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INTRODUCTION

In this paper we define semivector spaces and develop some of

their algebraic aspects including some structure theory; then top-

opogize these spaces to obtain semilinear topological spaces for

which we identify a hierarchy of local convexity axioms; establish

a number of fixed point and minmax theorems for spaces with various

local convexity properties; illustrate how the spaces of concern

arise naturally as various hyperspaces of linear and semilinear

(topological) spaces; and, finally, indicate briefly how all the

above are applied in socio-economic analysis and optimization.

In contrast to vector spaces, we build semivector spaces upon

underlying commutative semi-groups, so that the space need not

have an origin (identity element) and its elements need not possess

inverses. In the same contrast, a consequent weakness of semivector

spaces is the ability for the distribution (X + p)s = As f ys to

fail altogether or for certain pairs (X, p) of field elements, where

s is a generic semivector. As and ys are results of "scalar multi-

plication" and € is "semivector addition." Neither is Os required

to equal the origin e even if e belongs to the semivector space

(0 denotes the additive identity of the field). Also, in the case

where the reals are taken as the field, singleton sets need not be

convex. These are some of the features distinguishing semivector

spaces from vector spaces. Section 1 treats these and other alge-

braic matters pertaining to semivector spaces. As a result, some

C'gross") structure theory is also developed. Examples are provided
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to illustrate a variety of semivector spaces.

In Section 2, semivector spaces are topologized by requiring

their algebraic operations ("scalar multiplication" and "semi-

vector addition") to be continuous. It is asked when the topology

of the mob underlying a semilinear topological space can be

strengthened to yield translates of open sets by points open with-

out destroying the continuity of either of the algebraic operations.

After a hierarchy of local convexity axioms is identified for real

semilinear topological spaces, product invariance is investigated

for spaces of the various types of local convexity.

Section 3 deals with the real semilinear topological spaces

in which singleton sets are convex ("pointwise convexity"). In

this section we generalize or extend central fixed point results

due to S. Kakutani [194], H. F. Bohnenblust and S. Karlin [1950]

and K. Fan [1952], which in turn are generalizations of results

due to L. E. J. Brouwer [1912], J. Schauder [1930] and A. Tychonoff

[1935], respectively. In particular, our Theorem 3.1 generalizes

Kakutani 's FPT (Fixed Point Theorem), and it is used to establish

Theorem 3.2 where Tychonoff 's FPT is generalized by means of pro-

cedure used by Fan [1952]. Theorem 3.3 and the Minmax Theorems

3.4 and 3.5 are applications which we believe to have significance

for economic theory and the theories of games and optimization.

Theorem 3.6 extends Fan's FPT. Theorem 3.7 and the Minmax Theorem

3.8 stand in relation to it as do 3.3 and 3.4 to 3.2. Using the

fixed point theory of this section, elsewhere, in [Prakash, 1971]
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and ISertel, 1971J , we show the existence of dynainic equilibria for

certain rather general social and economic systems. J. L. Kelley

has indicated the importance of convexity arguments as the basis

for results distinguishing the theory of linear topological spaces

from that of topological groups [1955; p. 110]. The results pre-

sented here may be taken to illustrate that much of the power

gained from convexity properties does not require as strong a

structure as that of a linear topological space.

Section 4 constructs a variety of semivector and topological

semivector spaces as hyperspaces. Many of these, e.g., the semi-

vector spaces consisting of the non-vacuous compact and convex sets

in a vector space, are important for social and economic analysis

and the theories of games and optimization. In models used in

these areas, the behavors in a social system or consumers and pro-

ducers in an economic system or the players in a game or, finally,

optimizing agents in general are restricted in their choice typi-

cally to a compact and convex region in a linear topological space.

For example, in the case of a consumer, the choice of commodity

bundles (vectors) which can be enjoyed is the set of commodity

bundles which can be acquired without exceeding a budget constraint.

In the case of a player in a game, the choice of strategy may be

limited to the set of probability measures defined on some sigma-

algebra of "actions" (see [Sertel, 1969, 1971]), where this set of

probability measures is convex, but also compact when suitable

topologies are used.
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Section 5 indicates, albeit briefly, how the material of the

earlier sections is applied in social and economic equilibrium analysis

and optimization. We intend to make such applications the subject of

a soon forthcoming separate paper.
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1. SEMIVECTOR SPACES

1.0 Definition ; Let (S, €) be an Albelian semigroup and let

(F, +, .) be a field, denoting its additive and multiplica-

tive identity by and 1, respectively. Then S together with

a map 4*: F x s -> S, where we denote H'(A, s) = Xs, will

be called a semivector space over F iff the following are

satisfied;

Axiom 1: Is = s

Axiom 2: A(]js) = (A • ij)s s, t e S; X, y e F.

Axiom 3: X(s # t) = Xs * Xt

The elements of S will be called semivectors . A subset

TCl S will be called a semivector subspace of S iff it is a

semivector space under the restrictions to T of the algebraic

operations of S. If F = R, the field of reals, then S will

be called a real semivector space .

One may note that Axioms 1 and 2 yield a special type of

automaton further particularized by Axiom 3.

Given a semivector space S over a field F, for each

X e F let ^. denote the restriction of 4' to X x s. Then,

for each X ^ 0, ¥, is an automorphism of S onto S;

furthermore, if S has an origin (or a null element , or

identity ) e defined by the property that e # s = s for all

s e S, then Xe = e.

The reader will soon notice, as M. P. Schiltzenberger already has,
that the full set of field axioms for F is unnecessary for much of the
development to follow. In ignoring the fact that these axioms can be
relaxed at various points in the development below, we are exchanging
some (easily obtainable) generality for uniformity in exposition.





On the other hand, ^ is an endomorphlsm of S under

We will denote H'q(S) by N.

As with an ordinary semigroup, if S does not have an

identity, one may pass from S to S U {e} by ad.j unction of an

identify e (where e does not stand for any element in S)

.

