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Abstract

We present a stochastic model of make-to-stork firms hasofl on a l^uffer flow system with

jumps. The cumulative production and the cumulative demand are poverned by two Pois-

son counting processes with random intensities parameterized by ])r()(hiction capacity and

price respectively. Optimal operating and i)ricing policies (short-run dcci.sions) and opti-

mal capacity (long-run) decisions are explored by application nf a two-stage optimization

device. Detailed computations regarding the Poisson Iiuffcr flow system and a variation

on the basic model with learning effects are also presented.

'This work has benefitpd ronsidcrahly from clisrn"!ion' with Eriiaii f'liilar, Mirliaol Harrison, ami Morton Kamicn. I am
greatly indebted for their many useful suggestions and comments. I also gratefully acknowledge the referees' suggestions and
the Associate Editor's detailed comments, which improved the article anil clarifieil the exposition sulistantially.
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1. Introduction

This article develops a stochastic model of a makc-to-stork firm in a coiitiimons time frame-

work. The model, on the one hand. Kcnerali/.rs the rlassiral rrnnnmir theory of monopoly to include

the dynamic aspects in the presence of both demand and prodnrtion nnn-rtainties. See [2], [3], [8],

[15], [19], [24] and [25] for this line of litorattnr. All the mndds studied in the above articles have a

single-period or a multiperiod setting with demand uncertainty only. De Vany introduces a quene-

ing model of make-to-order firms in [G] and uses long-run averagi> profit criterion as the objective.

On the other hand, our basic model also parallels the type of models in inventory theory, but ex-

pands the framework to explicitly consider capacity and price as decision variables, hi particular,

the btiffer system of continuous flows discussed in Harrison [11] is (^xtended to the flow systems

with jumps in which the explicit consideration of rapacity anrl pric(> di^cisions is possible.

The basic assumption of our model is that the cumulative prodiiction antl cumulative demand

are two (Poisson) counting processes parameteri7,ed by iiroduction capacities and prices respectively.

Mimicking the real life operation, the firm's decision is two fold: it makes a static design decision

(capacity decision) at time zero, and exercises the dynamic control of production rate and price over

time. A total discounted profit criterion is used. The optimal capacity decision and the optimal

operating and pricing policies are explicitly cliaracterized via a two-stage optimization procedure.

That is, we first find an ojitimal j^olicy for each given capacity level, and then select a capacity

level to maximize the profit function obtained in the first step assuming that whatever the capacity

level is selected, the firm operates optimally thereafter.

The article is arranged as follows. Section 2 is devoted to the formulation of the basic model.

Though we make a quite restrictive Poisson assumption on the prorluction and demand processes,

the formulation readily extends to nuire general additive processes In Section 3, we consider a

special case in which the firm sets the price at the begiiuiiug and kee])s it unchanged over time.

The condition for an optimal barrier policy and the value buu tiou under a barrier policy are

explicitly computed by the strong Markov and n-newal properties of the inventory i)rocess and an

argument justifying the optimality of the l)arrier policy is provided Section 4 discusses the basic

model with dynamic pricing and its economic imjilications. hi Section 5, we study an interesting

variation on the basic model where achievable capacity expands with < uiiiulative production due

to learning. Concluding remarks follow in Section G.

2. Formulation

We shall consider a firm that continually profluc(>s and sells a single ccunmodity. The product

is placed in an inventory liuffer where it is taken out to satisfy demand. Demands that occur

while the inventory level is zero are not filled. The cumulative \u\int (production) and output

(fulfilled demand) are represented by the increasing non-negative integer-valued stochastic processes
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A = {A{t),t > 0} and B = {D{t)j > 0} ,
where A{t) and D{t) drnnU- the ammuit of production

and the amount of demand fulfilled in the time interval {0.t\. Then the inventory level at time ( is

Z(t) = x+ A{t) - Bit). (2.1)

where x is the anionnt of inventory at time 7,ero. We assiune that

A, B are independent Poisson processes with random intensities {oii.t > D} and {0t,t > O}.

(2.2)

That is, {A(t) - J^a,d3,t > 0} and {B{t) - J^f^.d.'^.t > ()} are martingales, hi other words,

{/o a,ds.t > 0} and {/^ ft,ds,t > 0} are compensators of the munting processes A and B respec-

tively. The only real requirement here is that i)rocesses <i and ft he integrahle and he adapted ( in

the sense to be explained shortly).

To have a model that embraces pricing and facility d(^sigii decisions, one must have stochastic

analogs for the firm's demand and cost finictions. That is. we need a family of tlemand processes

B parameterized by prices, and a similarly parameteriz.efl family of pr<iduction processes A. For

the production process, let a(> 0) be the average outjiut rate when the firm working at its full

capacity. The value a is a function of designed capacity factors such as capital and labor invested.

We use a as a primitive parameter which measures the capacity of the firm which is determined

at the beginning. Viewing «/ as the actual jn'oduction rate the firm employs at time (, we require

that < «( < a for all ( > 0. Note that if a, = a for all t > 0. tlien A becomes the potential

input process which is Poisson with rate a. Also, we assum(> the firm can control the average

demand rate /? through pricing and the inverse demand function /'(/^) is a <leterministic decreasing

function. The potential revenue rate p{P)P is assumed to be eonravc as usual. Management is also

assumed to be free to reject potential sales. That means the firm may set the demand rate to be

zero whenever it is willing or forced to do so.

Given the inverse demand function />() and the capacity '> (selected at time zero), a feasible

operating policy is defined as a pair of stochastic [)rocesses (i*i.f1i) tliat jointly satisfy the following:

(2.3) (ccj) and (0t) are left continuous and have right-hand limits.

(2.4) (rj,) and (/?() are adapted with respect to Z

.

(2.5) < a, < r»,/9, > n and ft, is bounded, for all t > 0.

(2.6) Z(t) is non-negative for all t.

Condition (2.4) implies that a, and ft, are functions of (Z{.t)..'< < t). This says that the

control that the firm exercises at time t is based on only th<- liistorical information before time (.

Conditions (2.3) and (2.5) enstire that [n,] and (ft,) are intej^rabh" and predictable with respect to

Z. The restriction (2.G) implies that backlogging is not allowed: sales which cannot met from stock

on hand are simply lost, and has no effect on future demand.



For a fixed capacity and a fixed i)rice, our model parallels the l)ufferefi How system described

in [U], but it allows the system flow lie rejiresented by jumi) processes. One way to justify that

there exist processes Z, A and B is to generali/.e Harrison's proofs in ('Iiajiter 2 of [11] by assuming

the primitive netput process X is in DiO, oo), tiie space of real-valued functions on D?+ that are

right continuous witli left limits, instead of ('^(O.oo), the space of r(^al-valued continuous ftinctions

on 3?.^.. We shall show a sample path construction of processes Z . A and U for a simple flow system

to illustrate that there is no difficulty to make such generali/atiou.

