit current density (amps/m 2)

i = electronic convection current

q = electronic convection current density

uO = electron "d-c" velocity (m/sec) = 2IV O

v = fluctuating component of electron velocity

V = voltage

V =- d-c accelerating voltage

w = radian frequency

tb = transit time between cathode and anode

tc - transit time between anode and helix

e = transit angle = wt

o- 5 c g/tb + 1)

r = cathode radius (m)

E12,3 = axial field strength of various helix modes

0 = helix propagation constant = /vo

vo = velocity of propagation on helix

rn = jBo + n = propagation constant of nth mode

C = gain parameter =- (EE 0

IMC C27reu0
X C I o

To = cathode temperature (K)

T = antenna temperature

B = bandwidth (cps)

F = noise figure

y2 = space charge smoothing factor
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SHOT NOISE IN BEAM TYPE TRAVELING-WAVE AMPLIFIERS

I. Introduction

Considerable effort is going into the development of traveling-wave

amplifiers whose noise figures are low enough to allow their use in the

input stages of microwave receivers. The criterion by which such tubes are

measured is the noise figure of a silicon crystal used as a mixer, and the

input circuit of the i-f amplifier. At 3000 Mc/sec it is possible to get

a mixer-i-f noise figure of 9 to 10 db. Up to the present, the best noise

figures that have been obtained in traveling-wave tubes are in the neighbor-

hood of 12 db at 3000 Mc/sec, as reported by Kompfner (1) at Oxford and

Field at Stanford.

The sources of noise in a traveling-wave tube are several: (a) shot

noise arising from the random emission of electrons from the cathode;

(b) partition noise caused by a portion of the electron beam being inter-

cepted by the accelerating electrodes or the helix; (c) partition noise "of

the second kind" caused by electrons at different cross sections of the beam

having different coupling coefficients with the helix; (d) gas noise ap-

pearing as a modulation of the amplified signal caused by plasma oscillations

of the ions trapped in the electron beam (2). The last three types of noise

are more or less subject to control. Partition noise can be minimized by

careful design of the electron gun and magnetic focusing system. Partition

noise of the second kind can be reduced by confining the beam to a region

close to the axis where the electric fields are nearly uniform. Gas noise

can be minimized by careful outgassing and by the use of auxiliary electrodes,

biased to reduce the ion concentration in the beam. Furthermore, gas noise

does not set a limit on sensitivity since it appears only as a small modu-

lation on an existing signal. Shot noise, on the other hand, presents the

designer with a more or less fixed noise level beyond which he cannot go.

Both Pierce (3) and Kompfner (1) have computed the noise figure of a

traveling-wave amplifier, considering only shot noise. Their results were

identical and, in Pierce's notation (3),

F o80y2 vC (1)

where 2 < 1 is the space charge smoothing factor, V is the d-c beam volt-

age, and C the gain parameter of the tube. This expression was derived on

the assumption that the noise input to the helix is entirely due to the

noise convection current in the beam, and that the mean square value of the

current is given by

in =Y 2eIB . (2)

9
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Equation (1) has been widely used as a design equation for developing

low noise tubes. It indicates that the greatest improvements are to be had

by a reduction in beam voltage V0. In principle, one can make a helix to

operate at any voltage, so that if we assume the helix impedance EEz/2Po

to be a constant, then C cc (Io/Vo)l/3, and Eq.(l) can be written as

F V2/3 I/3 (3)

It is the purpose of this paper to inquire into some of the basic assump-

tions used in deriving Eq.(l). We will first derive expressions for the

actual noise current in and the noise velocity fluctuations vn of the beam

at the beginning of the helix. Then the amplitude E1 of the growing wave

will be computed, and the noise figure derived.

II. Noise Current and Velocity in the Beam

The treatment followed here will be along the line laid down by

Llewellyn (4), Llewellyn and Peterson (5), and Peterson (6). These authors

have discussed parallel-plane electron flow extensively, and cylindrical

flow slightly. The discussion that follows will be based on the assumption

of flow between infinite parallel planes. It is not entirely clear that

such a derivation can be applied to a thin, cylindrical beam. One justifi-

cation for this procedure is that no other analysis is available at the

moment. A second justification arises from the nature of the "Pierce gun"

(7) commonly used to produce the beams in traveling-wave tubes. In the

region between cathode and anode, the electrostatic fields are arranged so

that their values at the edges of the beam are those that would exist if the

beam were part of the space charge-limited flow between an outer spherical

cathode and inner spherical anode. This is a kind of "infinite" flow, and

one presumes that the differences in geometry between parallel planes and

concentric spheres will change the magnitudes slightly but not the basic

phenomena.