In the case where S Is a semivector space, this is done by

extending « and 4' to S U {e}, setting e ^ e = e,

e*s= s*e= s(s e S), and Ae = e(X e F) . Henceforth we

will adopt the convention of denoting by S a semivector

space with identity e, obtained by adjunction if necessary.

From here on A will denote the simplex

{(X , ..., A ) e e""^^] E a. = 1; a. > 0, i=0, ..., n}. Given
" ^

i=0 ^ ^

any two semivectors x,x' in a real semivector space S,

their segment [x:x'] will be defined as {s = Ax d- A'x'

|

(A, A') e A }. A subset T C S will be called convex iff

Ix:x'lcT whenever x, x' e T. The following are plain:

if A is convex in S, then yA = {ya | a e A} is convex

(y e R) ; if B, too, is convex in S, then so are

A*B= {a#b| aeA, bEB} and all convex combinations

AA * A'B ((A,A') e A ). It is important to note that, unlike

in vector spaces, in semivector spaces there is no guarantee

that X or x' belongs to [x:x'] or even that x e [x;x].





2
For example, consider the commutative semigroup ([R], *) of

the set [R] of all non-empty subsets, A, Bd R, and obtain

a real semivector space with origin e = {0} by setting

AA = {Aa| a e a} if A ^ 0, and AA = R otherwise.

In further contrast to vector spaces, a semivector space

S need not have an identity (merely delete all singletons in

the above example), nor need Os = e even if S has an

identity e (readmit singleton {O} as e) . To continue, any

of the examples above illustrates that S need not be can-

cellative. Of course, S need not have an inverse s

for each s e S, nor need s = *i'(-l, s) even if it has -

for example, form a real semivector space by taking the ad-

ditive group G of reals and setting ^(A, g) = |A|g (A e R,

g e G). A property conspicuously missing in all of the above

examples is the distributivity (A + y)s = As * ys, but the

following definition enables us to study the structure of

semivector spaces with regard to various localized versions

of this property.

1,1 Definition ; Let (S, «, ^) be a semivector space over a

field F. The set DCS) CIF x F defined by D(S)

= {(A, li)| (A + y)s = As » ys for all s e S} will be called

the region of distributivity of S , and S will be said to

distribute at (A, y) iff (A, y) e D(S). A real semivector

2
The semigroup operation » being defined by

A t B = {a + b|a e A, b e B} for all A, B e [R].





i.e.
, ts:s] = sCs e S) .

Since S and F are both commutative, it follows directly

from the definition of D(S) that D(S) is symmetric, i.e.,

that (A, V) e D(S) if (y. A) e D(S) . Furthermore, by

Axioms 2 and 3, (A + y)s = As » ys implies V. (A + y)s

= (V. A)s « (v.y)s, so that (A, y) e D(S) => F(A, \i)CZ D(S),

where F(A, y) denotes the set {(v.A, v.y)| v e F}.

1.2 THEOREM ; Let S be a semivector space over a field F. Then

(denoting ^f^(S) = N) the following are equivalent:

1. (0, 0) e D(S);

2. N is a commutative band (in fact an "unsealed" semivector

subspace);

3. {T = ^^ (n) I n e N} is a partition of S into a semi-

lattice of semivector subspaces T each of which distributes
'^ n

at (0, 0). Furthermore, if F is the field of reals,

then each of the above is equivalent to:

4. N is pointwise convex.

Proof ; lit was noted earlier in this section that N is an

"unsealed" semivector subspace of S].

ad (1 => 2) ; For any Os = n e N, Os « Os = (0 +0)s = Os = n,

so that N consists of idempotents.

ad (2 => 3) ; [The T 's clearly partition S]

.





Writing Sup(m, n) = m t n in (the semilattice) N, the blocks

T form a semilattice by setting Sup(T , T ) = T^ , ..
n -^ * ^^ m' n^ Sup(m, n)

Defining T «T ={t #t|t eT,t el}, also note
m n m n'm mn n

T * T ^ '^Cnr.rm r>^*^ Let t , t' £ T . T is a semivectorm n bup(jn,n; m m m m

subspace, as 0(7it ) = m, whereby At e T ; and as

0(t ^ t') = m by idempotence of m, so that T is closedmm m

under ^. Finally, T distributes at (0, 0), as (0 + 0)t
m ' m

= Tn = -m+-m=Ot *0t.
m m

ad C3 => 1) ; If each T distributes at (0, 0), then so

does s = y T . Now assume F = R,
N n

ad C2 => 4) ; Use the unscaledness of N and the idempotence

of each of its -members.

ad (4 => 1) : Given any s e S, Os = n and (X,A') e A , we

have Os ^ Os = A(Os) # A' (Os), and pointwise convexity of

N equates this to Os = n.

disjoint semivector spaces over F such that, for each

a e A, 'I'fy^CT ) = {a} and T distributes at (0, 0). Denote

y T = S. Then there exists a semivector space (S, #, ^)

over F of which each (T , ® ,
¥^) is a semivector subspace,

and S distributes at (0, 0).

Proof ; For example, define « and ^ as below. Order A so

that a > b iff T > T, , and define a « b = Sup (a, b)— a — b

(a, b £ A). iReplace 'Sup' by 'Inf throughout if {T
|
a e A}





is a lower rather than an upper semilattice, ] Finally, set

TsupCa, b), if a ?* b;

It # t' if a = b;
V. a b' '

s e T (a e A).
^

3!

We now turn to structural aspects of distribution at

CO, A) f CO, 0).

1.4 THEOREM ; Using the notation of 1.2, among the following

statements, the first two are equivalent; furthermore, if

F = R, then all three are equivalent.

1. S distributes at a point (0, A) distinct from (0, 0).

2. {T
I

n e N} is a partition of S into a semilattice of

semivector subspaces T (each of which distributes at
n

CO, A)) such that n is the origin of T Cn e N)

.

3. For each s e S, s is the first element of [s:s].

Proof: ad CI =^ 2

)

: As shown immediately after 1.1, if

(0, A) e DCS), then (y.O, y.A) e D(S) for all y e F.