Consider a flow system with infinite buffer capacity in which r», = 't > 0, /?, = /?> if

Z[i) > and /9, = if Z(t) = 0. Wc take X{0) as the initial inventory lev(<l, A{t) as the cumulative

input up to time t, and B{t) as the cunuilative pnfentia/ output uj) to time t. Denote by L(t) the

amount of potential output lost up to time t because of the buffer emptiness. So the actiiai input

A(t) is A(t) and the actual output B(t) is B{t) - L(t) over [O.t]. Setting

X{t) = X{()) + Mt) - Bit). (2.7)

the inventory at time t is then given by

Z{t) = X{Q) + A{t) + B{t) = X{t) + Lit). (2.8)

We require the lost potential outjiut process L satisfy

L is increasing and ROLL with L{Q) = D, and

L increases only when Z = 0, to be consistent with the physical restriction Z{t) > for all

t > 0.

We will show that the above conditions uni(iuely determine L and ftirther imply

L{t) = sup X-{m).
o<«<'

That is, L can be concisely represented in terms of flie iniuutive [)r()cess X The proof involves

construction of sample paths only.

Denote by i = (xi,t > 0), the generic element of D Define inap])ings iji.'p
: D ^^ D by

i>i(r.) = sup x~ and
(!<»</

<f>,(x) = X, + V'/i-r)

for t > 0. Fix X E D and let / = ijiix) and z = 'A(;r) = x + / Then z is obtained from x by

imposition of a lower control barrier at 7,ero.

Proposition 2.1. Suppose x G D and x^ > 0. Then il>{x) /.s thr nnitpir funrtitm I such that
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(2.9) I is right continuous with left h^nd limits nwl inrirnsiii)^ with In = 0.

(2.10) zt = xi + It > for all t>0 and

(2.11) I increases only when z = 0.

Proof. Fix X E D and / = i)(x) and z = x + I. It ran he vciifird that this I does satisfy

(2.9)-(2.1I). To prove nniqneness, let /* bo any otlier solution of (2.9)-(2.11) and sot z' = x + l'.

Setting 1/ = z' — z = r — I, we note that y is ^ U(^LL and V F (variation finite) function with

!/o
= 0. Since y has at most countable many discontinuity points of first tyjio. wo enumerate them

as ti,t2, • •• Suppose !/<,_, = 0. Note that t/ is continuous on the intnval [t,_i, (,) and hence t/j =

for t G [<,_i,t,) by proposition 2.3 in (11). Then

= ((/;,-/;,_)-(/,. -/^-)l(< --^^) (2.12)

= (z* -
^,,)(';,

-
';,-) + (^''. - <)f''. - ''.-)

since t/<__ = z* _ — Zi^_ = /,* _ — h,- = 0. Wo know that /* iucroasos only when z' — 0, and z > 0,

so the first term on the right side of the last ofjuation is < 0. and identical reasoning shows that

the second term is < as well. But the left side of (2.12) is > 0. so j/,
= z* — z,_ = 0. So far, we

have proved that if i/j. = 0, we can conclude yi = for t G [',. ^ i i|

The only thing left to show is that v,, = for all t G N where N = {1,2,...}. Let / =

{i : yi^ 7^ O} and t* = inf{<, : t G /}. Wo want to show tln^t / = or, o(iuivalently, (* = oo.

First, note that N \ I j^ 9 since 1/0 = implies j/(,
= 0. Suppose t' < 00. If t' = (,. for some

t* G /, then !/f,._, = implies yi, = 0. a contradiction. Tims t' < tj for all i G /• Now let

tj' = sup{iy tj < t*). Certainly ty + i
> t\ and j* + 1 ^ / since y, . = implies yt ,^, = 0.

But fy+i < ti, for all i ^ I. This contradicts the fact tli;\t t' is tlic inliuium Thus, (* = 00 or /

is empty.

Therefore y = 0, hence l' = I, and the proof is complete.

I

The other results in Chapter 2 of [ll| ran \>c siiiiilaily '^eiier:ili/,ed tn the rase that x E. D. It

is noteworthy that the proof of the above i)iopositiou df>es not use the assumption that x is the

trajectory of the difference of two Poisson [irorosses. and hence tlie risult remain valid as long as

n is space D. Though we consider a special case of Poisson. the risults in the paper are not hard

to extend to the case of compound Poisson procoss<>s. or more |.^eiieral buffer system of additive

processes.

To complete onr formulation, we specify the cost structure as follows. The firm incurs a fixed

cost C(a) at time zero, which is used to l)uild cajiacity o-. and ({'t) is increasing in a. The firm

also incurs a linear variable cost, say 1: dollars per uiut of actual pioduction. A cost of h dollars



per unit time is incurred for each unit of prndurtioii hcM in iiivnitmy. Tlicrrforp the expected

discoiinted revenue over the infinite horizon i?

TR{x) = eAJ" r-"p{P,)dD{t)Y

where r > is a discount factor. The expected cost is

TC(x) = Ell [ '^~''\cdA{t) + hZ(t)dt]] + n{a).

The objective of the firm is to choose a production cajiacity a, and a pair of control processes

(q:(,/?() to maximize the expected discounted profit

n(x) = Tn{x) -T(nx) (2.13)

such that assumptions (2.1)-(2.2), and feasihihty constraints (2.3)-(2.G) arc satisfied. The following

proposition transforms objective fiuiction (2.13) to an (vjuivalcnt form which is easy to deal with

in finding the optimal operating policies.

Proposition 2.2. For any given policy (o:^/?,),

h
n{x) = V(x)- - x~ (^a). (2.14)

where

Furthermore,

V{x) = E, y^ e-"{{p(ft,) + ^)dD{t) - {r + ^)rM(0|} . (2.15)

V{x) ?, {^"'--^'[(H/'r) + ^)/^> + ('• + ^)'^>]dt^ (2.16)

Proof. Equation (2.14) can be obtained by substituting the iiivmtory i-fjuation (2.1) into (2.13)

and applying the integration by parts formula for the Riemanii-Sti(-ljos integrals. Equation (2.1G)

follows from the assumption that A and D are Poisson pn>ress(>s with random intensity {oii} and

{^,} and the fact that the integrands in (2.15), r-''{p(fl,) + ~) and -•-'''(, + 'l), are left-continuous

and right-limited processes adapted to Z . hence predictable.

