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ABSTRACT

This paper investigates the sensitivity of maximum likelihood estimates

with a view to finding out how many individuals are needed and how many pur-

chases are required for each individual to accurately estimate parameters for

zero order models. Our results reveal that the estimation of the typically

formulated original parameters requires about 2000 individuals with 5

purchases per consumer. In many zero order applications, however, knowledge

of market share and loyalty index, which are both functions of the original

parameters, should be adequate. Reduced sample sizes of about 400 with 5

purchase records per household are shown to be sufficient to estimate the

transformed parameters, the market share and the loyalty index. Our numerical

results use the beta distribution as the mixing distribution for the individual

p values; however, the spirit of our results holds for arbitrary mixtures.

Namely, much smaller sample sizes are required if we only need to know the

location (market share) and shape (loyalty index) of the mixing distribution

than if we need detailed knowledge of the original parameters.
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INTRQDUCTION

Marketing researchers usually provide only point estimates of model

parameters; that is, they do not take into account the effect of sampling

variation on these parameter estimates. There are only a few exceptions

(e.g.. Shoemaker and Staelin [11], Van Mechelen [13]). In both these

papers the authors reached the same conclusion, which is that the para-

meter estimates of the models studied are sensitive and that the coeffi-

cients of variation for commonly used sample sizes are large.

Shoemaker and Staelin [11] examined the effects of sampling variation

on market share estimates of new consumer products in the Parfitt and

Collins model [9]. Their results indicate that the coefficients of

variation associated with the prediction of market shares for normally

used sample sizes are in the range of 20% to 40%. Further, the sample

size of over 2500 that is required for a coefficient of variation of .1

is much greater than that commonly used to estimate market share with the

use of Parfitt and Collins model .

Van Mechelen [13] found the estimate of total buyers in a particular

period in SPRINTER mod I [12] to be sensitive to small variations in input

data. Specifically, he encountered coefficients of variation of over 20%

given a small variance of 3% in the input data.

In this paper our objective is to investigate the sensitivity of

maximum likelihood estimates in zero order models with a view to determine

sample sizes required to estimate parameters within a given accuracy level

(say, ±10% of the true value). Zero order models have been frequently used



to describe brand switching behavior (Bass, Jeuland, and Wright [2],

Kalwani and Morrison [6], and Massy, Montgomery, and Morrison [8]). Each

consumer in these models is assumed to purchase a given brand (say. Brand

1) with probability, p, and Brand representing the aggregate "all other" class

with the complementary probability, 1-p. These models allow for heterogeneity

in the population by letting the p values differ across individuals. Since

each person is a zero order process defined by a single parameter p, these

zero order models are completely defined by f(p), the distribution of p values

across individuals in the population. A statistical question, which has

received little attention arises: What are the data requirements for

accurately estimating f(p)? In this paper we address the issue of how many

Individuals nead tu be in the i^awple p1u& how ttiany trials need te be observed

for each individual to accurately estimate f(p).

In some empirical settings the exact form of the purchase probability

distribution, f(p), is of interest and we need to estimate the original

parameters of f(p) (e.g., in this paper this would amount to estimating the

original parameters of the beta distribution). Our results reveal that the

sample size requirements in such settings are excessive. However, in most

applications of zero order models the properties of interest are not the

parameters themselves but functions of these parameters like market share and

a measure of the loyalty or switching rate (e.g., Hendry seitching constant

[6], Bass's correlation coefficient [1], and Sabavala and Morrison's loyalty

index [10]). Our findings indicate that these transformed parameters -

market share and loyalty rate - are "stable", that is, they vary much less

than the original parameters.

The sample size requirements are determined for a coefficient of

variation of .05. Assuming that the parameter estimates are normally



distributed, this implies that the true parameters are estimated within +10

percent of the true parameter values 95 percent of the time. The sample

size requirements at other levels of accuracy can be easily calculated from

a knowledge of the sample size required for the 10 percent accuracy level.

For instance, sample size will have to be quadrupled to improve the accuracy

to 5 percent. The variance of the estimator is inversely proportional to the

sample size; hence, a quadrupling of the sample size is needed to reduce the

standard deviation by a factor of 2.