Setting y = and using 1.2, it remains only to prove that

n is the origin of T , which now follows from the fact

that S distributes also at (0, 1): for any

e T , n # t = Ot
n n n

ad (2 => 1) ; Trivial.

Now assume F = R.
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ad (2 => 3): Let s e T . Then Os » Is = n « s « s.
- ^ n

ad (3 => 1) ; Obvious.

1.5 THEOREM ; In the statement of Theorem 1.3, replace (0, 0) by

(0, A) for some A ^ and strengthen the hypothesis so that

a is the origin of T (a e A).

Proof ; Same as that of Theorem 1.3.

#

We close this section by giving some exercises and examples

in illustration of some facts which follow easily from the

above.

e 3
1.6 Exercise ; Let S be a cancellative semivector space. Then,

among the following statements, the first three are equivalent,

4 Implies 5, and all follow from 6.

1. S® distributes at (0, 0).

2. S^ distributes at (0, 1).

3. Os = e for all s e S^.

4. For all s e S^, (-Ds « s - e.

5. If S^ distributes at (a, b), then it distributes at

(a + b, -b) and (a + b, -a).

6. S distributes at some (c, d) and (c + d, -d) for

which d ^ 0.

Proof; 3 => 2 => 1 even without cancellation. Also, 1 *> 3,

for Os # Os = Os cancels to Os = e. Given 4, if (a + b)s

A semivector space S is cancellative iff * s = t

implies s = t for all r,s,t e S.
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= as « bs, then (a + b)s « (-b)s = as « bs « (-b)s = as,

similarly from 4, Obviously 6 implies 1, i.e., 1-3. To see

that it implies 4, hence 5, merely note that — e = e, since
d

d y' 0, and that cs= (c+d-d)s= (c+d)s# (-d)s

= cs * ds ^ (-d)s, cancelling to e = ds # (-d)s.

iff (-l)s « s = e for all s e S.

1.8 Remark ; We should caution the reader that a pointwise convex

space S need not contain an origin, and that, even if it

does, Os = e need not be satisfied by all s e S . These

deficiencies are illustrated in the order of mention by the

examples below.

Example ; Let (X, ^^ , "l*^) and (Y, 0^, ^^) be disjoint

pointwise convex spaces containing their respective origins

11 2 2
e = ¥ (X) and e = ^ n^'^^' Define a pointwise convex

space (X Y, «, ^) as follows:

(i) X « x' = X t-*- x' (x, x' e X),

Cii) y t y' = y «^ y' (y, y' e Y)

,

(iii) X « y = e""" (x c X, y e Y);

4'^-^(s), if s e X;

>F^^(s), if s e Y.





Evidently, X U Y contains no origin.

1,10 Example : Let (X, 9^, Y^ and (Y, ®^, Y^) be as above,

except that if x e X has an inverse in X then x = e

is now required. Define a pointwise convex space (X U Y, ©, Y)

with identity e by leaving (i) , (ii) and (iv) of 1.9 un-

changed and modifying (iii) , for x e X and y € Y , to

(iii) ' X «
Ty, if X = e ;

^x, if X ?t e .

2 1
Evidently, Oy = e ^ e for all y C Y

1.11 Exercise ; Let X be a semivector space over a field F and

(Y, ®) an Abelian semigroup. In particular, X and Y may

be objects in the category of semivector spaces over a field

F. Let Hom(X, Y) denote the set of all morphisms from X to

Y . Define "scalar multiplication" and "semivector addition"

in Hom(X, Y) by setting Xf(x) = f(Xx) and (f ® g) (x)

= f (x) © g(x) for all X e X , all X e F and all f , g

e Hom(X, Y) . Then, Hom(X, Y) is a semivector space over the

field F, These facts are not altered even if X is strengthened

to be a vector space or Y to be an Abelian group.

This example was suggested by some of the constructions of Keimel

[l967a and 1967bl.
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TOPOLOGICAL SEMIVECTOR SPACES

2.0 Definition ; Let S and F be topological spaces such that F

is a field and (S, ©, ^) is a semivector space over F. Then

(S, ^, H*) is called a semilinear topological space (or topo-

logical semivector space ) over F iff € and ^ are continuous.

In a semilinear topological space, it is immediate from the

continuity of ¥ that each 'F, is continuous. Hence, writing

i
y = A, so long as A ^ 0, we have f continuous, whereby

open map when restricted to (F \ {O}) x S.

Strengthenability of the Topology^

If (S , ^) is a commutative mob with Hausdorff topology

on S , it is possible to strengthen the topology on S with-

out destroying the continuity of ^ and in such a way that

(i) the nbd system of e is unaltered, while (ii) U € s is

now open whenever U is open in S and s e S [Paalman-

De Miranda, 1964; Theorem 3.2.13]. Given a semilinear topologi-

a "strengthened " topology on S we will mean one which satis-

fies (i) and (ii) as just stated. We may ask now whether there

exists a strengthened topology on S^ under which (S®, «, W)

remains a semilinear topological space. (Of course, in a linear

topological space the topology is already a strengthened version

of itself).
5 —
We are grateful to Prof. T. Bowman for pointing out an error in an

earlier draft of this section.
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Having Paalman-De Miranda's result as stated above, the

question clearly boils down to whether the continuity of ^

can be preserved under a strengthened topology on S . Al-

though we are unable to assert in general when this can be done

and when it cannot, we recognize a research problem here and

offer the following as an example where it cannot be done even

though the space whose topology is to be strengthened is, as

the reader may check, a pointwise convex semilinear topological

space with identity and with a topology which is locally

compact, metrizable, 3° locally convex (see 2.2 and 4.4), etc.