I

The proposition says that with each unit produced to stock, the firm actually incurs a cost c

and an opportunity loss - if this luiit would be stockerl forever; with each tuiit sold from stock,

the firm's actual gain would be selling price /) plus an opportunity gain - that is equal to the



opportunity loss if this unit would otherwise l^e storked forever. Tlie vnlue V{x) ran be considered

as the gross profit incurred by the operations after time zero.

The firm's problem involves a two-stage optimization. The first sta^e involves rapacity selection

for the plant. The second stage is to find the optimal operating policy, the production decisions

as well as pricing decisions. To solve the problem, we proc(>ed reversely, i.e . first find a unique

optimal operating policy for each given capacity level rt. and then sel(>ct a capacity a to maximize

the profit value functions obtained in the first step assuming the firm op(>rates optimally whatever

the capacity level is set. This two-stage optimization approach is the procedure that we shall follow

throughout this article.

3. Pricing As A Design Decision

First, let us assume that the firm resolves its price flecision at time zero and the price remain

unchanged over time. Then condition (2.4) reduces to

< «, < a,/?, e {0,/?},for all t > Q. (3.1)

where /? is a design variable. The firms problem is to select a selling price ;> (efiuivaleutly a potential

demand rate /?), a production capacity n at the beginning, aufl a pair of control processes (a/,^f)

to maximize profit 0. The value function defined in (2.15) is of the form

V(x) = E, U^e-"(qp, - vm,)dty (3.2)

where q = p -]— , and w = c -\—
. Assume ;» > c, and then q > m. Let's first consider a class of

feasible policies, namely, barrier policies. A barrier policy is. for some h > 0. ni = a:l[o,6)(^((— ))

and /?( = /?l(o,/ij(^(t— )), for ( > 0. This means that production is always at full capacity except

that it ceases if the inventory reaches level b and resum<'s when the inventory is depleted by one

unit. Demands are rejected only when products are unavailable in stock. This is really a simple

policy since it depends on only one number b if all other parameters are fixed. In fact, under a

barrier policy with parameter ft > 0, the inventory constant process Z is a Markov process with

state space E = {O, 1, . . . , ft}. Specifically, it is a birth and death process with finite state space

or a M/M/l/b qtievie. The following computations have been derived in Li [IG] and we simply list

them without proofs.

Denote the first time at which state i/ is reached and its Laplace transform by

T(y) = inf{t > (),Z{t.) = y}.^n<\

0(x,y) = E,[r-'''^''^]

. Then



LGmma 3,1. For < x < b.

<'(^'0) ^ ^^^TIT^'
^ndO(x.h) = 4l!' (3.3)

g(b) <:(b)

where

e(x) = (p-' -l)pl-{p;' - [)pI

and pi and p2 are the two roots of the (jiiaf/rafir c<iu^tinn

P
p = p' + '-

(3.4)

with < pi < Y, P2 > ^, for r > 0. Fiirtliermovr, g{) is strictly inrrrnsing, e{) is strictly

decreasing, hence, ^(6,0) is strictly docrcnsing in b and 0{oo.i)) = D.

Following (3.2), the value function under a harrier policy with jiarameter b ran he written as

V{x) = E, U e-^'[7/?l(o,A|(Z(«)) - "'r»l,,,»,(Z(0)Wt}

= 7 w • —(- V(x),

(3.5)

where

V{x) = wE, U^" e-"al^,^{Z(t))(lt\ - 7 • ^.
{

^" r"'' flli^^{Z{t))dt\ . (3.6)

The term Ej [J^ e~'''al^i,^(Z{t))dt} can be thought as the (•xi)(-rt{>fl total discounted potential

output lost due to ceasing production when the inventory level reaches the limit h, while the term

Ej (/g e~'''(^l[o)(Z{t))dt} is the expected total discounted potential sal(>s lost due to stockout.

And V is the profit gain, in expected present value terms, under the harrier [xilicy over that of the

potential production and demand. By the strong Markov and the renewal properties of process Z,

we have

Lemma 3.2.

E^ I / e-''ft l,o){Z(t))dt \ = — '

, am/ 3.7

.

'"""'"""'"} -/nr; ,-^»,„ -,.„)
'=•"

Thus the explicit form of V , hence V , can he obtained. We shall denote hy V' (V ) the value

function under a barrier policy with a upper barrier b if it is necessary to do so.



Proposition 3.1. There exist an nptinial harnVr jmliry with mir riitir^il invrntnry limit b' th^t

is uniquely determined by the condition

0(b' + 1,0) <-. w<lO{l>\Q) > -. (3.9)
7 7

Proof. For a fixed i,

v\x) - K*-'(x) = i/*(i) - v^-^{x) = r; • (o(h.o) - -j . (3.10)

where

^_ 7M^^(-^(^))g(ft) . . . ...G = TTT rn r^
j— > '• for b > 1

since all the terms in the numerator and the denominator arc positive. So tlic si^i of F [x) —V ~'(z)

is exactly the same as that of O(b,0) — -. Since '?(•,()) is strictly drcrcasinR. the optimal 6* should

be the one such that r** + '(3;) - V^' [r] < and V''{x) - K*-'(:r) > which is equivalent to

condition (3.9)

We now want to show that this optimal harrier policy is iudceil optimal among all feasible

policies. In other words, the class of Markovian controls in our scttinp is complete.

Under a barrier policy, if the inventory level starts from the .<et nf states E — {O, 1, . . . , 6}, it

will never get out again. We extend the value finictioii with initial state x(> b) by

V(b + k) =3 V{b) + hn. for k > 0.

meaning that under a barrier policy, the extra k units would never have produced and the oppor-

tunity loss to have them produced is i/; = c + -. Similarly define

V(~k) = V(0) - kq. for k > {).

Denote by V* the value function under tlu- ojitimal barrier jiolicy. and AVfx) the difference V(x) —

V{x — 1). We record the following twf) lemmas which can lie proveij i)y direct verification.

Lemma 3.3. The V is strictly incrcasiufi: ;\nd ronrave with AV"(') f 1) = ?/r and AV* (0) = q.

Define the operator F by

F/(x) = af{x + 1) + (lf{x - I) - {a + ft]f{x).

where /() is an function on integer values. Then

8



Lemma 3.4. The function V sntisfir^ the (hffcrmrr r(junti<)ns

rV{x) - rV{x) =0, forO < X <b - I,

and

rV{x) - rV{x) < n, fnrx > b.

One more technical lemma is needefl in the verificHtioii of o])hmality.

Lemma 3.5. Suppose /(•) is a function nn intrgors Thru

E,[e-''f(Z(t))\ = f(x) + E, U e-"[a,/(Z(.) + 1) + /?,/(Z{.) - 1) - (n, + /?. + r)f(Z{s))\ds\ .