Given the aforementioned criterion of +10 percent accuracy level at 95

percent confidence level, the resulting sample sizes required for the es-

timation of the original, untransformed model parameters exceed 2000 when

only 5 purchase records are available for every household. These sample

size requirements are much larger than most researchers' intuitions would

indicate and have not been met in most published studies. When the trans-

formed, more stable parameters (market share and loyalty rate) are estimated,

however, sample size requirements given 5 purchases per consumer are less

than 400 for the U shaped purchase probability distribution typically

encountered in empirical research.

The remainder of this paper is organized as follows: first we discuss

the use of market share and loyalty rate as measures of market response in

applications of zero order models. This is followed by a presentation of

the overall methodology including the likelihood expressions for estimation

of the original as well as the transformed parameters. Next, the findings

from the simulated data are reported. Finally, the results of the paper

are summarized in the concluding section.



MEASURING MARKET RESPONS E

As mentioned earlier, knowledge of the purchase probability distribution

completely defines a zero order model. That is, various response measures

like market share, repeat-purchase and switching probabilities--condi tional

as well as unconditional --can be easily obtained given the exact form of the

purchase probability distribution. In most applications of zero order models,

however, the marketing researcher may only be interested in obtaining the

brand share and a measure of brand loyalty (e.g., Hendry switching constant

[6], Bass's correlation coefficient [1] , and Sabavala and Morrison's loyalty

index [lO]). It turns out that, assuming beta heterogeneity on p, other

response measures like conditional and unconditional switching as well as •

repeat-purchase probabilities can be easily obtained from a knowledge of the

market shares and a measure of brand loyalty.

The beta distribution due to its flexibility to take different shapes

and mathematical tractability is often used to represent the functional form

of the purchase probability distribution. The beta distribution takes bell,

U, J, or reverse- J shape according to the values of its parameters, a and 3 .

The functional form of the beta distribution is given by

f(p) =
fj^Trla)

P^'^(l-P)^"^ forO>p>l, a,3>0. (1

where r denotes the gamma function. The mean and variance of the beta dis-

tribution are
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The unconditional probability of repeat buying Brand 1 is given by

1

;^<'-^' 'i
^^^'^''^ - T^4&T

• '"

The unconditional probability of switching from Brand to Brand 1 is

given by

P(0,1) = / (l-p)pf(p)dp -
(„,e)^^,B,l)

. (3)

The conditional probabilities P(l|l) and P(0|1) can be obtained by dividing

the two unconditional probabilities in equations (2) and (3) by market

share of Brand 1 which for a beta heterogeneity is a/a+g . In essence, then,

switching and repeat purchase probabilities can be easily obtained from a

knowledge of the parameters of the mixing beta distribution, a and B. in the

remainder of this section, we show that the conditional as well as the un-

conditional switching and repeat purchase probabilities can be easily ob-

tained from a knowledge of the market share and loyalty index.

Kalwani and Morrison [ 6 ] show that an essential property of the Hendry

System is that switching between two brands i and j will be proportional to

their shares S. and S., that is
' J

P(i,j) = y.Sj, j^u (4)

where K^ is independent of i and j. From equation (4), it is easy to show

that the repeat purchase probability is given by
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P(i,i) = S. - E P(i,j) = S -K S (1-S ) . (5)

The conditional probabilities of purchasing brand i on the second purchase

occasion are given by

jVi J^'*'

It is not difficult to show that if the mixing distribution is Dirichlet

(multivariate extension of beta) then equation (4) will hold (see Bass, Jeuland,

and Wright [2]). For the case of beta heterogeneity, Kalwani and Morrison [6]

find that

and further, relate the Hendry switching constant to Bass's correlation

coefficient [1]

where p is the correlation of successive purchases of a brand. Sabavala and

Morrison [10] suggest the use of <}) = l/(a+B+l) as a measure of loyalty and

term it the Loyalty (or Polarization) Index. They state that (}> is a measure

of the strength of preference for and against a brand. A purchase probability

distribution concentrated at the extremes, p = and p = 1, will have a high

value of
<i)

.

In summary, then, a marketing researcher may wish to estimate (j)(or p, or K^

as a measure of loyalty (or switching) rate. Along with market share, denoted



by y), ()) provides estimates of switching and repeat purchase probabilities

as shown in equations (4) through (6).

In this paper, we determine the sensitivity of maximum likelihood

estimates of zero order models using a,B and y.cj) parameterizations. We

perform the sensitivity analysis for three zero order models which cover

different shapes of the purchase probability distribution, namely, bell,

uniform, and U . These three models are displayed in Figure 1 along with

true values of the original parameters a,g and the transformed parameters

y,(j) .

