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ABSTRACT

In this research we reconcile two opposing views regarding the

presence of economies or diseconomies of scale in new software

development Our general approach hypothesizes a production function

model of software development that allows for both increasing and

decreasing returns to scale, and argues that local scale economies or

diseconomies depend upon the size of projects. Using eight different

data sets, including several reported in previous research on the subject.

we provide empirical evidence in support of our hypothesis. Through

use of the nonparametric DBA technique we also show how to identify

the most productive scale size that may vary across organizations. These
results are extended to include the effects of nonparametric scale-

related factors, such as project duration and the number of new staff on
the project team.

The first author was supported in part by NSF grant SES-8709044 at Carnegie

Mellon University.
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1. RESEARCH PROBLEM

Software development practitioners are faced with the problem of how to

appropriately size new software development projects so as to maximize

productivity Unfortunately, much of the research in this area has arrived at

apparently contradictory conclusions, namely that either economies of scale exist or

that diseconomies of scale exist This paper integrates these apparently

contradictory results in a consistent framework, and empirically demonstrates that

the existence of local scale economies or diseconomies depends upon the size of

software development projects.' In addition, we provide a methodology for

identifying the most productive scale size for a given software development

environment, and show the effects of some other scale related variables on

productivity.

A production process exhibits (local) increasing returns to scale if, at a given

volume level, the marginal returns of an additional unit of input exceed the average

returns. Economies of scale are thus present when average productivity is

increasing, and scale diseconomies prevail when average productivity is decreasing.

Reasons provided to explain the presence of economies of scale range from

specialization of labor to phenomena such as learning curves. Software engineering

researchers such as Boehm [16] have noted the presence of a number of factors

in new software development that may contribute to economies of scale, such as

software development tools like online debuggers or code generators. These tools

may increase productivity, but the relatively large initial investment, both in purchase

and in the organizational learning costs, may proscribe their use on small projects.

Larger projects may also benefit from specialized personnel, whose expertise in a

certain area (e.g., assembly language coding) may increase the project's overall

productivity. Finally, ail projects require a certain fixed investment in project

management overhead. This type of overhead (e.g., status meetings and reports)

1

In production economics, economies of scale larel defined at specific volume levels in a production process, and

are thus best described as local. It is therefore inappropriate to limit the characterization of a production process to

only global economies (or diseconomies! of scale. In dealing with single input-single output pfoduction

correspondences, we shall use the terms increasing returns to scale and scale economies interchangeably.



does not increase directly with project size and therefore can be a source of

economies of scale for larger projects.

In contrast to the reasons cited above, many authors have pointed out the

possibility of diseconomies of scale on large software projects. Brooks [17] has

suggested that the number of communication paths between project team members

increases (at an increasing rate) with the number of team members.^ This

communication overhead is a clear case of nonlinear cost increase, and hence a

factor that could contribute to diseconomies of scale. Somewhat analogously, Conte

et al. [21] suggest that larger systems development projects will face more

complex interface problems between system components. Boehm [16] points out

that increasing the number of people also increases the chances for personality

conflicts among team members. Jones [25] notes that many overhead activities,

such as planning and documentation, grow at a faster than linear rate as project size

increases. Another possible source of diseconomies of scale is project slack,

which is likely to be larger on a larger project and may contribute to reduced

productivity.

Given these contradictory hypotheses, how can researchers best model the

software development production process? And, how can practicing software

development managers appropriately size new software development projects so as

to maximize average productivity? This paper addresses these questions and is

organized as follows. Section 2 presents the empirical evidence for both the notion

of economies of scale and the notion of diseconomies of scale in new software

development We integrate these two notions and suggest that in most

organizations, the software development production process first exhibits (local)

increasing returns to scale, but decreasing returns set in for very large projects.

We believe that one reason that this has not been shown by other researchers is

due to the simple parametric models employed. We show in Section 3, however,

that in empirical applications even the more flexible parametric forms are limited in

The number of peths required )S n(n-1)/2, where n is the number of project team members.



their ability to estimate the returns to scale. This motivates our use in Section 4 of

Data Envelopment Analysis as an alternative nonparametnc modeling technique to

identify the most productive scale size Section 5 presents the results of further

analysis of other scale-related variables Finally, the conclusions and suggestions for

further research are presented in Section 6.