Example ; Let F be the real field with usual topology, and define

a real semilinear topological space (KQ(,R) , t, ¥) over F, where

KQ(R) is the set of all nonempty compact and convex subsets of

R Cthe topological group of the reals with usual topology),

where la, b] « {c, d] = {x + y |
(x, y) e [a, b] x [c, d]}

and Ala, b] = [\a, Ab] for all a, b, c, d e R, X e F, with

a £ b and c £ d, and where the finite topology is taken on the

hyperspace S = KQQR), Fix attention to any non-singleton

t e S^, and consider the restriction Y*" : F x {t } ^ S^ of T.

Strengthen the topology on S by declaring the translates

U « s to be (basic) open for each s £ S and each "originally"

open U CS^. The fact is that ^ is not continuous under

the strengthened topology on S . For let U be an open nbd

of e, and consider the (basic) open nbd U # At of At for

some A > 0. Now the inverse image fi of U « At under 4*
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contains (A, t), but it contains no (y , t) such that

< y < X. For suppose that < y < X and that yt = At € u

for some u c U. Then t = — t ® — u, which is impossible

since diam (— t ^ — u) >_ diam (r- t) and, as — > 1, diam (~ t)

> diam (t), whereby diam (t) < diam (— t 6 — u), contradicting

that yt = At ^ u. Thus, A = Inf(fi), so that U is not

open showing that ^ is not continuous. Thus, the semilinear

topological space just considered, despite all its properties,

does not remain a semilinear topological space when its topology

is strengthened in the fashion sought.

Real Semilinear Topological Spaces and Axioms of Local Convexity

The following intuitively pleasing fact is a natural one

early to check.

2.1 Lemma : In real semilinear topological spaces topological closure

(CI) preserves convexity.

Proof ; Let Q be convex in S, a real semilinear topological

space. If Q =
(J)

there is nothing to prove, so let q, q' be

adherent points of Q. Suppose Aq « A 'q ' = q ^ CI (Q) for some

(A, A') e A . Then there exists a nbd V of q disjoint from

C1(Q). The map f^: S x s ^ S, defined by J^(x,x') = Ax « A'x',

being continuous, there is a nbd U x U' of (q, q') such

that n(U X U')c: V. Since q and q' are adherent points of

Q, however, there exists (y, y') e U x U' such that y, y' e Q.

Then, by convexity of Q, n(y, y')eQ, a contradiction.





Apart from preparation for their use in the fixed point

theory of Section 3, our motivation for stating the following

"axioms of local convexity" derives from the fact that, al-

though for a topological subspace X of a linear topological

(Ha'usdorff) space the first three are always equivalent and

all four are equivalent when X is convex, we are able to

assert only weaker relationships between them in the case of

semilinear topological spaces. Given a subset X in a real

semilinear topological space, we have the following

2.2 Axioms ;

0. For any x e X and any nbd V of x, in the subspace

topology of X there exists a convex nbd U of x such that

UC V;

1. There exists a quasi-uniformity £'={ECXxx|aeA}

of X inducing its subspace topology, such that, for each

E e E, there exists a closed Eg £ £" with E-C E and

Eg(x) convex for each x e X;

2. There exists a quasi-uniformity ff = {E C X x x| a e A} of

X inducing its subspace topology, such that, for each

E^ £ E, there exists a closed Eq e £" with Eq C E andu p p a

Eg(K) convex for each compact and convex subset K C X;

3. X is convex and there exists a uniformity E = {E C X x x|

a e a} of X inducing its subspace topology, such that, for

each E^ e £", there exists a convex E^ e £" with Cl(Eo)C E .

ex p p ot





X will be called 0''/l°/2°/3° locally convex (I.e. ) accordingly

as it satisfies QlXjlIZ among these axioms. Thus, 0° local

convexity is the familiar local convexity.

2.3 Proposition ; Given a subset X of a real semilinear topological

space,

1. If X is 1° I.e. , then it is 0" I.e.;

2. If X is 2° I.e. and pointwise convex, then it is 1° I.e.; and

3. If X is 3° I.e., then it is 2° I.e.

2.4 Proposition ; Every 0° I.e. T^ space is pointwise convex.

0** I.e., there is a local base S = {B
|
a e A} at x consisting

of convex nbds. Thus, x £ B = flB , and B is convex. In fact,

A
B = {x}. For, supposing y E B for some y f^ x, as X is T

,

there exists a nbd U of x to which y does not belong, whereby

y i ^c(C U for some B e S, contradicting that y e B. Thus

{x} IS convex.

Products of Semilinear Topological Spaces

Given a family { (S , # ,
4' ) |

a e A} of semivector spaces

over a field F, their product (S = IT S , #, ¥) is the semivector
A

space the algebraic operations ft and 'i' of which are defined

coordinatewise as follows:

K"^ a e A * K\ e A = ^^a
^^^

^a> a e A

\^K\ e A> = K"^^ a»a e A





(s , t e S ; a e A; {s } ,, (t } . e S; A e F). Of

course, e = {e } . is the origin of S iff e is the origin

of S for each a e A. Furthermore, S distributes wherever

all of its factors do so. Turning to semilinear topological

spaces, the product, taking the product topology on S, is, of

course, a semilinear topological space iff each of its fact-

ors is.

2.5 Lemma ; Let {X
| a e A} be a family of 2° I.e. spaces of which

formity inducing the product topology on X = 11 X . Then, for

A
every F e ff, there exists a closed E e E such that E C F and

E(K) is convex whenever K is the product K = II K of compact
A

Proof: Contained in F, find a basic E c E which restricts a

finite set N C: A of coordinates, including (w.l.g.) the set

M C A of indices m for which X is not convex. Now

H=nH X n (X XX),
N " A\N '^ ^^

where H belongs to the quasi-unifomnity E of X (n e N).

convex K C X . Write E = 11 E x n„ (X x x ).
n n „ n A\N a a

N

2.6 Lemma ; The product of a family of 1° I.e. spaces is 1° I.e.

if all but a finite number of the factor spaces are convex.





Proo

f

; Imitate the last proof, „

Upon noting that projections preserve convexity, and

assuming that the product space is compact, it is easily veri-

fied also that the factor spaces are \° ll° I.e.. Finally, the

proof of the following stronger proposition for the case of

3° I.e. spaces is omitted being straightforward.