(3.11)

Proof. By integration by parts theorem, we have

/ e-"df(Z{s)) = er"f{Z(t)) - f(Zm + r / r'^' f(Z{s))ds. (3.12)
Jo Jn

Note that

E^l e-"df(Z{,^))] = E,{[ .-"[(/(Z(..-) + l)-/(Z(..-))),M(.)
Jo Jn

+ (/(Z(..-)-l)-/(Z(..-))),/Z?(.01}
w (313)

= E,{ e-''\a,f{Z(.) + I) f/?./(7(,,)-l)
Jo

-(a, + ft.)f{Z(s))]ds}.

The second equation follows from assumption (2.2) and that i'~'^'\f{Z{n — ) + I) — f(Z(s — ))] and

e~'^'\f(Z(s — )
— 1) — f(Z(s — ))\ are both left continuous. riRlit-limitcrl and adapted with respect to

Z. Taking Ej of the both sides of (3.12) noticing Z(0) — x. sulistitntins,' in the expression obtained

in (3.13) and collecting the terms, we conclude the proof.

I

Note that as a special case of a barrier ])olicy, F is the ^'ineiatnr of Z and Lemma 3.5 implies

that

t-'^f{Z[t)] -
I

c-"(r/ - rf)(Z{.'<))ds is a inartm-alo.
Jo

Here is the main result of the section.

Proposition 3.2. Tiie hairier pohcy with inventory hniit [uiicjuely ilefmninrd l)y condition (3.9)

is optimal among all the feasible policies.
,

Proof. Denote by F the value fiuiction with arbitrary feasible policy (re,,/?,). Define

V,(x) = E,[[ r-"{q(^,-um.)ds + r-''V'{Z(t))l (3.14)
Jo



(3.15)

for t > and i > 0. This is the valur funrtion for a hybrid pnhry that follows (a,,/?,) up to

time t, yielding a inventory content of Z(t), and then cnforrcs the niitimal l)ariier jjolicy with value

fimction V* thereafter. By (3.11),

E,[e-''V'{Zm = V'(x) + E,{ I e-''\a,V'(Z{.^) + 1) + /^.V'iZ{.^) - 1)

-{a, + P, + r)V'{Z{.^))]ds}

= V'{x) + E,{ I e-"[(rV' - rV'){Z{s)) - ((r» - r,.)AV'{Z{s) + 1)

Jo

- {0 - 0,)AV'{Z{s))) - {q/i - wr,)\,h}.

Putting (3.15) into (3.14),

V,(x) = V'(x) + E,{ I fr"\(YV' - rV')(Z(.)) + (/? - /?.)( AV*(^(.')) - q)
Jo

+ {a- a,){xv - AK'(Z(.^) + 1))],/..} < V'(x).

(3.16)

for X > and (> since TV - rF* < 0, w < AK* < 7, and < a, < n.O < /?, < ^ for a >

by Lemma 3.3, 3.4 and assumption (2.5). Noticing that

lim EA I e-"{qft, - u,n,),h) = F{x),
'-^ Jo

we have F{x) < lim,_oo VM < V'i^-)-

I

The following proposition gives some monotonicity properties of the optimal inventory limit

6* as a fimction of other parameters.

Proposition 3.3. The optimal inventory limit h' inrrmsrs a.s <y.r nr h drrrmscs.

Proof. Let
w

/(6,a,r,;»,/i.r) = O(l>.0) . (3.17)

7

Note that b* jumps only at the points where / = n. According to rouditinn (3 9), f(b) = implies

6— 1 is optimal. If an increase in some parameter causes a d(>cicasi' in / at the point where f(h) = 0,

then 6—1 remains optimal to the right (i.e., f(l> — 1) > 0, and /('») < 0). and h is optimal to the

left (i.e., f(b) > and f{b = 1) < 0). in this case b' is a decreasing right continuous step function

of the parameter. Conversely, if an increase in some parameter causes an incicase in /, then b' is

an increasing left continuous step function of the parameter. However.

df df df Of— < 0, -f < 0, — < if ft > 1, and — = if ft = 1.

dc dh dn dm

10



The iutuition of proposition 3.3 is (Hiite rlear. An inrioasc in piixlurtiou capacity a implies a

higher frequency of production and a longer time for a jjrodnrt staying in stock. Therefore the firm

prefers a lower inventory limit to modify this effect and avoid higher financial coat. A decrease in

holding cost h or production cost c causes an increase in inventory limit simply because the firm

can afford a higher inventory and then has more ftilfillerl demand. However the effect of price on

b* is ambiguous. The only remark we can make is that if the firm incn-ases the price, then it tends

to have a lower inventory limit when facing a more elastic market anti a higher one when facing a

less elastic market.

So far, a unique optimal policy is obtained for each specific capacity n and price p. Assuming

that the optimal operating policy always follows after the design decisions art" made, the expected

profit is again a function of a and p, and an explicit form of it can be obtained. Theoretically, the

optimal capacity can be determined by usual caloilus. Dut it is not a trivial job. The difficulties

comes from the fact that the first order derivative of the value function with respect to a or p is

not continuous because of the discontinuity of h' as a function of (t or j>. De Vany (1976) avoids the

similar problem by approximating b, tlie l)alking value in his model, l)y a continuous differentiable

fimction. We shall show that under a more rigorous mathematical treatment, the usual calculus

and the marginal revenue-marginal cost interpretations can still be applied.

Let n* be the expected profit under the optimal barrier pojir y with capacity n and the price

p. The relations (2.14) and (3.5) then imply

h
n {x) = V (x) - -X - (^a)

*"

(3.18)

= K*(x) + -/? - -ri - rr(r»).

r r

To study the properties of FI* as a fimction of n an<l ;». it is sufficient to examine V since the other

terms in (3.18) are assumed to be nice.

Lemma 3.6. As a function ofn, the V j'.s mntiwiouri. strictly inrrrr\^in>^. nitd '//fferenfiab/e except

that

lim > lim ——

.

(3.19)
•^I'tn dn "I"" art

for epich discontinuity point an of b*

.

Proof. First note that as a function of a, the V (the value function with a fixed upper barrier 6)

is contLnvious and infinitely differentiable, and

V - max{V',F^ V\ ..}. (3.20)

This fact immediately indicates the continuity of V* with respect to <\. The second assertion follows

because if the upper boimd of the production rate, a. increases to n + fi (ft > 0), then the firm
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rau do at least as well by feasibly emplnyine; thf' optimal poliry with rapacity a and in fact, it is

strictly better off.

