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ABSTRACT

As advancing technology makes Flexible Manufacturing
Systems (FMS's) a viable option for an increasing number of firms

and products, determining their economic value has become
increasingly important. Despite considerable research in this area,

the effect of the ability or inability to hold interperiod inventories on

the value of FMS's has received relatively little attention.

This paper proposes a stochastic dynamic programming model
for the production capacity investment decision that explicitly allows

the firm to carry interperiod inventories for safety stock and

seasonal stock motives, and it analyzes a simplified convex

programming model that considers seasonal stock motives only. A
variety of qualitative results are obtained for the case of periodic

market conditions that are not known when the firm makes its

investment decision. The complete solution is reported on for the

case of deterministic periodically varying market conditions.

Examples are given for both cases.

The analysis leads to some surprising results, including the fact

that interperiod inventories and flexible capacity can be

complements as well as substitutes. Hence, the analysis can be an

important supplement to unguided intuition.
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1 Introduction and Overview

A variety of explanations have been offered for U.S.

corporations' relatively low levels of investment in flexible

manufacturing systems (FMS's). One explanation that has received a

great deal of attention attributes this situation to their strict financial

requirements for justifying investments. These requirements can

stifle investment in FMS's because current cost/benefit accounting

procedures fail to adequately assess the value of flexibility (Michael

and Millen, 1984; Suresh and Meredith, 1984; Kaplan, 1986; Kelly, 1988;

Port et. al., 198 8). As a result, companies have relied instead on

managerial judgement (Gerwin, 1981; Miles, 1988; Schiller, 1988) which,

without the support of well-designed decision support tools, is often

inadequate (Kaplan, 1986).

In response, researchers have tried to capture quantitatively

the benefits of FMS's that conventional accounting procedures

overlook. Early efforts to develop comprehensive models met with

limited success because FMS's yield such a diverse set of benefits.

Progress has been made, however, by developing models that focus

on one type at a time. Models have been developed to analyze

product life cycle effects on the value of FMS's (Hutchinson and

Holland, 1982; Fine and Li, 1987), the benefits of FMS's that arise from

their modularity in comparison with the indivisibility of transfer

lines (Burstein, 1986), benefits from being able to produce with either

of two sets of factor inputs (Kulatilaka and Marks, 1985; 19 86;

Kulatilaka, 1986; 1987), the ability to deter market entry by

competitors and to credibly threaten entry into markets in which the



firm does not currently compete (Fine and Pappu, 1988), market

related benefits associated with flexibility (Gaimon, 1986; Roth et. al.,

1986), and the ability to hedge against uncertainty about future

demand (Fine and Freund, 1986; 1987; He and Pindyck, 1988).

One restrictive assumption of all these models is that the firm

is not allowed to hold interperiod inventories. Since production and

inventory are used together to meet demand, intuitively one would

expect the ability to hold inventory to affect the value of flexible

production capacity.

Ultimately one would like to know how a firm with the option

of holding inventory and/or investing in flexible capacity would

optimally respond to dynamic, non-stationary uncertainty,

particularly unpredictable variability in market conditions. This

problem is too complex to be addressed in full generality, but by

decomposing the variability into its constituent parts, steps can be

taken toward analyzing it.

Firms may hold inventories and/or invest in product-flexible

capacity for at least three reasons: cycle stock motives, safety stock

motives, and seasonal stock motives. Techrrology investment

decisions and cycle stock considerations have been studied by

Karmarkar and Kekre (1987) and Vander Veen and Jordan (1987),

although they do not look explicitly at the economics of flexibility in

their analyses. In addition. Graves (1988) has examined safety stock

requirements when facilities have product mix flexibility. However,

the interaction between flexible capacity and seasonal stocks has

largely been ignored.

This paper extends the Fine and Freund (19 8 7) model for

analyzing the benefits of product flexibility to hedge against

uncertainty in a multiperiod setting in which the firm can hold

interperiod seasonal and safety inventories. Section 2 presents a

stochastic dynamic programming formulation which allows for both

safety and seasonal stocks. The rest of the paper analyzes a convex

programming model which excludes safety stock considerations and

focuses on seasonal stock issues. Section 3 presents six theorems

that analyze the model when market conditions are seasonal but

uncertain when the firm makes its technology investment decision.



Section 4 reports on a complete solution for the case of deterministic,

periodically varying market conditions. Market conditions are rarely

known with certainty, so the solution described in Section 4 is

unlikely to be applied directly in practice, but we believe that

studying this solution provides insights about the general problem.