The heart of Llewellyn's method is to reduce a complicated electronic

system to a series of diodes in which the input convection current and

velocity modulation of the electrons of one diode are the corresponding

output quantities of the preceding diode. This is illustrated in Fig. 1.

According to Llewellyn and Peterson (5) we may write the following

system of linear equations if the a-c quantities are small:

Vab A I + Bq a + C va

qb =D* I + Eqa + F*v,

vb = G* I + *qa + Iva (4)

-2-
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Fig. 1 Electron flow through a series of
parallel plane electrodes.

Iab

where the coefficients A* through I* are defined in Table II of Ref. (5).

The structure we shall consider here is the gun or cathode-anode space, and

the drift tube between the anode and helix, Fig. 2. We shall assume that

the radio-frequency impedance of the sections a-b and b-c are zero, so that

the voltages Vab, Vbc ~ O. Then Eq.(4) can be written

qb = (E* * ) qa + (F- * ) v a

A A

vb (H* * ) qa + (I* A* ) v a (5)

CATHODE

Fig. 2 Input end of traveling-
wave amplifier.

b C
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Thus, if the noise currents and velocity are defined at a, we may

finally compute their magnitude at c by applying Eq.(5) twice, using the

proper values for the coefficients in each case.

The noise problem can be handled in this elementary manner if we assume

an electron flow in which all electrons in a given cross section of the beam

have the same velocity. It will be assumed that the flow in the anode-cath-

ode region is completely space charge limited with the virtual cathode lying

in the plane of the cathode. Evaluating the coefficients from Table II of

Ref. (5), we find

2 joeb -jeb 
qb 2 e va

ltb

vb -ea

where eb = tb » 1.

We now repeat the process for the drift tube. Here, we also assume a

large transit angle ec, but since the electrons are traveling at full beam
voltage V, we assume a small space charge density ( << 1, Ref. (4)). Then,

using the proper coefficients, we get from Eqs.(5) and (6)

2 jera -j(eb+ec)

b (tbatC ( e~ b, c 1(b)
Vc~ -v a ( + 1) e (7)

Thus, the convection current q and the velocity modulation vc are functions

of the initial velocity fluctuation va at the cathode, but not of the initial

current qa.

The transit times tb and tc may be written in terms of V, Io, and the

drift tube length Q. In a space charge limited, parallel plane diode, the

transit time is (8)

t 3d (8)

where d is the spacing. The d-c current density is

4e f2 V3/2

J ----- d2-- *(9)
9d2

In the drift tube, the transit time is simply

t I (10)
J2nvo-

4
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Using Eqs.(8),(9) and (10), Eqs.(7) may be rewritten

Va | JO uo -J(0b+ec)
qc 0 e

-j (eb+ c)Vc-_ -v e ( ) J 11)

where = (tc/tb + 1).
Thus, according to Eqs.(ll), the current and velocity fluctuations of

the beam are proportional to the velocity fluctuations of the electrons

leaving the virtual cathode, and are independent of the input current fluc-

tuations, if the flow is space charge limited. The problem of determining

the initial velocity fluctuation has been treated by Rack (9) and Pierce (10).

They give the mean squared value as

--:! qkT B
Va= ( I . (12)

From Eqs.(12) and (11) we can write the expression for the mean squared

noise current

2
2 2 -7 2kT B W e

(r2) = rr(4 ) .. (13)

We can now compute y2 by dividing Eq.(13) by the shot noise mean squared

current

i = 2eIOB . (14)

Then

y2 2 eCkT(4 - r)

e u Jo

2.o04 x 10-15 ?Tc
=re- .(15)

r uoJo

Up to this point we have considered only a pencil of current within a

diode of infinite extent. The cross section of such a pencil is constant,

and we do not have to specify at what point r is measured. If we are con-

cerned with practical devices, the beam of electrons will generally have

a larger diameter at the cathode than it will have within the helix. The

effect of this convergent action upon the noise has not yet been solved.

As a first approximation, however, we can use the following reasoning: the

noise in the beam is primarily due to the fluctuations at the cathode, and

the changing cross section of the beam probably has only secondary effects.