To prove the last assertion, notice the relation (3 20). that F* is infinitely flifferentiable for

any fixed ft, and that ft* is a decreasing step function of n. So at each continuity jjoint of ft*, the

V* . and hence Fl*, is differentiable. At each discontinuity pciint of ft*, the right and left derivatives

exist and they are dV'''~^ /da and dV''' /da respectively. Using the fact (3.10) and that ft* jumps

only when ^(ft*,0) — w/q = 0, we have that at each discontinuity point ixq of ft*,

lim —^ - lim ^-- = — [K* [x) - V* -'(i)]
a\no da n\aa da da

da q da

dO(b'.O)
= G— < 0. for ft > 1.

since G > and d0{h,O)/da < where G is defined as in (3.10).

I

Lemma 3.6 guarantees the existence of the optimal capacity a' and its occurrence at a conti-

nuity point of dU/da. Let us denote the expected total discounted actual sales and production by

B and A respectively. Then

B = E.

TOO

I '-"
Jo

dB(t)]
ft

f°° a
A = E,[ e-"dA{t)\ = -

Jo r

1
-

^ - P2 IPl - (1 - Pi )P2

-{h' + D -(*• + !)

Pi ^ P2

(1-^2)^1^' '-(I-Pi)pV

Pi P7

(3.211

(3.22)

The conditions for the optimal price and the optimal capacity an- as follows.

Proposition 3.4. The optimal price ;>* and the optiiitnl i-;ip;irify it' .sati.-f/y tite roiuUtions:

h dAhdB
(p+-)— + B

r dp

(P +
hdB
r da

{'•+ -)— =",
r dp

h dA d(.
+ -) = 0.

r da da

(3.23)

(3.24)

From (3.21) and (3.22), we see that D and A are functions of ;) only through ft(p)- it can

l)e shown that A is an increasing function of ft, hence, a decreasing function of ;>, and B is an

increasing function of/? only when /? is large relative to a.lieuccv a decr(\asinK function of p. However,

the necessary condition for optimality (3.23) shows that the optimal ;>* is always located at the

decreasing stretch of 5 as a fmiction of p. Because otherwise, the left side of (3.23) would be

strictly positive, and then there would be room for improvement liy changing p. Recall that f^{p) is

12



the mean rate of potential demand whereas D{p) is the (-xpert(-(| total (iisroniitefl demands which

are actually fulfilled. For this reason, we refer to D{p) as the rffrrtivr (ie/najn/ function defined on

the decreasing portion and /?(p) as the patrntial f/e»ia;i(/ functions Denote the price elasticity of

effective demand by e and that of potential demand hy ' , i.e.,

,//? p no p
e = — • — , and f = — —

.

dp ft dp B

Proposition 3.5. //" /? > a, then the price eluftticity of effective demnnd i ;s .s;/ia//er than the

potential elasticity e in the absolute value.

Proof. Show only for zero initial inventory. Let

f
_ {I - P2 iPl - [l - Pi )P2

Pi - Pi

Equation (3.21) then becomes B = ^{i - I), and

dB _\ dft ft 81 _dft B ft d'L dft

dp r dp r dp dp ft r Oft dp

which implies that

1-1 = 1,1 + ^ 'IL 'l^u
'''

''' rB Oft dp
'''

since dL/dft > if /? > a and dft/dp < 0.

I

To compare with the deterministic theory, we can rewrite rouditinn (3.23) as

1 r(dA/dp)+'j((0A/.3p)-(,')B/0p))
r(l + r) = T^TT

e (IB Idp

This is analogous to the traditional monopoly result in that marginal revenue i'([uals marginal cost,

price is set in the elastic portion of the demand function, and is a markup over marginal cost, i.e.,

;»(l + -) = c. (3.25)

However the relevant marginal cost in the stochastic model is a cost of total discoinited actual sales

instead of that of output and is composed of two jiarts. prodn<tion cost and inventory canying

cost.

Equation (3.24) can be viewed as a louf^-rmi condition since it determines the production

capacity of the firm. It indicates that capacity is exjjanded to the point where the expected

13



marginal revenue achieved through rethirtion of the iiiV(Mil-oi7 limit ('([iials tho marginal cost of

capacity, and can be rewritten as

cidAldn) + ^idAlda) - {<lBlf)n)) + (.ICldn)
p = ^ _,^- ^. (3.26)

The firm sets the price equal to the loug-nui marginal cost of total (liscf)tuit(vl actual sales. The

ntimerator of the right side in equation (3.2G) is the pr(-scut value of the full incremental cost of

increasing capacity which consists of the short-term marginal cost of output times the increase in

average total production stream induced by greater capacity, the increase in average total inventory

holding cost due to an increase in capacity, plus the marginal cost of capacity building. This full

incremental cost of capacity is multiplied by l/{dB/f)ni). the incifuuent to capacity required to

induce a unit increase in average total sales.

Some interesting remarks can be drawn from our moflol which copes with a stochastic multi-

period situation. First, it is necessary to formulate acttial versus potential production and demand,

and to introduce a buffer stock if possible. Secondly, with stochastic variability, production does

not always meet demand even in the sense of expected value, that is re* does not necessarily equal

/?. As a matter of fact, the firm always has excess capacity in response to a stochastic situation in

the sense that a* always exceeds the mean rate of fulfilled dem;uid. Finally, seeking a stochastic

theory of the firm, one inevitably arrives at a dynamic model of the firm where the decision process

is split into long-run design decisions and short-run operating derisions, because of the central role

of the inventories in responding to stochastic varial)ility.

4. Dynamic Pricing

We are now in a position to solve the basic model foriiiuUted in Section 2 with the further

generality that dynamic pricing is allowed.

In the investigation of the optimal operating production and pricing ilecisions, the explicit

calculation as done in the previous section is no longer easy if not impossible and our discussion

will be facilitated by considering a class of problems known as semi-Markov decision processes.

The existence of a finite stationary solution can be shown by the contraction mai)ping fixed point

theorem or the general theory of semi-Markov decision |)rocesses (see. eg., [7]. [13], [14] and [21]).

Also we shall leave the completeness of Markovian controls asid<' .md omit most of the proofs of

the results parallel to those in the previous section. The interest(-d readers are referred to [16].

For notation simplicity, we still denote the optimal value functions by V and FI. In the context

of an semi-Markov decision processes, the recuisive e([uations of the Hi'ms i)roblem can be specified

as follows

L L

rV{x)= max {/?'[;.(/?') -f -- AF(x)l + -/(AV(.r -f I) - (c + -)]}, (4.1)
f»'€[0,a|,<J'e(0,/9l,n,,,|(j')| r r
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where AV{x) = V{x) - V(x - 1).

Lemma 4.1. For fixed a, the va/iie function V{ ) /s fttvirtly inrrr^ising anJ mnrnve.