2. EMPIRICAL EVIDENCE

A number of researchers have collected empirical data that support increasing

returns to scale theories. The general approach of these researchers has been to

estimate a function of the form:

y = aix)"

where / is the amount of input, typically professional work-hours, and x is the size

of the project, typically measured in terms of source lines of code (SLOC) or

Function Points (FP). This function is estimated by taking the logarithms of both

sides and then estimating the resulting linear model using regression techniques.

(1) ln(y) = a + bln(x)

An estimated exponent value, b, less than 1 indicates economies of scale, while an

exponent greater than 1 indicates diseconomies of scale. This follows because the

returns to scale measure is

X dy

y dx
That is, marginal productivity (dxidyj is greater than (less than) average productivity

(xly) if b is less than (greater than) one.

One of the earliest pieces of research to estimate this function was the work

of Walston and Felix [31]. They collected data on 60 projects within IBM's Federal

Systems Division and estimated a function with an exponent of .91, a result that

would indicate mild increasing returns to scale. Jeffery and Lawrence [24] and

Vessey [30] have also reported economies of scale on small projects, although

they have not published their data

We have extended this analysis to a number of other published data sets.

Using the 1978-80 data from a Yourdon [22] survey of 17 projects from a



variety of firms, we estimated an exponent of .72, indicating increasing returns to

scale. Two other data sets that display exponents of approximately .95 are from

Bailey's study [3] of 19 NASA/Goddard Space Flight Center projects and Behren's

study [14] of 25 projects at Equitable Life Assurance Society.'' Kemerers

[26] Function Point data from a commercial data processing consulting firm yield

an estimated exponent of .85. In summary, the evidence for economies of scale

comes from a number of sources representing a wide variety of application

environments.

However, a number of researchers have provided empirical support for the

notion of diseconomies of scale as well. Boehm's [16] 63 project COCOMO data

set exhibits an exponent of 1.11 . We estimated a high exponent of 1.49 for

Albrecht's [2] 24 projects from IBM measured in Function Points. Two data sets

that produce identical exponents of 1.06, showing mild decreasing returns to scale

are Belady and Lehman s [15] 33 project data set from a large software house and

Wingfield's [32] 15 project U.S. Army data set Therefore, the empirical evidence

for diseconomies of scale in new software development is at least as compelling as

that for economies of scale.

Table 1 summarizes the ioglinear model analysis of the nine data sets, with

five exhibiting increasing returns to scale and four exhibiting decreasing returns to

scale. Note that the data sets in Table 1 are listed in the approximate order of

their average size." One interesting result available from even a cursory examination

of Table 1 is that the data sets with smaller average projects (the first four on the

list) tend to show economies of scale, while the data sets with larger average

projects tend to show diseconomies of scale. The last data set, which contains the

largest projects on the list, is the only exception to this simple analysis. This data

set (also referred to as the ABC data set) is described in Table 2.

Behren's data set is not reported directly irt his paper. However, a scatter graph is provided, which was enlarged

end the data directly extrapolated. Note that the graph contains only 22 of the 25 reported data-points.

Behren's data is only provided in terms of Function Points. Using Albrecht's linear model, the average SLOC for

Behren's data is estimated to be approximately 10. 8K.



The returns to scale results reported in Table 1 thus indicate that the

conflicting theories about the presence of scale economies or diseconomies

described in Section 1 are matched by conflicting empirical evidence obtained for

different data sets We reconcile this apparent contradiction by offering the

hypothesis that for most software development "production processes" there exist

increasing returns to scale for smaller projects and decreasing returns for very

large projects That is, average productivity is increasing as long as the project size

is smaller than the "most productive scale size" (MPSS), and is decreasing for

projects that are larger.^ The actual MPSS may be different for different

organizational settings.

The reasons for our above hypothesis stem from the conflicting arguments

presented earlier in Section 1 for the presence of both economies and

diseconomies of scale. Since most projects require a significant fixed investment in

project management overhead, average productivity increases initially as the fixed

overhead is spread over a larger project But the larger project size generally

makes it more difficult to manage, and the marginal productivity of the project team

is likely to decline. Increasing returns continue to prevail as long as average

productivity remains less than marginal productivity. At the most productive scale

size (MPSS) marginal productivity equals average productivity, and beyond MPSS

average productivity, being greater than marginal productivity, is declining and

decreasing returns to scale prevail. This intuitive argument is depicted in Figure 1.

In the next two sections we reexamine eight* of the nine data sets within the

framework of less restrictive estimation models to provide empirical support for

our hypothesis.