Model #1 Model #2 Model #3

f(p) f(p)

a=3 = 2.0

y= 0.5,())= 0.2

p p« 1

a=6= 1.0

y= 0.5,4)= 0.33

METHODOLOGY

-^^

a-- 6= 0.5

y= 0.5,4)= 0.5

In this section, we first present the beta-binomial distribution to

develop an expression for the unconditional probability of j purchases of

Brand 1 on k trials. Note that the actual purchase records of consumers

are assumed to be organized in a frequency distribution form giving the

number of households, N., who make j purchases of Brand 1 on k purchase

occasions. Given this data and the expression for unconditional probability

of j successes on k trials, we develop the likelihood expressions with

a, Band y,4) parameterizations. We conclude this section by presenting

our data simulation procedure.
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Beta-Binomial Distribution

Following the representation of zero order models in the previous

section, for a consumer who has a purchase probability p of buying Brand 1,

the number of purchases, j, of Brand 1 on k trials is distributed binomial

with parameters p and k. That is,

P(j;p,k) = (j)p'^'(l-p)''"^ O^j^k .

As indicated earlier the probability of purchasing Brand 1 is allowed to

vary over the population of consumers according to the beta distribution with

parameters a and 3 .

f(p;a,e) = p°'"^(l-p)^"VB(a,3), 0<p<l , and a3>0,

where B(a,B) = r(a)r(3)/r(a+3) is the beta function. The marginal distribu-

tion of j purchases of Brand 1 on k trials is obtained by compounding the bi-

nomial and beta distributions. The unconditional probability of j purchases

of Brand 1 on k trials is given by

P(j;k,a,6) = ($) ^^^^T[!tIT^ ' 3 = o,U..-X (9)

This is the beta-binomial distribution whose mean and variance are given by

and UAR Til - M(a+B+k)
and VAR LjJ -

{a+3)^(a+B+l ) •

The expression for the unconditional probability of j successes on k trials

in equation (9) can also be written in terms of the transformed parameters



y and ({) by making the substitutions for a and B as follows:

, = lilMi
, and 6 =(1:m1(M) (10)

Parameter Estimation

Given the purchase frequency data (i.e., N-'s) the likelihood function
J

can be written as

where the term P. represents the probability of j purchases of Brand 1 on k

trials and its value is given in equation (9). The maximum likelihood es-

timates of a and 3 can be obtained by maximizing the above likelihood expression

with respect to a and 6. Since maximizing a monotonic transform of £(.) does

not change the values of the maximum likelihood estimates, the constant term

in l{.) is replaced by unity and for computational convenience the logarithm

of the altered likelihood function is maximized. The transformed log-likelihood

function L(.), is given by

/ |\| |\| Nik
L(NQ,Np...,N^;a,6,k)=logWQ) °(P^) ^•••{P\^) > .^ ^j^^^^^ (^2)

Substituting for P . from equation (9) and expressing the beta functions in

terms of the gamma functions, the above expression simplifies to the following

log- likelihood function
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k pj-1 k-j-1 k-1 -1

L(Nf,,N, ,...,N. ;a,6,k) = EN. Z log(a+r)+ Z log(6+r)- S log(a+B+r) . (13)
j=0 -^^=0 r=0 r=0 -1

Substituting for a and g in terms of y and
(f)

, the above log-likelihood function

can be rewritten as

k f-j-l k-j-1
J

L(N(^,N^,...,N. ;y,((),k) = E Nj E log(y(l-*)+r(}))+ E log((l-y)(l-4))+rtf)) - \
' ^ 3=0 «^r=0 r=0

k-1 -r
E log(l-(|)+r(f)) . (14)

r=0 J

The maximum likelihood estimates of y and cj) can now be found by maximizing

the log-likelihood function in equation (14) with respect to y and <{) .

The likelihood functions L(,) given in equations (13) and (14) are quite

complex and closed form analytical solutions are not available. Therefore

numerical optimization is used to determine the maximum likelihood estimates

of the parameters. The computer program used for this purpose, namely,

"modified pattern search," is based on the pattern search procedure developed

by Hookes and Jeeves [3] . The program provides a general optimization pro-

cedure for any function with a vector of n parameters. It was developed for

Kalwani's doctoral dissertation and is explained in detail in Kalwani [4].