It is easy to see that for each x, if rt(x) solves (4.1), fheii

lently. AU(x + 1) > c;

ly. An(x + 1) < c,

\ a, d AV(x + I) > c + J
or, rqnivalent

°'^^' ~
j 0, if AF(i + 1) < r + ^ or, equivaieut

noticing that An(i) = AV{x) — -. Stippose b is the siuallost x .such that An(i + 1) < c, then

a{x) = a for < i < 6 — 1, and a(h) = 0. That means for fixed n, the operating policy is still

a barrier policy with a inventory limit h. Lemma 4.1 implies that h is tuiiqnely determined by the

following conditions

An(ft) > c, andAn(ft + 1) < r.

The pricing policy can be solved by examining (4.1) in a similar fashion. The .'solution 0{x) should

satisfy

p + P^ - An{x) = n, for I < /..

In the similar way of proving Proposition 3.2, we have

Proposition 4.1. For fixed a, the optimal o[)erating pohcy is a h^rrirr pnhry with inventory limit

b, that is

a, = alio.h)(Z{t-)). (4.2)

where b is uniquely determined so that

An(ft) > c, and An(ft + 1) < ,:. (4.3)

The optimal pricing policy is

b

and ft(x) is determined by the following short-run r(uiilitions:

dp
p + ft— - An(x) = 0, for 1 < J < h. (4.5)

dft

The implication of condition (4.3) is that the firm will produce to stock at its full capacity

to a limit where the short-term marginal cost of prfiduction will exceed the present value of the

total future profit increment of an additional unit of outjjiit at the moment. Regarding the optimal

inventory limit b which solely determines the optimal operating policy, similar comparative static

results hold in the dynamic pricing case.
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Proposition 4.2. The optimal inventory limit h »/rrrrasrs as Vr. r. or h decrrnses.

On the other hand, equation (4.5) ran I)e written a?

;,(1 + i) = An(3:). (4.6)

where t is the price elasticity of potential demand rlefinerl as in the inrviotis section. Here, U.{x) is

the total expected future profit given that there arc presently x units of prnrluct on hand. Suppose

one unit is sold at the moment, then the present value of net i)rofit for this unit is ;)+n(z — 1) — 0(2).

Therefore An(z) can be interpreted as the marginal cost of increase in sales l)y one unit. Equation

(4.6) is analogous to the traditional monopoly result (3.25). However it is noteworthy that instead

the actual production unit cost, c, the correct marginal cost in a stochastic model should be the

imit cost of actual sales, An(3:), the increase in cost of selling one unit out of stock leaving the

capacity, the optimal operating and the optimal pricing i>olicies unchangefl for the ftiture.

Proposition 4.3. The price (fccrea.ses a.s the inventory /eve/ /ncjea.ses aii'/ /.s a/ways higher than

that under certainty, i.e.,

r(/9(l))>;.(/?(2))> ...>v{p{h))>p''. (4.7)

where p is traditional monopoly price determined in (3.25).

Proof. Lemma 4.1 shows that AV(x), hence AU(x). is decreasing in x. And the second order

condition for optimality says that /)(! + 1/f) is decreasing in /?. <^'<>ndition (4.5) which determines

P(x) then implies that /?(x) increases as x increases, or p{(^{x)) flecrcascs as x increases. Finally,

Lemma 4.1 and condition (4.3) imply that

An(3;) > An(ft) > r. for 1 < x < /..

It becomes obvious that p(ft(x)) > p for 1 < i < A.

I

Intuitively one can think that the more products pile u]) in inventory, the more incentive the

firm has to lower the price and encourage demand for the sake <<{ reducing its holding cost. This

line of thinking may be misleading since following it, one may gather that, with 7,ero inventory, the

firm would have a best situation and simulate the deterministic pricing decision. However, the fact

is that, because of stochastic variability, the iimre proflnct the firm has on hand, the better off it

is. This can be seen from the fact that Tl(x) — n(x — 1) > r > for < x < h. Therefore, with

lower stock on hand, the firm sets higher ])rices to discoiu-age demand in orrler to increase the stock

lever anticipating higher profit in the future. This procedure continues to the point at which the
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inventory level reaches b and the marginal cost of actual sales n(A) — n{h — 1) is closest to that in

the deterministic case, c. It is at this point that the firm r(>asos produrtiou ni)tinially and simulates

the deterministic pricing decision. In sum, the firm tiausfers the cost n( uncertainty to consumers

by raising prices.

Finally, we derive the condition for the optimal capacity decision. The value function under

the optimal operating and pricing policies V possesses the same properties as in Lemma 3.6.

Lemma 4.2. As a function of a, the V is cnntimiotis. strictly incrr^isin^. anW diffcrentiable except

that
dV OV

lim > lim —

.

"I'>n da n\n„ d ft

for each discontinuity point aoofb.

Still as before, we define

B = eA
I

er''dD(t)\ ^nd A = eA I r-"dA(t)\.

In addition, we let TR be the present value of the expected total revenue.

-rlTR = E,{j c-"iiP,)dD(t
1

Proposition 4.4. The optimal capacity ct' satisfies the Inn^-run mudition

dTR dA h dA dD DC—— = c— + -(__- — ) + —

.

(4.8)
on da r an dn iln

Condition (4.8) says that the firm expands its rapacity tn the point where the expected

marginal revenue achieved through reduction of the inventory limit ("(juals the marginal cost of

capacity, which consists of production cost, holding cost and rapacity building cost, induced by the

increase in the potential production rate.

5. Learning Effects

Learning effects can be introduced into the model of the preceding section. In most of the

literature, learning effects are introduced by the assumption that unit cost declines with the ac-

cumulated output or production (see, e.g., [l], [12] and (23|). Hf)wever, we attempt to introduce

learning effects into the ciirrent model in a more direct way in which productivity increases with

cumulative production.

Let ni{A(t—)) be the upper bound of the prod\iction rate that the firm can achieve at time

t, where 7(a) is increasing and concave in a, 7(0) > 0, and 7(a) —> 1 as a —» 00. So 0:7(0)

is the capacity achievable at time zero, and n is the capacity achievable in the long nm. The

economic justification is simple. The firm builds up an ideal capacity level n at the beginning,
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and its full capacity production rate gets greater and greater apjiroaching the itleal rapacity as the

management and the labor become more and more sophisticated thrmigli actually producing.

With learning effects introduced this way, the modification in the l)asic model formulated in

Section 2 is that the feasibility constraint (2.5) should \)c altered to be

< a, < rt7(A(<-))./?, > and /?, are bounded, for all t > 0. (5.1)

The firm's goal is to choose a pair of control processes (o:,,/?,) and a long-run achievable capacity

a to maximize expected profit U providing the learning curve 7( ).