The MPSS will tend to differ across organizations. If the fixed overhead is

large, or if the marginal productivity does not decline rapidly, increasing returns will

Banker |4| provides s rigorous definition and discussion of the concept of most productive scale si2e (MPSSI. We
pursue this analysis further in Section 4.

e
Walston and Felix I311 report their estimated loglinear nnodel, but do not present the actual data.



continue to prevail for larger projects and the MPSS will be large. On the other

hand, if the fixed overhead is relatively small or if the marginal productivity declines

sharply, then the MPSS is small and decreasing returns set in at a lower scale level.

3. PARAMETRIC PRODUCTION FUNCTION ANALYSIS

The problem with the simple loglinear model of the previous research is that

it does not allow for the possibility of increasing returns for some projects and

decreasing for others. The estimated returns to scale are determined by a single

parameter, the exponent b. But we require a more general model that allows for

average productivity increases as the fixed project overhead gets spread over larger

and larger projects, and after reaching the most productive scale size (MPSS), it

allows for declining average productivity caused by negative factors affecting large

projects such as the proliferation of communication paths. Rather than reject the

parametric approach based only on the simple loglinear model, we first explore

more flexible parametric forms that have been employed in empirical research in

other production environments. Such a model that estimates MPSS would also be

of use to software development managers because they can then identify the scale

size where average productivity is maximized in their organization.

One possible method for generalizing the restrictive loglinear production

function for new software development of previous research is by simply adding a

logquadratic term as an independent variable. We can thus estimate the following

translog function:^

12) \n(HOURS) =
fi^

+ fi^(\n(SIZE)) + /3^{\n{S/ZE)f

Letting / equal HOURS and x equal SIZE, it is evident that the returns to

scale measure p is given by

d\r\ y xdy
(3) p = = —- = fi+ 2;? (In X)

d\r\ X ydx

Chnstensen, Jorgenson and Lau 1 20 1 note that the translog is a llexibl« functional form that provides a local

second-order approximation to an arbitrary, twice-continuously-dtfferentiabie production function.



Therefore, if the estimated /S, > then increasing returns to scale prevail for

X < exp {(1 -/? )/2/? } and decreasing returns prevail for project sizes greater than

the estimated MPSS given here by x' = exp {(]-^ )/2/i }. If, however, the

estimated y5 < then average productivity is estimated to be increasing for smaller

projects, and decreasing for longer projects, contrary to our arguments presented

earlier.

Hildenbrand [23], Varian [29] and Banker and Maindiratta [9] have argued

that such a parametric approach imposes considerable untested structure on the

production function. To provide evidence of robustness of their results, several

empirical studies therefore estimate different parametrically specified functional

forms. For instance, in our present context an alternative specification may be the

following quadratic form:

(4) HOURS =
/?(,

+ ^^(SIZE) + p^[SIZE]^

Again letting / equal HOURS and x equal SIZE, the returns to scale measure p

is given by:

xdy ^(/?, + 2/?^x) fi,x*2fi^x^
(5) />

=
ydx y ^^ + p^x + fi^x^

Therefore, p> 1 if and only if fi^x'^> fi^.
If the estimated values of both fi^ and fi^

are positive then the MPSS is given by x* = \/B/ B , with increasing returns for

x< X* and decreasing returns for x > x«». If estimated J3^< and fi
>0 then

decreasing returns are exhibited for all x > 0, and if estimated /^g > and /ffj <

then increasing returns are exhibited for all x > 0. If the estimated values of both

J3^ and ^^ are negative then decreasing returns correspond to small projects and

increasing returns correspond to large projects, contrary to our earlier hypothesis.

The empirical results for the eight available data sets for the logquadratic

(translog) and the quadratic models are presented in Tables 3 and 4 respectively.
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Two empirical problems are encountered in practice. First, several researchers have

observed that these so-called flexible parametric functional forms frequently violate

reasonable regularity conditions, such as monotonicity, see for instance. Caves and

Christensen [18] and Barnett and Lee [13]. In our present context, the

logquadratic models estimated for the Bailey and Wingfield data sets exhibit dyldx <

(decreasing labor requirement for increasing project size) for smaller projects.

Similar violation of the monotonicity condition is exhibited by the estimated quadratic

models; for small projects by the Albrecht and Kemerer data sets and for large

projects by the Bailey, COCOMO and Belady data sets.

The second empirical problem is more serious for our objective of estimating

returns to scale for ne\N software development The pairs of independent variables

In (SIZE) and (In (SIZEjP. and (SIZE) and (SIZE)\ tend to be highly correlated.