2.7 Proposition ; The product of a family of spaces is 3" I.e. iff

each of the factor spaces is 3° I.e..
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FIXED POINT AND MINMAX THEOREMS

Throughout this section we will be concerned only with point-

wise convex real semilinear topological (pcrst ) spaces, not nec-

essarily containing an origin; these spaces will be assumed Haus-

dorff , and the real field will be taken with the usual topology.

Given topological spaces X and Y and a mapping f of X into

the set of non-empty subsets of Y, when we say that f is upper

semlcontinuous (use) , we will mean that, for each x e X, given a

nbd VC Y of f(x), there exists a nbd U of x such that fCU)C V.

For the composition of two binary relations FC A x b and

E C C >< D, we will write E " F for the set (binary relation)

{(a, d)|3x e B n C such that (a, x) e F and (x, d) z E}.

In the sequel, 'C$CX)' should be read as "the set of non-empty

closed and convex subsets of X",

3.1 THEOREM (Fixed Point) ; Let S be a pcrst space, let X be the

closed convex hull X = (x == A a #...•© ^^^a^^
I

^ = (^qI •••»

X ) E A } of {a , .... a }CS, and let f: X -K7§(X) be an
n n o' ' n '

upper semi-continuous transformation of X into the set CQ(X)

of non-empty, closed and convex subsets of X. Then there

exists a (fixed) point x e X such that x e f(x).

Proof: Let i1j: A -> X be the map defined by ij^(X) = X a «
' n o o

... « A a , and let 4*: A x A -»- X x X be the map defined
n n' n n

by 'l'(A, y) = (<|j(A), i|^(y)). Since the algebraic operations of

S are continuous, so are ^ and ^.
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Let gc X X X be the graph of f and let GC A x A be
n n

the graph of the map F: A^ ^ A^ defined by Fa) = ^"'^(fiiii^^))).

Thus G = i|j (g). Since A Is compact, by continuity of

4*, X = ij^CA ) is compact, hence regular. Thus g is closed,

since f is use. Hence, by continuity of \l), G is closed,

whereby F is use by compactness of A .

Clearly, for each A e A , F(A) is non-empty; also, it is

closed, since fQltQi)) is closed and ip is continuous. Further-

more, FC\) is convex. For let p, p' e F(A), i.e., for some

y, y' e f 0|j(A)), let y = y a 9 ... 9 ]i a and

y' = yU^ « ... » p^a^j for B' = (1 - 3) e [0, 1] let

y = 3y * 3'y'. Then p e FO), since, denoting y = p a •

... ^ p a , by pointwise convexity of S, y = gy « B'y '

;

and, by convexity of f(\i^(A)), 3y 9 3'y' e f(i|)(A)).

Hence, by Kakutani's fixed point theorem (1941), there

exists a A* e A such that A* e FCA*), implying that

\P(\*) e f(i|^a*))C X.
^^

3.2 THEOREM (Fixed Point) ; Let f; X ^- X be a continuous trans-

formation of a 1° I.e., compact and convex subset X of a

pcrst space, Then there exists a (fixed) point x e X such

that X = f (x).

Proof: Since X is compact, there exists a unique uniformity

on X compatible with its subspace topology. Since X is 1" I.e.

we assume that {E C X x x| a £ A} is a fundamental system of
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Cclosed and) convex for all x e X. Define Y = {x| x e

E^(f(x))}. We will show that Y is non-empty and closed for

each a e A. Then, as the intersection of any finite collect-

ion of Y 's is non-empty, compactness of X will imply that

. Y / (|>» thus proving the theorem, for x e '' . Y

implies x = f (x).

To show that Y is non-empty, let {D
|
a e A} be a

family of open symmetric entourages such that D d E (a e A),

Thus, for any given a e A, {D (x) | x e X} is an open cover
^ n

of X, so that there exist x , ..., x e X with X C M D (x.).' o' ' n 1=0 a^ i'

Denote the closed convex hull of {x , . . .
, x } by

0' ' n

P={p = Ax #...eAx |A= (X , ...,A)eA}. Define00 nn' ^o' *n n

the map G on P by G (p) = E (f (p)) P. Then, by symmetricity

of D c: E , for all p £ P, G (p) is non-empty; clearly it is

also closed and convex. Thus G maps P into CQ(P). Denoting

the graph of E " f by Q , the graph of G is simply

r = n f) P X p. Since E is use (by the closedness of E in

the compact X x X) and since f is continuous, E ** f is use,

i.e., ^ is closed, as X is regular (in fact, compact). Hence,

r is closed and, by compactness of the range X, G is use.

Thus, by Theorem 3.1, there exists p e P such that p e G (p).

the compact set J2 fl A where A is the diagonal in X x x.
a

^
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3,3 THEOREM (F jjced Po int )

;

Let {X
|
a e A} be a family of 1° I.e.,

compact and convex subsets of (pcrst) spaces, and let

{f : X ^ X
I

a e a} be a family of continuous functions on

X = n X^. Define F: X -^ X by F(x) = n f (x). Then there
A A

exists a (fixed) point -x e X such that x = F(x).

Proof ; Clearly, X is a non-empty, compact and convex subset

of a pcrst space. Since each X is 1" I.e., so is X. Further-

follows readily by application of Theorem 3.2.

3.4 THEOREM CMlnmax) ; Let X^ and X be 1° I.e., compact and con-

vex. Let u be a continuous real-valued function on X = X. ^ X^,

such that

^1^^2^ = {x^l u(x^, X2) = Max u(y, X2)}
yeXj^

^2^1^ = {X2I u(x
, x^) = Min u(x , z)}

z£X_

define functions f : X^ X and f„

Max Min u(x^ , x ) = Min Max u(x , x ).

^1 ^2 ^2 ^1

Proof ; It is obvious that, for all (x , x )

Max u(x , X ) >^ Min Max u(x , x ) >^ Max Min u(x , x ) >^

^1 ^2 ^1 ^1 ^2

Min u(x^, x^).