For a fixed a, in order to investigate the optimal operating and pricing policies in the presence

of learning effect, we need to expand the state space to include cuiiiidative production. Each state

(x, a) is a pair of non-negative integers with the first element representing the inventory level and

the second representing the cumulative output. The system is said to be in state (x,a) at time t if

the firm has x rmits of product in stock and has produced n units up to time t, or say, it has full

capacity production rate a'^(n) to start with from time t on. Denote the optimal value fimctions

with learning by Tl(x,n) and V(x,n) satisfying relation (2.14). i.e ,

V(x,a)= max E,,A [ r-^'[(r(f1,) + -)dD(t) - (c + -)dA(t)]\ .

(5.2)

Let V^lx) be the value function with capacity or in tli<' absence nf learning (-ffects as in the previous

section. Simple observations indicate that

Lemma 5.1. V(x,n) increases and converges to V"(x) as n i/jr/eases to infinity.

Proof. Starting with (x,n + 1), the firm would do at least as well by following the optimal policies

with starting state (x,a). This is feasible since i{a + I + ) > -i(ti + ). So V{x,a + 1) > V(a;,a).

Similar argument implies that

V''''^"^x) < V{x, a) < Vix) since a7(a) < -^(a + •) < n.

Letting a —* oo, hence a7(a) —» q, we have

< lim[F''(x) - V(x,a)] < Yun[V"{x) - V'"''"'(.r)] =
nloo f»|oc

since V"{x) is continuous in n as shown in Lemma 3.G

I

The recursive ecjuations that F(z,(t)"s satisfy can be specified as

rV(x, a) = max if^'lvift') + - - {V{x. a) - V(x - I, a))]

'»'Gln,rri(n)|,/?'elO,;3l,o..,|(j')l r

+ n'\(V{x+ l,a+ 1) -V(x.a)) - (r + -)|}.

18
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Lemma 5.2. For fixed a and -){). the optimal value fiuirtion V(-.ii) is strictly increasing and

concave for every a > 0.

Proof. By double induction. For details see Appendix C in [IC].

Examining recursive equation (5.3), we have

Proposition 5.1. For fixed long-run achievable capacity n and Irnrning curve i(), the optimal

production policy is a barrier policy with inventory limit l>( ). a decreasing function of cumulative

production, that is

«' = EE'^ • '^('^) l{,.„){Z{t-),A(t-)). (5.4)

a=0 1=0

where b(a) is uniquely determined so that

n(b, a) - n(6 - 1, a - 1) > c, and U(b + I. a) - n(b. a - I) <c (5.5)

The optimal pricing policy is

oo M")

/'(/?<) - EE/'(/'(^")) l(..,.)(^(«-)- Mt-)). (5.6)

where 0(x,a) is determined by the following short-run condition

p + ft^-{n{x,a)-n(x-l.a)\=0. (5.7)

for each x E [1, b(a)\, a > 0.

Regarding the operating pohcy, we note that the njiper harrier is uo longer a single number as

before. As a function oft, the optimal inventory limit b{A{t — )) is stochastic since the accumulated

production is stochastic. As a fiuiction of the cumulative actual production, /'(•) is a deterministic

fimction and is defined by the condition (5.5). This again indicat(-s that the firm will produce to

stock at its full capacity achievable up to a limit where the short-run marginal cost, c, will exceed

the present value of the total profit increment induced by an additional unit of output. It can l)e

shown that as a increases to infinity, th(^ optimal inventory limit h(ii) decreases to /)'*, the optimal

inventory limit with capacity a and without learning effects. That is, the firm lowers the inventory

limit gradually as its production experience grows. Also, the downward-sloping upper barrier b()

will be shift upwards as h,c, or a decreases.

To investigate the properties of the optimal jiricing policy with learning, rewrite condition

(5.7) as

r(l + -) = n(x,a) - 0(1- l.a),
-

(5.8)
e
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where e is the price elasticity of potential demand as ])rfore. The diffeicnro. n(x, a) — U{x — 1, a),

is the present value of the total future profit reduction rlue tn taking one miit out of stock. It can

be interpreted as the (opportunity) marginal cost of increase in sales by one unit. By lemma 5.2,

n(x, a) — Y\(x — 1, a) is decreasing for any fixed a > 0. This implies

p(/i(x, a)) < p(ft(x - 1, a)), for 1 < x < h(a) and a > 0.

Therefore the effect, that in a stochastic environment the firm with lower stock on hand has the

tendency to set a higher price to discourage demand and hence to achieve higher inventory level

anticipating higher future profit, still exists as that in the absence of learning. However, this

tendency is moderated by the learning effects. To see this, note that

U{x,a) - U(x - l,a - 1) = [U(x,n) - n{x - I, a)] + {n(x - l.a) - n(x - l,a - 1)]. (5.9)

Both terms on the right side of (5.9) are positive. The first term is the marginal cost of actual sales

which determines the optimal prices, while the second term reflects the profit gain by learning. The

firm chooses the optimal inventory limit h(n) by jointly considering these two effects (see condition

(5.5) in Proposition 5.1). Suppose b is so chosen that

n(b,a) - U(h - l.a - 1) = r.

Then

n(6, a) - n(b - 1, a) = [n(ft, a) -U{b- l.a- 1)] - \U(b - 1. a) - n(ft - 1, a - 1)] < c,

and hence,

H/?(ft.a)) </,

where p is the monopoly price under certainty satisfying (3.25). The interesting point here is that

the firm with stochastic variability tends to transfer the cost of unrcrtaiuty to consumers, but the

presence of learning effects moderates this transfer. Tlnuefore the monopoly price with uncertainty

as well as learning effects does not always dominate the iiiono])oly price under certainty. When

the firm become more and more mature, the effect of learning is weaker and weaker, and this

moderation diminished gradually.

Proposition 5.2. The price dcrrerises a.s the inventdry level iiirrenses far any fixe(l level of ciimu-

lative production but does not a/ways (/n/ninafe.s tlint under certainty.

Similar to the case without learning effects, the long-run condition etpiating the long-term

marginal revenue and marginal cost of capacity determines the optimal capacity a*.
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Proposition 5.3. The optiinal ra/)ar;7y a' .safisfirs thr cnii'litidii

dTR _ ,1A h 8A iiB nc

dm da r da da da

where TR = E{J^ e.-''p{f^,)dD{t)}. A = E{J^ rr"dA{t)}. mul D = E{J^ e-"dB(t)}.