The range of pairwise correlations was 0.967 - 0.999 for In (SIZE) and (In

(SIZE)j^ and 0.915 - 0.974 for (SIZE) and (SIZE)^ for the eight available data

sets. This high level of collinearity implies that the confidence about interpreting the

estimates of the coefficients >5, and ^^ as the change in the dependent variable due

to a change in the independent variables will be very low for both the logquadratic

and the quadratic models.® Consequently, the estimates of these coefficients are

likely to be unstable, see for instance Pindyck and Rubinfeld [27]. The usual

econometric methods, therefore, may not be appropriate for estimating the nature

of returns to scale or the most productive scale size for these eight data sets.^

The high collinearity between In (SIZE) and (In (SIZE))^ is also of

importance to the interpretation of the results of the estimation of the simple

loglinear models reported in Table 1. The estimated coefficient b in this case is

likely to also pick up the effect of the omitted variable (In (SIZE))^, and therefore,

the interpretation of b as the estimated returns to scale measure may not be

appropriate.

8
The standard errors of the estimated coefficrents are likely to be larger, and the corresponding i-statistics are

less likely to be significant when the independent variables are highly correlated.

9
The variance of the estimates of the returns to scale or MPSS measures depend on the variance and the

covartance of the estimates of p jj and p .



4. NONPARAMETRIC PRODUCTION FUNCTION ANALYSIS

Given these problems, and the limited a priori knowledge about the functional

form of the production process underlying software development, specifying a

parametric form for the production correspondence is difficult to substantiate

theoretically or validate statistically Also, it is not immediately apparent what

restrictions these hypotheses, treated as axioms in the econometric approach,

impose on the production correspondence [9, 23, 29]. Production economics

theory indicates the need to employ a frontier notion for a production function,

with deviations from the frontier occurring due to inefficiencies exhibited in

individual observations [8, 29]. This differentiates between characteristics of the

process and individual inefficiencies. Therefore, we propose to use Data

Envelopment Analysis (DEA), a nonparametric approach to production frontier

estimation developed by Charnes, Cooper and Rhodes [19] and extended to a

formal production economics framework by Banker, Charnes, and Cooper [5].'°

DEA does not impose a parametric form on the production function and assumes

only that a monotonic and convex relationship exists between inputs and products."

More formally, the following limited assumptions are made about the frontier

production function f(x) :

1. Monotonicity : If ./ = fix], y' - f{x') and x ^ x', then / ^ >/

2. Convexity If y = fix), y' = fix') and < X < 1 then

(l-X)/* \y' ^ /[(1-X)x+ Xx']

3. Envelopment : For each observation Ar, Ar = 1 n, y^
'^ fix^)

4. Minimum Extrapolation : If a function gi-) satisfies the monotonicity,

convexity and envelopment conditions, then ^(x) ^ fix) for all x.

The estimation of the function f(x) can be accomplished using linear

programming techniques, and estimates of f(x } obtained in this manner are maximum

likelihood and consistent, see Banker [12]. The most productive scale size is

10
Recent developments MO) m stochastic data envelopment analysis simultaneously consider deviations from the

production frontier due to inefficiencies and also measurement errors.

Evidence on the comparative application of the DEA and tranilog models is provided by Banker, Conred and

Strauss |6|.
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estimated via the following linear programming model as in Banker [4] for the

general case of multiple inputs and outputs.'^

(6) min Tj

^

subject to

n

n

k«1

(6.3) ,^.X^ >

where x ^
- output j, for observation k,

y.^^
= input /, for observation k, and

n = number of observations (/r = 1, 2, ...,/?).

The MPSS for the input-output mix given by (Yj^^xJ where y^ =

fyyA' 'K,A' • • 'y^J- ^^^ ^A = ''^lA' '^A' • • "^JA''
'S computed as follows:

MPSS =
'^A

X'.2.\

In our present context, we are interested only in a single input-single output

production correspondence, and the computational problem is consequently

considerably simplified. The solution to the linear program in (6) is given by simply

i' -xJy.M where M = max\x/y I k='\ n] is the maximum observed'A A' 'A kk'k'

Alternativ« models for estimating MPSS when some inputs or outputs are fixed or uncontrollable, or when some
variables are measured on a categorical rather than on a continuous scale are described by Banker and Moray (71.