Examples are given in both Sections 3 and 4. Section 5 discusses

results and conclusions.



2 The General Stochastic Demand Problem

2.1 Problem Description

The problem considered here is the following. At time zero, a

firm must make an irreversible capacity investment decision in the

face of uncertainty about future market conditions. The firm can

invest in a mix of non-flexible production capacities each dedicated

to one of its N products and/or more expensive flexible capacity that

can be switched at zero cost among any of the N products. Each

period's demand uncertainty is resolved before the firm makes that

period's production and inventory decisions but after it is committed

to its investment in production capacity. Because of the uncertainty,

the firm would like to have flexible production facilities that can

produce any of the N products it sells, but flexible production

capacity requires a larger initial investment per unit than does

capacity dedicated to a single product. The crux of the problem is to

find the optimal trade-off between the benefits of flexible production

capacity and its higher investment cost.

Fine and Freund (1986, 1987) address this problem for the case

when all subsequent production and sales activity can be collapsed

into a single period. This simplification yields useful results, but it

completely suppresses the issues posed by interperiod inventories.

This paper extends their model to an arbitrary number of production

and sales periods and allows the firm to carry inventory from any

period into the subsequent period.

2.2 Formulation

The formulation uses the following

indices:

>^(1 N} indexes the product,

se{l,... ,S) indexes the state, and

tG(l,... ,T) indexes the f>eriod;

parameters:



a = the per period discount rate and

r = [ri,r2,...,rN,rF] is the vector of capacity purchase costs, T[ is

the purchase cost of one unit of capacity dedicated to

product i, and rp is the purchase cost of one unit of flexible

capacity;

variables:

K = [Ki,K2,...,Kn,Kf] is the vector of production capacities, K; is

the amount of capacity dedicated to product i, and Kp is

the amount of flexible capacity,

Yit = amount of product i produced on dedicated capacity in

period t,

Zit= amount of product i produced on flexible capacity in

period t,

lit = amount of product i held in inventory from period t to

period t+1, and

<Jt = the state in period t;

and functions:

Rit(x) = revenues generated by selling x units of product i in

state s,

Cit(x) = cost of producing x units of product i in state s, and

hit(x) = cost of inventorying x units of product i from a period

in which state s is realized to the next period.

It is assumed that the future state of the market depends only

on the time and its current state and not on the firm's past decisions.

So in the formulation, Pi(at+i = s'lot = s) is the probability the market

will be in state s' in period t+1 given that it is in state s in period t.

Boldface will be used for vectors. The dimension of vectors can

be determined by noting which subscripts have been omitted. For

example, Y, = Yii, Y,2 Y^j e SR .

The decision variables are K, the vector of capacities chosen at

time 0, and for t = 1, ..., T, pt(s,I[_i,K) the period t production and

inventory levels as a function of the current state, the current

inventory vector, and the vector of capacities.



The General Stochastic Demand Problem (GSDP) has the

following dynamic programming formulation:

N

Max V = -Xr.K, - ffKf
K.p,(s.I,.K) ,=1

t = l...,T

'OO'^O



In the sequel, H will denote the vector of all production and

capacity decision variables and the superscript * will denote optimal

values.

Since at any given time, future demand is uncertain, this

formulation clearly includes safety stock motives. Since the state of

the market can be a function of time, it captures seasonal stock

motives as well. However, this formulation is difficult to solve

numerically because the solution space is large, and in general it is

difficult to obtain analytic results for stochastic dynamic programs.

To our knowledge, the only work that has made progress on

the interaction between product mix flexibility and safety stocks is

that of Graves (198 8). That work characterizes the difference in

safety inventories required for a system with complete mix

flexibility relative to one with no mix flexibility. Ultimately one

would desire to analyze both safety and seasonal effects in one

model. The work in the remainder of this paper moves toward this

goal by analyzing the interaction between seasonally varying market

conditions and flexible manufacturing capacity.



3 The Unknown Seasonal Demand Problem

3.1 Formulation

The General Stochastic Demand Problem (GSDP) considered in

the previous chapter is too complex to yield to tractable analysis.

However, by imposing more structure on the revenue and cost

functions, it can be simplified into one that does. We accomplish this

by making these functions periodic, thereby excluding safety stock

issues and focusing on the seasonal stock problem. The result is a

convex programming model that we label the Unknown Seasonal

Demand Problem (USDP). This formulation requires the following

assumptions.