6. Concluding Remarks

The article introduces a model of production firms \>y assuming that onunlative production

and cumulative demand are two counting processes with random intensity parameterized by pro-

duction capacity and price respectively. The formulation ca])turi-s many important characteristics

of production firms, such as the distinction among production rajjacity, actual production rate, de-

mand rate, and actual sales rate; the fhstinction between static design decisions (long-rxin decisions)

and dynamic operating decisions (short-run decisions), etc hi particular, one obtains a fundamen-

tally dynamic theory, with inventory tying together prrxluctirin decisions and jiricing decisions at

different points in time.

This is a natural generali7,ation of the classical (deterministic) moflel of the firm. In fact, it can

be shown that a sequence of the Poisson-Poisson problems formulated in Section 2 will converge to a

deterministic model as certain parameters approach certain limits, kee])ing the variance approaching

zero. On the other hand, close to the special case described in Section 3 is a diffusion model of

inventory and production control studied by Harrison in [ll|. There the difference of cumulative

potential input and cumulative potential demand is modeled by a Brownian motion (with general

drift and variance parameters), and the optimal policy (involving a single critical number 6*) is very

simple. However, in the diffusion model, the design decisions arc lumped into a single drift term,

which are explicitly accounted for in our model. Nevertheless. Li shows in [IG] that this diffusion

model represents another limit of our basic model as certain jiarameteis apjiroach critical values.

The limit result helps one to better understand conditions tui<ler which the difftision model applies,

and justifies a very tractable approximation for general additive process formulation.

There are many other interesting ciuestions, both niathematical and economic, that might be

explored in the continuation of this work. Our nuxlel can be j,'euerali7,ed to the formulation where

cumulative production A and cumulative potential demand D are arliitrary additive processes.

Suppose, for example, the primitive processes are c(uui)ounfl Pnissou with absolutely continuous

jump size distributions. The optimal operating policy would still be a barrier i)olicy with one critical

parameter 6*. But, it is not clear how families of jioteutial ])rocesses would be "parameterized"

by basic price and capacity decisions. This problem is not suri)rising - in real life there may be

many different "kinds of capacity", and one can also abstract different '"kinds of business" with

different market strategies. Secondly, the models in this stufly seem appropriate in the markets
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characterized by non-durable goods since there is no trenri in the demand pattern. They can be

generalized to include the durable good markets I)y assuming that the demand rate is a function

of price as well as cumulative demand. Thirdly, the variable cost of prorluction is assumed to be

linear, and there is no cost associated with varying the production rate. Certainly, we can have

more general cost structure. As a first step, we can associate a set-up cost with each restart of

production, and this does not create much difficulty at least in the romputations as we carry out

in Section 3.

22



References

1. Abel, D.F. and J.S. Haniiuond, Sti;itrgic Market Phxiuiiiif^. PicMitiri^ Hall, Eiip;lewoocl Cliffs!,

New Jersey, 1979.

2. Amilmd, Y. and H. Mendelson, "Multipcriod Sraii^-rroinntion Drrisious tiiidor Uncertainty",

Journal of Economic Dynamics and C'o/itro/, 5, 1983. ])p249-2C5

3. Amihud, Y. and H. Mendelson, "Price Sninotliing and Invontdry" . Review of Economic Studies,

1983, pp87-98.

4. Cinlar, E., Introduction to Stoch:isfic Prorr-isrs, Prentice-Hall. EuKlewnnd CMiflfs, New Jersey,

1975.

5. Cinlar, E., "Queues with Arrivals and Services Having Randnni Intensities", mimo, Northwest-

em University, 1982.

6. De Vany, A.S., "Uncertainty, Waiting Time and ('apacity Utilization: A Stochastic Theory of

Product Quality", Journal of Political ErononijV,s,84, 197G. ]>p532-54l.

7. Dynkin, E.B. and A. A. Yushkevich, Contr(^llrd Markov Promssrs. Sjjringer-Verlag, 1979.

8. Gould, J. P., "hiventories and Stochastic Demand: Ef|uilil)riuiii Models of the Firm and Indus-

try", Journal of Business, 51, 1978, ppl-42.

9. Harrison, J.M. and Taylor, "Ojitimal Control of a Brownian Storage System", Stochastic Pro-

cesses and Their Applications, 8, 1977, pi)179-194.

10. Harrison, J.M. and A.J. Taksar, "Instantaneous Control of Brownian Motion", Mathematical

Operations Research, 8, 1983, pp439-453.

11. Harrison, J.M., Brownian Motion and Buffrrrd Fl<<w. John Wiley & Sons. New York, 1985.

12. Henderson, B., Henderson on Corporate Strategy. Al)t. Boston. 1980.

13. Heyman, DP. and M.J. Sobel, Stochastic Models in Ojieratious Research. Volume I: Stochastic

Processes and Operating Characteristics. Mc(Jraw-Hill Book ('iuni)any. 1982.

14. Heyman, D.P. and M.J. Soi)el, Stochastic Mode/.s in Opcratiiuis Rese:urh. Volume II: Stochastic

Optimization, McGraw-Hill Book Company, 1984.

15. Karlin, S. and C.R. Carr, "Prices and Optimal Inventory Policy", Studies in Applied Proba-

bility and Management Science, Stanford University Press. iOG2.

16. Li, L., A Stochastic Theory of the Firm, doctoral dissertation, Nortiiwestern Ihiiversity, 1984.

17. Lippman, S.A., "Applying a New Device in the Oi)tiiiii7,ation of Exponential Queueing Sys-

tems", Operations Research, 23, 1975, ppG87-710.

18. Low, D., "Optimal Dynamic Pricing Policies for an M/M/s Queuo " , Operations Research, 22,

1974, pp545-561.

23



19. Mills, E.S., "Uncertainty and Price Theory", Qti^rtrrly Journal r>f Emnoiiiir^. 73, 1959, ppll6-

130.

20. Nevins, A., "Some Effects of Uncertainty: Simulation of a luorlel nf Price", Qunrterly Joiirnal

of Economics , 80, 1966, pp73-87.

21. Ross, S.M., Applied Probabilistic Models with ()ptimi7.n.ti(>ii Ajiplicntinna, Hoiden-Day, San

Francisco, 1970.

22. Prabhu, N.U., Queues and Inventories: A Stiuly af TJirir DasjV Storh^istir Processes, John

Wiley & Sons, 1965.

23. Spence, A.M., "The Learning Curve and Conii)etition". Thr Dell Jouninl of Economics, 12,

1981, pp49-70.

24. Zabel, E., "Monopoly and Uncertainty'', Review nf Eonomir Studies. 37, 1970, pp205-219.

25. Zabel, E., "Multiperiod Monopoly Under uncertainty", .foiinia/ of Emnninir Theory, 5, 1972,

pp524-536.

238^'. 063









BKSt^ffi Du 6 J-'j-^(



MIT LIBRARIES DUPl 2

3 TOAD ODSTTOIM T