Banker and Maindirstta 181 discuss the estimation of other non-convex technologies.
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average productivity across all observations. The most productive scale size is

given by the project size x,^, say, for which xjy^ ( = Mj is the largest for all

observations. If the maximum average productivity is also attained for some other

observation, say M' . with observed input-output pair (x^. , y^J, then there is

evidence of local constant returns to scale, and the range of project sizes between

x^, and x^ all represent MPSS.

The MPSS was calculated for the eight available data sets, and the results are

reported in Table 5 using the size metric chosen by each researcher. From a

practitioner's viewpoint, the MPSS provides a project size goal in order to maximize

the average productivity of future new software development projects. From a

research perspective, it also allows the identification of both increasing and

decreasing returns within these empirical data sets. Projects larger (smaller) than the

MPSS correspond to decreasing (increasing) returns, respectively. Table 5 shows

the MPSS and the corresponding percentile value for the range of observed output

data for each of the eight data sets. In five of the eight cases, the MPSS is within

the inter-quartile range for the observed output data, thus indicating that both

increasing and decreasing returns are clearly present since there exist both smaller

and larger projects than the MPSS at that site. It follows therefore that the

loglinear model may be an inadequate description of many new software

development application environments.

5. OTHER SCALE-RELATED FACTORS

In our analysis in the earlier sections, we have considered only the project

size as measured by SLOC or Function Points as the factors explaining the variations

in the professional labor requirements of different projects. Other scale-related

factors, such as the duration of a project, or the number of new staff members

assigned to a project team may also explain these variations. While the

methodology employed for our earlier analysis remains applicable and provides an

important link to prior research, the specific results must be interpreted cautiously

to the extent that such additional factors have not been included in the analysis, in
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this section, we consider the explicit inclusion of other scale-related factors in our

estimation models, and we provide empirical evidence about the importance of these

factors.

In addition to size as measured by SLOC or Function Points, project scale is

often represented by the amount of calendar time taken by a project A projects

duration, while possibly highly correlated with a size measure, need not be. For

example, a project containing a given number of SLOC could be stretched out over

a relatively longer period of time For a project composed of a number of tasks

this might be due to a situation where one task was required to be completed

before the others could commence due to their logical dependence. An example

might be getting a critical user-signoff on some piece of the project This would

result in a number of other tasks that are not on the "critical path" having a lot of

slack. Abdel-Hamid and Madnick [ 1 ] suggest that this type of effect also occurs

on projects that have mis-estimated the amount of time required.

Increasing the duration on a project is likely to increase the number of yvork-

hours expended on the project for a couple of reasons. Over the course of a

long project there is more chance of changes in user requirements, thus

necessitating re-work. Also, Boehm [16] suggests that with the likely additional

slack on a longer project a "Parkinson's Law" type ("work expanding to fill the time

available for its completion") effect occurs.

In order to test the significance of the project's calendar time as a scale-

related explanatory variable, regression analysis was performed on the six data sets

where the calendar time (DURATION) was available.'^ The regression models were

of the form:

(7) HOURS =
/*(,

+ ^^{S/ZE) + fi^[SIZE? + ^pURATION)

This model was chosen to represent the nonlinear aspects of the HOURS :

SIZE relationship. The variables SIZE and (SIZE)^ are highly correlated as noted

For the Bailey. YourOon, Belady, and Wingfield data sals, this data is availabl* in Conte (211.
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earlier and therefore the estimation of the corresponding parameters will suffer

from collinearity problems. However, this does not affect the objective of our

analysis which is to identify whether DURATIOM provides a significant explanation of

the variation in HOURS, over and above that provided by the SIZE and (SIZE)^

variables The results of this analysis are shown in Table 6. Of the six data sets,

DURATION is statistically significant at the 95% confidence level in four. Of the

other two, in the Yourdon data DURATION is highly correlated with SIZE (correlation

coefficient = .71, see Table 7) which provides a possible reason why it is not

adding any additional explanatory power. Only in the Wingfield data does the

DURATION variable not seem to add to the labor requirement

Another scale-related factor affecting productivity is suggested by the

literature dealing with the communication paths on a project Not only could

additional overhead be related to the number of paths, but also to the efficiency of

those paths This could be affected by how much experience the project team had

working as a group. A variable, NEWSTAFF, the number of new staff members on

a project team, has been suggested by Rubin [28] as a possible source of

productivity variation. While a larger project is likely to require more people and be

assigned more new staff, this need not be the case. The NEWSTAFF data are

currently available only for the Kemerer data set [26]. To identify the impact of

this additional factor we estimate the following model:

(8) HOURS = /Jq + fi^{SIZE] + fi^iS/ZE)^ +
fi^(DURATION)

+ /3JN£WSTAFF)

The results for the ABC data are:

Hours = 16042 - 93.93 (FP) + 0.06(FP)' + 1522 (DURATION) + 9. 06 (NEWSTAFF)
(1.43) (-4.10) (6.62) (2.71) (2.10)

The t-statistics are reported in parentheses.