Al: The revenue, production cost, and holding cost functions are

periodic with period two. This can be modelled as:

Pi(at = si Ot-i = r) =( 1 if s is odd and s = r - 1

1 if s is even and s = r + 1

otherwise.

However, it is more natural to identify the market conditions for

both odd and even periods with a single state and the time subscript

t. Then

C-t(x) = C-i(x), Rit(x) = Rji(x). and h-j(x) = h-i(x) for all odd t, and

Cit(x) = Ci2(x), R[t(x)=Rj2(x), and h[t(x) = h-jlx) for all even t.

A2: At time zero, when the technology investment is undertaken,

the state s is unknown. However, the firm learns the state, and

therefore both sets of functions, at the beginning of period one.

Assumptions Al and A2 imply that all uncertainty is resolved

before production and inventory decisions are made for any of the T

periods. This is a strong assumption, but it captures the key ideas

that (1) inventory policies can be used to respond to uncertainty in

demand, (2) technology investments must be made before the



resolution of this uncertainty, (3) after uncertainty is resolved, the

production and inventory policies are constrained by the sunk

investments, and (4) holding interperiod inventories can affect the

utility of flexible capacity.

Periodicity in production, inventory, and sales conditions is

common. For example, producing and transporting bulk commodities

in the Great Lakes Region is more expensive in the winter than in the

summer because the Inland Waterway is closed. Likewise, holding

costs may be seasonal. For U.S. automobile manufacturers, holding

cars from summer to winter is more expensive than holding them

from winter to summer because many new models are released in

the fall, reducing the value of cars held in inventory from summer to

winter. Cost differences can arise from seasonal variations within

the company itself, not just from weather. For example, holding costs

for a toy manufacturer may be lower in spring than in fall because

less of its warehouse space is devoted to stockpiling toys for the

Christmas Season. Seasonal variations in demand are extremely

common.

The subsequent analysis depends on the following assumptions

about the capacity costs, revenue functions, and cost functions. Only

the assumption about production costs is ever likely to be restrictive

in practice.

A3: The revenue functions Rjtlx) are bounded, strictly concave,

differentiable functions that are nondecreasing when their

argument is zero.

A4: The production cost functions Cit(x) are strictly increasing,

convex, differentiable functions that are finite when their

argument is zero. Production costs are a function only of the

total quantity of each product produced in the period, not of

which kind of capacity is used.

Strictly convex production costs are relatively rare because

they imply diseconomies of scale, but linear production costs.

10



which are reasonably common, are also encompassed in our

formulation. The assumption that unit production costs are

linear and roughly equal for flexible and dedicated capacity is

reasonable if, for example, raw material costs are the dominant

component of variable production costs.

A5: The holding cost functions h,i(x) are strictly increasing, strictly

convex, differentiable functions that are nonnegative and are

finite when their argument is zero.

Note, if the holding cost functions are convex but not strictly

convex, sales are uniquely determined, but not the production

and inventory levels separately.

A6: Production in advance of demand and storage costs more than

production in the subsequent period.

N
A7: rp > r, > for all i, but rp< ^r,

.

i=l

If rp were less than or equal to ri for some i, then it would

never be economical for the firm to purchase capacity

dedicated to product i. If rp were greater than or equal to the

sum of the ri's, the firm would have no incentive to purchase

flexible capacity.

A8: (R,[W - Cij(x)) is nondecreasing at x = 0.

This is a technical condition which would generally be true and

is used only in the proof of the uniqueness of the Karush-Kuhn-

Tucker (KKT) multipliers.

With these eight assumptions the formulation reasonably

models the seasonal stock issues, but three more assumptions will

greatly simplify the analysis.

1 1



A9: The analysis is restricted to a two-product-family model; that is,

N = 2.

This assumption greatly facilitates explication of the model and

has applications in a number of settings. (See, e.g.. Fine and Freund,

198 7.) To distinguish the product and period indices, the two

products are labelled 'A' and 'B' in the sequel. Also, the flexible

capacity will be identified by the subscript 'AB' instead of the

subscript 'F'.

AlO: The planning horizon is infinite.

All: The firm can carry inventory into the first period at a cost

equal to the production cost in an even period plus the holding cost

from an even period to an odd period.

Assumptions AlO and All eliminate the boundary effects

associated with a terminal period and the complicating transient

effects associated with building up to a desired level of inventory.

They also create symmetry between even and odd periods that is

exploited extensively. With an infinite time horizon and no

boundary effects, the (ordered) set of even periods cannot be

distinguished from the (ordered) set of odd periods. Or, to put it

another way, the odd periods do not necessarily have to be thought

of as coming "before" the even periods or "after" them. Thus, the

optimal production and inventory levels are the same for all odd

periods and for all even periods.