^2

Clearly, the functions f and f^ are continuous, so that the

function F: X ^ X defined by F(x^, x^) = (f^^Cx^), f2(Xj^))

is continuous. Then by Theorem 3.3, there exists an x* e X

e X,
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such that X* = (x*, x*) = F(x*) . Hence, Max u(x , x*)

= Min uCx*, X ), thus proving the desired equality. „

X2

,5 THEOREM (Minmax) ; Let A, and A. be non-empty but finite sets,

each lying in a pcrst space, and let X^ and X„ be the closed

convex hull of A^ and A , respectively. Let u be a continu-

function

f^(x_) = {x
I
u(x , X ) = Max u(z, x )}

^ ^ ^ zeX^ ^

^2(^1) = {x^I u(x^, x^) = Min u(x^, z)}

z£X„

define maps f^:X^-^ CQ(X^) and f^ : X^ ^ CQ(X^). Then

Max Min uCx , x.) = Min Max u(x^, x_).

^1 ^2 ^2 ^1

Proof ; Use Theorem 3.1.

3.6 THEOREM (Fi^ed Point) ; Let f; X -> C$(X) be an upper semi-

continuous transformation of a 2° I.e., compact and convex

subset X of a pcrst space into the set CQiX) of non-empty,

closed and convex subsets of X. Then there exists a (fixed)

point X e X such that x e f(x).

Proof ; As in the proof of Theorem 3.2, it suffices to show

that the sets Y = {x| x e E (f(x))} are non-empty and closed,

where, in this case, {E
|
a e A} is a fundamental system of

le

and) convex for each non-empty, compact and convex subset

KCX. The proof is the same as that of Theorem 3.2 except
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that appeal is now made to the upper semi-continuity, rather

than the continuity, of f. ,

3.7 THEOREM (Fi^ced Point) ; Let {X^
|
a e A} be a family of 2° I.e.

compact and convex subsets of pcrst spaces, and let

{f ; X ^ C^CX ) I a e a} be a family of upper semi-continuous

transformations, where X = n X . Define F: X ^ n C$(X )

A " A "

by FCx) = n f (x) Cx £ X) . Then there exists a (fixed) point

A
^

X e X such that x. e FCx).

Proof : Clearly, F is an use transformation of the non-empty,

compact and convex space X into CQ(X) . Although X need not

formity on X allows a fundamental system {E, | i e I} of

closed entourages such that, whenever K is the product

k = n K of compact and convex subsets K CT X , E (K) is

A
closed and convex (See Lemma 2. A). Notice that F(x) is such

Theorem 3.6 defining Y. = {x] x e E.(F(x))}, it is clear that

Y. is non-empty and closed for each i £ I, implying that

n Y. ^ d) and proving the theorem. ..

I
^ *

3.8 THEOREM ^inmax) ; Let X, and X be 2° I.e., compact and con-

vex, each lying in some perst space, and let u be a continu-

ous real-valued function on X == X^ x X„, such that

^1^^2^ = -fx^l u(x^, x^) = Max u(y, X2)}
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^2^^1^ = {x^l u(x^, x^) = Mln u(x , z)}

z£X„

define point-to-set transformations f ^ : X. -+ C$(X. ) and

^2'
'^l

"^ C'^0^2^' respectively. Then Min Max u(x , x )

= Max Min uCx^, x ),

^1 ^2

Proof; Straightforward
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4. HYPERSPACES AS EXAMPLES

In this section we show how Ctopological) semivector spaces

arise naturally as certain hyperspaces of certain (topological)

vector and semivector spaces. In topologising hyperspaces, we use

the upper semifinite, finite or, when applicable, uniform topology,

regarding all of which we adopt E. Michael [1951] as standard

reference.

4.0 Standing Notation ; Given a set X, [X] will denote the set of

non-empty subsets of X. If X is a topological space, C(X),

00^) and K(K) will denote the set of non-empty subsets of X

which are closed, open and compact, respectively. If X lies

in a real semivector space, $(X) will denote the set of non-

empty convex subsets of X. Finally, we will denote

CQ(X) = C(X) e(X), OQ<X) = 0(X) n Q(X) and KQ(X) = K(X) §(X).

4.1 Lemma : Let X be a subset of a real semilinear (Hausdorff) top-

ological space, and let H(X) denote the hyperspace C(X) if X is

regular, and K(_X) otherwise. Equipping ff(X) with the finite top-

ology, HQ(X) = //(X) n Q(X) is then closed in H(X) .

Proof ; For some directed set D, let {P e HQ(X)\ n e D} be a

net in H(X) converging to P . (Of course, P e ff(X)). Let

p ,
p' e P , and take an arbitrary convex combination

* * *

P* = -^Pj. ^ A'p'. We need to show that p e P .

* * * *

There exist nets {p e P I n e D} and {p' e P I n e d}
n n' "^n n'

converging, respectively, to p and p'. It suffices to show

For definitions, see the Appendix at the end.

The existence of such nets is guaranteed in virtue of
Lemma 1 of the Appendix.
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that the net {p e P I n £ D}, defined by p = Ap « A'p'
^n n' '

-^ ^n *^n *^n'

converges to p^.^ Define fi: X x x ^ X by f2(x, x') = Xx « A'x'.

By continuity of ^, for each nbd V of p^, there exists a

nbd U X u'C: X X X of (p ,
p') such that ^QJ x U')C V.

* *

Clearly, {p e P
|
n e D} is eventually in V. «

Let (S, *, 4*) be a semivector space over F and, for any

A, B S, define A«B= {a»b| a eA, b eB} and

AA = "FO, A) = {Aa| a e A}. Then ([S], «, "V) is a semivector

space, and if F = R, then (^(S), #, 1') is a semivector sub-

space of [Sj; furthermore, in this case, S is a semivector

subspace of Q(S) iff S is pointwise convex, and S is pointwise

convex only if ^(S) is so.