Simulated Data Generation

Simulated data are used to determine sample size and purchase sequence

length requirements for estimating the model parameters. The first step in

the procedure is to generate 50 samples of size N--equal to 100, 300, or 500--



]^

and a purchase sequence length k--equal to 5, 10, or 20. In other words,

for each of the three zero order models displayed in Figure 1, 50 samples

are generated for nine (3 values of N times 3 values of k) different sample

specifications starting with purchase sequence length of 5 with sample size

of 100 and ending with purchase sequence length of 20 with sample size of

500.

The output of each sample specification (say, sample size = 300 and

purchase sequence length = 10) for each of the 50 simulations is a purchase

frequency distribution which gives the number of consumers, N ., who make j

(where j = 0,1,..., k) purchases of Brand 1 on k choice occasions.

The second step in the procedure involves the estimation of the model

parameters-- a, e or \i,(i, --for each of the 50 simulated purchase frequency dis-

tributions. Next the means, standard deviations, and coefficients of varia-

tion of the maximum likelihood estimates from the 50 simulations are computed.

This second step is implemented for each of the nine N,k sample specifications,

FINDINGS

This section contains the findings from the Monte Carlo simulation

runs for each of the three zero order models displayed in Figure 1. The

results reported here cover three purchase sequence lengths--5, 10, and 20.

Note that for many frequently bought grocery and household items, 5 purchases,

for many households, would cover a quarter, 10 would extend over half a year,

and 20 would span a year. The final sample size requirements for each of

these three purchase sequence lengths are based on combining our findings

on sample size requirements using sample sizes of 100, 300, and 500.
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Since the U shaped purchase probability distribution has been found to

fit empirical data well (see Kalwani and Morrison [7]), we use Model #3

(see Figure 1) to illustrate our findings. Table 1 displays coefficients

of variation associated with estimation of the parameters of Model #3. In

the a, 3 parameterization the two parameters have equal stability and the

coefficients of variation displayed in Table 1 are averages of those for

a and g. In case of the y,(j) parameterization the parameter y is more

stable than the parameter (j). The coefficients of variation of the parameter

(|) displayed under the \i,<^ parameterization are about four-thirds of the

coefficients of variation of the y parameter. Therefore, it is the <^

parameter which determines the sample size requirements and Table 1 contains

coefficients of variation of (j).

INSERT TABLE 1 HERE

The coefficients of variation displayed in Table 1 as well as those

for the other two models were found to be consistent with the "inverse

square root of n relationship" which provides a check on the reliability

of the modified pattern search program for obtaining the estimates of the

model parameters. That is, the coefficient of variation obtained for a

sample size n times larger than another sample is (V/rT) times the co-

efficient of variation for the latter sample.

The "inverse square root of n relationship" can be used to obtain the

sample sizes required for any desired level of accuracy in parameter estima-

2
tion. Table 2 displays the sample sizes required for various models when

the purchase sequence lengths of the simulated samples are 5, 10 and 20.
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These sample sizes have been obtained for a coefficient of variation of .05.

The implication of selecting this ratio as 5%, is that 95% of the parameter

estimates can be expected to fall within 10% of the true parameter value

(i.e., in the range ±0.1%).

INSERT TABLE 2 HERE

An examination of the findings displayed in Table 2 reveals that it is

easier to estimate parameters for a U shape purchase probability distribution

(Model #3) than for a uniform (Model #2) or bell shape (Model #1). This

result holds good across both the a,e and p,(|) parameterizations.

More importantly, however, the results displayed in Table 2 reveal that

the sample sizes required for estimating the original parameters a and

e within ±10% of their true values are excessive. Even in case of the

"easiest to estimate" U shape purchase probability distribution a panel size

of about 2000 is required given 5 purchases per each household. On the other

hand, the sample size requirements are considerably smaller in case of the

p.if) parameterization. This indicates that the transformed parameters y and

(|) are more stable than the original parameters a and g. Therefore, in

applications where knowledge of the market share, y and the loyalty index

Cor Hendry switching constant, Bass's correlation coefficient) would suffice,

it is much more efficient to estimate them directly rather than computing

them indirectly from estimates of a and g.