-5-
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Therefore, in the following, r will be the cathode radius. If we choose

Tc = 1000°K, o = 6 x 1010, r = 0.06 inch = 1.5 x 10-3m, u = 2 107 m/sec

(Vo 1000 volts), then

y2 0.82

Ima

As a final step, before investigating the way in which the beam induces

noise in the helix, let us substitute Eq.(15) into Pierce's noise figure

expression, Eq.(1):

1.6 x 10'1002V1/2Cr2
F 80y2oC= o

ma

= 2.7 x 10 16 2vl/2 r l . (16)o 0ia

This makes

F V1/6 -2/3 EE /3 (17)

which is quite different from the relation indicated by Eq.(3). In both

Eq.(3) and Eq.(17) the noise figure is proportional to the helix impedance;

a tube with weaker coupling to the beam will have a better noise figure. On

the other hand, Eq.(17) indicates that the voltage dependence is weak, and

the noise figure varies as I o2 /3 , while Eq.(3) indicates an Io/3 variation.

III. Excitation of the Helix by a Modulated Beam of Electrons

Equation (1) was derived by Pierce on the assumption that the beam

entering the helix had a fluctuating current but not a fluctuating velocity.

According to Eqs.(ll), however, the beam has both a fluctuating current and

a fluctuating velocity. We shall therefore repeat Pierce's derivation, and

include the effect of the velocity fluctuations.

The expressions relating the axial field strengths of the three forward

waves to the input conditions in a traveling-wave tube are (3)

E1 + E2 + E3 = E

E1 E2 E u

1 2 3 To

E 1 E2 E 2V

+ +26 o (18)
° 3°

-6-
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where uo = 2inVo, E is the field at the beginning of the helix, j is the

phase constant of the helix, and

62 = BOC 9 1-)

63 = joC . (19)

If we let E 0, and solve for E1, the amplitude of the growing wave, we

get

o C 2Vo .i V 4V
E 1

o u L °U i( ) (20)

3( + i4)

Into this equation, we may substitute the relation between the fluctuation

current density qc and the velocity fluctuation vc of Eqs.(ll), letting

i - wr2qc, where r is the beam radius:

2Vo oCVa 0 , (l i 43 ( + 
1 = L0. (21)

uO( + j

The quantity 6 1 and < 3 for ordinary geometries, i.e. the drift tube is
less than six times as long as the cathode-anode distance. Let us assume

some typical values and compute the magnitude of the first term in the

brackets. Let 6 x 1010, r = 0.06 inch = 1.5 x 10-3m, C 0.01, uO = c/25,

Io = 10-4 amp, then

2rrcuoTIaCC i = 5.5 .

Thus the contributions of the current and velocity fluctuations are of the

same order of magnitude, and neither can be neglected.

The noise figure of the tube will be defined as (3)

F E 2 i El (22)
ET 12 ET 2 (22)

-7-
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The thermal noise due to the antenna is

IE1TI2 8Vo2C3kTBET 9I o910

The noise due to the beam is

2C 22P? va 2

2 (x2 i+ 1- Xj3 (24)
j~nl 9

where

X =rXGC ¢UOa- 110

Then

F (x + 1 - X . (25)

Substituting Rack's value for va, Eq.(12), we find

O.107or2 T 2 
F _ c (X2 +l-- X ) . (26)

CT
If T = 10000 K, T = 3000 K

F ,( x2 + 1 - X 2 .6 (27)

The quantity in the brackets cannot be made equal to zero for any real
value of X. Fig. 3 is a plot of the function vs. X. There is a rather
broad minimum for 1/2 < X < 1 1/2. In this region we find, then, that
F cc 1/C. That is, the absolute voltage or current has little effect on the
noise figure; and, the coupling C between beam and helix is the critical
parameter.

65

2

.05

Fig. 3
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IV. Conclusion

Since the noise figure of a traveling-wave amplifier turns out to be

mainly dependent on the gain parameter C, there is little or nothing to be

gained by building tubes to operate at very low voltages. The choice of

operating current and voltage becomes a "practical" one; that is, ease of

construction, power consumption, magnetic focusing field, and other similar

factors are the ones to be considered.

The fact that F cc 1/C puts a premium upon helix impedance. The im-

pedance can be increased only by reducing the helix diameter. Thus it

appears that the best tubes will have small helix and small beam diameters.

The expression for 2 , Eq.(15), can obviously assume values greater

than unity, which is physically impossible. This is due to the assumptions

used by Rack in computing a, Eq.(12). These assumptions are that the

effect of the electrons turned back by the virtual cathode may be neglected

(which is nearly true if the current density is large) and that the final

(anode) velocity is large compared to the thermal velocities. At the moment,

no attempt has been made to extend the analysis to the case of low current

densities.
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