A topological semivector space (S, #, ^) is a topological

semivector subspace of (^(S), #, H') , which, in turn, is a

topological semivector subspace of ([S], #, ^) ,
giving the

finite topologies to K(S) and [S]. Furhtermore, KiS) is

Hausdorff iff S is so. If (S, 9, H') is a semilinear topo-

logical space with a "strong" topology, (cf. Section 2), i.e.,

a topology in which U * s is open whenever U OS is open and

s e S (such as in linear topological spaces), then (0(5), €, ^)

is a topological semivector subspace of ([S], €^, ¥) ,
giving

the finite topology to C(S) and to [S], It follows that Q(S)

and KQ(S) are topological semivector subspaces of [S] whenever

IS] is a topological semivector space, and OQ(S) is a (topo-

logical) semivector space whenever (9(S) is a (topological)

o —
For, then, Lemma 2 of the Appendix guarantees that p^ £ P^.
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semivector space.

,2 Proposition ; Let S be a real semilinear topological space,

and let XC S be convex. Then KQ(K) is convex. Assume that

ened version of itself, as described above) and equip KQ(X)

with the upper semifinite topology. If X is 0° I.e., then

so is XQ&.) - although it need not be Hausdorff even if X

is Hausdorff. Furthermore, if X is pointwise convex (so that

KQ(X), too, is pointwise convex), then KQQi) is 0° I.e. only

if X is 0° I.e.,

Proof ; The rest being clear, we only prove that KQ(X) with the

upper semifinite topology is 0° I.e. when X is so. Let

A e KQ(X), and let \J CL KQ(X) be a nbd of A. Find a basic

nbd <V> of A such that <V> c W, Then V c X is a nbd of

A CI X, By continuity of ®, for each a e A there exist open

nbds U of e and W of a such that U ^ W c V, while the
a a a a '

is open. {U # W
|
a e A} thus being an open cover of the

compact A, it has a finite subcover {U « W
|

i e l}.

^i ^i

Denoting U = D U and W = U W , we see that A d U ® A
I i I i

C: U ® W O V and that U ^ A is convex. Furthermore, U » A

is open in the strong topology, so that <U 6 A> = KQ(\] ® A)

is an open convex nbd of A e KQQ^), while <U « A> C:<V> C W,





as desired. .,

4.3 Corollary ; If X is convex in a CO") locally convex real

linear topological space (not necessarily Hausdorff), then

KQ(^) is convex^ pointwise convex and, with the upper semi-

finite topology, 0° I.e. as well.

Proof ; The topology of a linear topological space being

strong, the last proposition applies. «

4.4 Corollary ; Let X be convex and T^ in a semilinear topological

space with strong topology. Then X is 0" I.e. iff KQ{X)

with the upper semifinite topology is 0° I.e.

Proof ; "Only if" follows from 4.2, As X is pointwise convex

by 2,4, "if" also follows from 4,2. j.

4.5 Proposition; Let L be a (0°) locally convex linear topological

space. The KQ(L), with the uniform (or, equivalently, the

finite) topology, is 3° I.e..

Proof ; Let {W
|
a e A) be a fundamental system of convex

and symmetric nbds of the origin e e L, so that {E CL x l|

a e a} is a fundamental system of entourages of the uniform

structure of L, having defined E (x) = x ^ W for each a e A

and X e L. For any P e KQ(L) , E (P) = P « W C L is a nbd

of PC L. By definition, the uniform structure on KQ(L)

is the one generated by A and collections P^(P) = (T e KQ CL)\

P CE (T) and P E^(t) i (j) for all t e T}, that is to say,

F^(P) = {T e KQQL)\ PCE^(T) and TCE^(P)} (P e KQ(L)).
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It suffices to show that each F is convex. To see this,

fix a and note that (P, Q) e F iff P C Q « W and

QCP « W^. Let (P, Q), CP', q') e F^, and consider an

arbitrary convex combination (P, Q) = (\? 9 A'P', AQ * A'Q'),

recalling that KQQL) is a pointwlse convex (topological)

semivector space, so that P, Q e KQCL). Since W is convex,

we have P = AP « A'P'CI A(Q « W^) # A' (Q' « W ) = AQ « A'Q' « W

= Q « W^. Similarly, QCIP « W^. Hence, (P, Q) e f , as

was to be shown.
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5. APPLICATIONS IN SOCIO-ECONOMIC ANALYSIS AND OPTIMIZATION

Fixed point methods have been a traditional means of demon-

strating the existence of economic equilibria, which can be looked

upon as fixed points of certain economic adjustment processes. For

example, given a finite number of commodities which are exchanged

in an economy, consier a vector of prices with a price for each

commodity. By choice of definition for 'commodity' the prices can

be assumed non-negative without loss of generality, and they can

be scaled so as to add up to unity as long as at least one commod-

ity is scarce in the sense of having a positive price. Modelling

the (exchange) economy to resemble an auction hall, whenever a price

vector is proposed to the participants, each declares the amount of

each commodity which he wants and, given his present endowment of

commodities to be used in exchange, he can afford at the proposed

prices. As a result, there may be (positive, zero, or negative)

excess demand for a given commodity. If there is positive (negative)

excess demand for some commodity, its price is bid up (down). An

equilibritnn here is a price vector for which the excess demand in

each commodity is zero, so that no commodity price is bid up or

down while all markets are "cleared". One asks whether such an

equilibrium exists. Under rather reasonable conditions on the

preferences of the individuals, using a suitable fixed point

theorem, one can show that indeed there does exist an equilibrium

and, in fact, one can say more concerning the stability, optimality,

etc, of such equilibria.
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The abcTve hints at how fixed point methods may be used in the

equilibrium analysis of the simplest of economic systems. To do

the same for optimization theory, suppose one is trying to find

a point X* in a compact and convex set X lying in a real linear

topological space, such that x* maximizes some real-valued function

f :X -> R, where we simplify matters by assuming that f is quasi-

concave and upper sime-continuous. Suppose one can design an

algorithm consisting of a point-to-set transformation T:X -> CQ(X)

such that f (y) > f (x) for all y e T(x) (x e X), unless x maxi-

mizes f , in which case f (x) = Sup f and x e T(x) is a fixed point
X

of T, solving the maximization problem. In problems such as this,

fixed point theorems tell us which monotonically improving maps T

have fixed points, so that we may design one which works. Also,

before trying to optimize, one may wish to feel assured that there

exists an optimum. In proving the existence of such optima, fixed

point methods again become very useful.