Many researchers in the past have used sample data with purchase se-

quence lengths of 5 or less when estimating the original parameters of

the purchase probability distribution. To the extent that inadequate

sample sizes have been used to estimate model parameters, the results ob-
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tained in such models are suspect. Note, however, that in case of Model

#3 a sample size of 400 with 5 purchase records per household is sufficient

to estimate the transformed parameters y and <^ within ±10%.

Two cautionary comments are in order. Since maximum likelihood es-

timates are invariant, we can obtain maximum likelihood estimates of the

original parameters a and B from maximum likelihood estimates of the

transformed parameters y and (j) (see equation (10)). Note, however, that

the accuracy levels of the estimates of a and 3 will in general be

different from those of the transformed parameters y and (j). Specifically,

while reduced sample sizes are needed to estimate y and <\) (say, within ±10%)

by searching in the y,* space, the estimates of a,e obtained therefrom will

be less accurate than estimates of y and ^. Therefore, in zero order

applications where estimates of a and b are needed within ±10%, the prior

search in the y,({. space does not help in reducing the data requirements: the

results displayed in Table 2 under the a, 3 parameterization still hold good

and indicate the sample size requirements.

Our second caveat is in connection with the effect of the market share

of the brand under consideration namely, Brand 1, on the sample size require-

ments. We have obtained data requirements for three different zero order

models keeping the brand share constant at 50%. Obviously, the sample size

requirements will be larger for smaller shares of Brand 1. Our findings else-

where confirm this intuitively appealing proposition (Kalwani and Morrison [5]),

This increase in sample size requirements for the three purchase sequence

lengths is small - around 10% to 20% - for the initial reduction in share of

Brand 1 from 50% to 25%. However, as the share of Brand 1 reduces to around

12%, the increase in sample size requirement is around 50% to 100%. The

reader is referred to Kalwani and Morrison [5] for further details.
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CONCLUSIONS

In this paper, the sensitivity of maximum likelihood estimates in zero

order models was investigated with a view to determine sample sizes re-

quired to estimate parameters within a given accuracy level (within ±10%

of the true value). We used simulated data from bell, uniform, and U

shaped purchase probability distributions to determine sample size re-

quirements for three purchase sequence lengths, namely 5, 10, and 20.

Our primary conclusion is that the maximum likelihood estimates of the

original parameters of the purchase probability distribution are

sensitive and that the coefficients of variation for commonly used sample

sizes are large. Specifically, our findings reveal that for the U

shaped purchase probability distribution which is the model that fits

empirical data well, the sample size required with a purchase sequence

length of 5 is around 2000.

In many zero order applications, however, knowledge of the market

share and loyalty index (or Hendry switching constant, or Bass's

correlation coefficient) may suffice. We demonstrated that, assuming

zero order process and beta heterogeneity, conditional as well as un-

conditional switching and repeat purchase probability can be easily

obtained from a knowledge of the market share and loyalty index. From a

statistical viewpoint we found that it is much more efficient to estimate

these two transformed parameters rather than the original parameters.

Specifically, for the U shaped purchase probability distribution sample

size of 400 given 5 purchases per household was found to be adequate to

estimate these two transformed parameters within 10% of their true value.
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FOOTNOTES

The reliability of the numerical optimization program is crucial to

the accuracy of sample size requirements developed in this paper. It

should be pointed out that the modified pattern search program has

been checked "jery thoroughly at both Columbia University and M.I.T.
Several tests were carried out to measure the magnitude of the

numerical error in our computer program. The number of consumers
who make j purchases of Brand 1 and (k-j) purchases of Brand
were obtained theoretically using equation (9). This was done for

a variety of parameter values and sample sizes. The modified pattern
search program was then used to estimate the known parameter values
which were used to generate the theoretical data in the first place.
The true parameter values were reproduced within an accuracy of 1

in 10,000.

To illustrate the computation of sample size requirements in

Table 2, consider the entry for purchase sequence length of 5

in case of Model #3 with a,e parameterization. The sample size

requirement of 2005 represents an average based on three figures

from Table 1 as shown below:

^(^)2 (100) + y(7^)^ (300) + ^^)^ (500) = 2005.
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Table 1

COEFFICIENTS OF VARIATION* FOR DIFFERENT SAMPLE

SPECIFICATIONS OF MODEL *3

^
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Table 2

bAMPLt SIZES RtqUIRED FOR MEETING

THE ACCURACY CRITERION OF ±10%
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