R* = .90

The correlation matrix for these variables is.

NEWSTAFF DURATION FP
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DURATION -0.104
FP -0.165 0.338
(FP)' -0.221 0.203 0.950

From these results, it is apparent that the number of new staff members is a

significant predictor of the variation in work-months for the Kemerer data set, over

and above the other scale-related variables Function Points, (Function Points)^ and

Duration. It is important to note that this is the number of new staff members, not

simply the number of staff. For this data set, the correlation of IMEWSTAFF and

average staff (the ratio of work-months to calendar months) is only .02.

An alternative nonparametric estimation of this production function can be

accomplished by using an extension of DEA, see Banker [10]. The following

general model is specified:

(9) HOURS = nFP\ ^^pURATION] + fi^(NEWSTAFF)

Rather than assuming a specific parametric functional form (such as the

quadratic), in this DEA model the function ^(FP) is assumed only to be monotone

increasing and convex, while DURATION and NEWSTAFF represent additive linear

terms. The results for this case are coefficients of 1018 for DURATION and 1163

for NEWSTAFF. The deletion of the variable NEWSTAFF from the model in (9)

increases the sum of squared residuals by 123.1% and the sum of absolute residuals

by 88.9%. Similarly, when we remove the variable DURATION from the model in (9),

the sum of squared residuals increases by 109.9% and the sum of absolute residuals

increases by 76.6%. Thus, each of these two variables provides substantial

incremental explanatory power to the model, see Banker and Morey [11]. These

results are not dependent upon pre-selecting a functional form but are generally

consistent with the results from the quadratic model, thus corroborating the

conclusions drawn from our earlier regression analysis.
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6. CONCLUDING REMARKS

In this research we have reconciled two opposing views regarding the

presence of economies or diseconomies of scale in new software development

Our general approach provides for a production function model of software

development that allows for both increasing and decreasing returns to scale.

Through use of the DEA technique we have also shown how to identify the most

productive scale size. These results were extended to include the effects of other

scale-related factors.

For the practitioner, our results contain a number of useful implications. In

terms of project estimation, traditional algorithmic models have suggested a simple

loglinear model with which to estimate eventual work-hours. While these models

have some limited applicability, they ignore the possibility of improving project

productivity by carefully selecting the scale of the project Rather than taking the

scale as exogeneous, as most of these simple models do, managers could actively

seek to identify the most productive scale size for their organization. Our results

suggest that this MPSS varies widely across different application environments, and

an interesting extension to this work would be to identify factors that contribute to

some organizations' ability to successfully manage larger projects. Managers could

also assess the effects on productivity of other scale-related factors, such as

calendar duration and the number of new project team staff members.
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DATA SET n

Table 1: Summary of Loglinear Models

MEAN SLOC MEAN FP

Significant at the 5 percent level for a one-tailed test

•"Significant at the 10 percent level for a one-tailed test

t-statistic

H„:b=l
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Project Hours

Table 2: Kemerer [26] Data Set

Func Pts KSLOC Duration Newstaff
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Table 3: Sutnmary of Logquadratic Models

DATA SET
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Table 4: Summary of Quadratic models

DATA SET /?g /?, y5j R^ MPSS'



DATA SET

20

Table 5: Most Productive Scale Sizes Using DEA

MPSS" Percentile



DATA SET

21

Table 6; Duration Regression Results

/?3

COEFFICIENT

DURATION
t-STATISTlC
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Table 7: Duration Regression: Correlation Between Independent Variables

DATA SET CORRELATIONS
Hours Size (Size)

Bailey Size

(Size)^

Duration

.91

.79

.60

.96

.46 .38

Yourdon Size

(Size)^

Duration

.63

.55

.57

.95

.71 .63

COCOMO Size

(Size)'

Duration

.71

.55

.74

.92

.58 .33

Belady Size

(Size)'

Duration

.64

.53

.63

.95

.46 .31

Wingfieid Size

(Size)'

Duration

.82

.85

.40

.97

.43 .42

Kemerer Size

(Size)'

Duration

.74

.86

.24

.95

.34 .20
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Figure 1

Most Productive Scale Size (MPSS)
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