To come to the particular contribution of semilinear topological

spaces and their fixed point properties as presented here, imagine

the case where the "feasible region" to which choices are constrained

is altered by the very choice of point in that region. (For instance,

whether or not one has chosen to learn mathematics when young affects

what one may or may not do when older. Also, unless one invests some

of one's resources in building a spaceship, one is not able to go to

the Moon.) Allow it to happen, furthermore, that the constraints
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operating on one's future choice of behavior depend also on other

agents' choices and constraints. Given a set A of choice-making

agents a £ A, assume that the feasible region for each a is

always a point k^ £ CQ(X^), where X e KQ(.L ) for some (0°)

3° I.e.; we also know that it is compact and convex, lying in a

more, all these properties are shared by Z = X x Y . Denote

X = n X , x'* = n Xq and Z = n Z. Assume that each a's feasible
A

"^

A\{a} ^ A

t ; Z -*- Y . Given a feasible region k and a point x £ X represent-

ing how all the other agents chose to behave, a computes the set

a(k^, X ) of "best" choices x £ k such that f (x , x*^)
a' ' a a a a'

= Sup f (. , X ), given some continuous and quasi-concave real-
k "

according to a's preferences. Then a(k , x ) will be a nonempty

compact and convex subset of k X , where (k , x ) is also the

projection tt^
^ ^^

(z). Hence, {t (z)} x cc(k , x") is nonempty,
a a

compact and convex in Y^ x x^ = Z , Thus, II({t (z)} x a(k<x, x^))
A

is nonempty, compact and convex in Z. If a is use, as it will be

in this case, then we have an use map of Z into KQ(Z). It is easy

to see how our fixed point theory now yields a fixed point z £ Z,

which in this case is a "dynamic social equilibrium" - "dynamic,"
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of z, not necessarily being constant.

The simplicity brought by the method above is that feasible

regions are treated as points in a semilinear topological (hyper)

space, without being restricted to consideration as sets per se .

Many quite general forms of "feasibility transformations" now

become easy to work with, giving simplicity, as well as generality,

to the analysis of "dynamic social systems" (where feasible regions

are not necessarily fixed, but are endogenous to the adjustment

processes in the system).

We have indicated only how one uses the methods presented here

in proving the existence of economic and social equilibria. Equi-

librium analysis, of course, is meant to do more than just prove

equilibria to exist. Nevertheless, the existence question has to

be settled in the affirmative for a sufficiently unrestrictive set

of conditions before one can proceed on sound footing. In

[Prakash, 1971] and [Sertel, 1971] such a footing is offered in

more detail and generality and with rigor.





APPENDIX

Definition : Let X and Y be topological spaces, and let [x] denote

the set of all non-empty subsets of X . The upper semifinlte (u.s.f. )

topology on [x] is the one generated by taking as a basis for open

collections in [x] all collections of the form < U > = JA e [x] | A C u},

and the lower semifinite (l.s.f,) topology on [x] is the one generated by

taking as a sub-basis for open collections in [x] all collections of the

form <U>" = JA e [x]I A n U 4 0I . where U is an open subset in X .

The finite topology on [x] is the one generated by taking as basis for

open collections in [x] all collections of the form <U ,...,U >
n 1 "

= JA e [x]| A c U U. , A n U. =1= for i = 1 n| . A mapping
1 ^ ^

f: Y - [x] is called upper semi-continuous (u.s.c. ) [reap, lower

semi-continuous (l.s.c.) l iff it is continuous with respect to the

u.s.f. [resp. l.s.f.] topology on [x] .

Remark ; It follows that f is continuous with the finite topology on

[X] iff it is both u.s.c. and l.s.c.

LEMMA # 1 ; Let X be any topological space and let <3 (X) , the set of

all nonempty closed subsets of X , carry the finite topology. For some

directed set (D, ^) , let fP^^ eC'(X)l n €d| be a net in (3 (X)

converging to some point P* 6 C-CX) . Then, for every p* e P* , there

exists a net jp ep cxjneDJ in X, converging to p* .
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Proof

.

Let p"- e P* be such that there exists no net jp e P j n e DJ

which converges to p* . Then there exists a nbd U of p* , U «^ X ,

such that for every mSD, SneD, nSm, for which P Pi U = .

Define ^( = <X, U>= {Ae(3(X)| ACX, Anu?t0|. Clearly, ^( is

a nbd of P* such that if P H U =
, then P jt li . Then ^( is a nbd

n n

of P* such that the net JP 1
n e D | is not eventually in 1/ . This

is a contradiction. #

LEMMA # 2: Let X be a Hausdorff topological space, and let i^ (X)

denote the hyperspace C-CX) if X is regular, and ?C (X) otherwise, where

K (X) denotes the set of all nonempty compact subsets of X and where

V (X) is equipped with the finite topology. For some directed set (D, ^)

,

let |P e5i/(X)l n e d} be a net in V (X) converging to some P* e V (X)

,

Then, for every r

p* e X ,
p* e P* .

Proof. Let a net jp £ P
]
n £ D | converge to some point p* € X and

suppose p* ^ P* . Then there exist nbds U of the subset P* and V of

the point p- , U, V c x , such that U fl V = . Since |p |
n 6 d|

converges to P* , there exists m e D such that for every n s m , n e D,

P e K = <\]> = JAe?/(X)| ACUJ implying that P fl V =
, for K

is a nbd of P* e V (X) . Thus the net ip 6 P j n £ d| is eventually not

in V . This is a contradiction. #
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