Letting j e {1,2} be the index identifying odd and even periods
_ 1

respectively, ps = P(ai = s), and ^=77~ii , the Unknown Seasonal

Demand Problem (USD?) is:

Max V = - r^ Ka - rg Kb - r AB Kab +

^i Ps i I ( «:.( y:,. z' * .;-
i:J

- c:,( y:,. z;j - h:,( i:j

)

s=l i=Aj=l

12
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Lemma 3. 1

:

(i) In any optimal solution Z, for all product/state pairs (i,s), l'i = or

1^2=0 or both. That is, it is never optimal for the firm to carry

inventory of any product in both odd and even periods.

s 2 / s s \
(ii) In any optimal solution H, Kj + Kab = Max Max \ Yy + Zy / and Ka +

s=l j=l

S 2 / s s s s \

Kb + Kab = Max Max \Yaj+ Ybj+ Zaj + Zbj / . That is, for all products there
S=l J=l

is some state/period pair in which the firm uses all available

capacity, both dedicated and flexible, to produce that product. And,

in some state/period pair, production capacity will be fully utilized.

Proof: Straightforward. See Caulkins (1988).

Theorem 3.1

:

The USDP has a unique optimal solution.

Actually Y and Z are not necessarily uniquely determined

because if there is surplus capacity the firm is indifferent between

producing with dedicated or flexible capacity, but their sum X = Y + Z

is uniquely determined, and, because of this indifference, knowledge

of K, X, and I is essentially a complete solution.

Proof: Straightforward. See Caulkins (1988).

The next theorem gives formulas for the optimal Karush-Kuhn-

Tucker (KKT) multipliers. It is possible to find a feasible solution for

which all the constraints are satisfied as strict inequalities, so the

USDP is strongly consistent; i.e., it satisfies Slater's condition. Thus

the KKT conditions given by I - VII below are both necessary and

sufficient for optimality. Primes denote derivatives. If j = 1 then j
=

2 and vice versa.

14



Necessary and Sufficient Conditions for Qptimality:

i = A.B; j = 1.2; s = 1..S

(II) Y p,[r^'(y;,+z;,+ i;^-i;)- c^'fY^+z;,)) = y;-5;-uJ

i = A,B; j = 1,2; s = 1..S

(III) Y p,fRj'(Y^z;+i^-i;^) - h^'( Y- +z;)-

= 5-j-q'j i = A,B; j = 1,2; s = 1..SKi'^l^K^K-^^

(IV)



sjj =- YPs|M^^\R..;

B /_s\

:-h Rn /
- Cy

— 5

—

s

_ 5 : _s
^. = r: - ZSc^ij

i = A,B; j = U; s = 1..S

j = 1.2: s = 1..S

i = A.B; j = U; s = 1..S

i = A.B

m.AB = r..vB - X Z Y
j

s=i j=l

Proof: See Appendix.

These multipliers have straightforward economic

interpretations. The multiplier a., is simply the positive part of the

shadow value oi having another unit of capacity dedicated to product

i available in state period pair (s,j). Multiplier s^ is the absolute

value of the corresponding negative part of the shadow value.

Similarly 5.. is the positive pan of the shadow value of being able to

inventory one more unit of product i from period j to period j in state

s, whereas q.. is the absolute value of the negative part. The

multiplier y. is the shadow value of having an additional unit of

flexible capacity in state/period pair (s,j). Finally, u-j is the amount

the firm should be willing to pay to 'upgrade' one unit of capacity

dedicated to product i so that in state/period pair (s,j) it can be used

as one unit of flexible capacity.

Suppose that at optimality the per unit purchase price of

dedicated capacity for product .A. exceeds the sum of the shadow

values of having an additional unit of capacity dedicated to product

A in each period and each state. Then by I'V, mA > 0, and thus by VI,

Ka' = 0. In other words. mA is the amount by which the price of

dedicated capacity for product .A must fall before it is optimal to

purchase that technology. Similar results hold for mg and mAB. with

respect to Kb and Kab-

1 6



These interpretations of the multipliers are consistent with the

left hand sides of conditions I - III. For example, the left hand side

of condition I gives the marginal value of having an additional unit of

capacity dedicated to product i in period j that is subject to the

restriction that whatever it produces must be sold in period j.

Similar statements can be made about the left hand sides of

conditions II and III.

The next theorem gives a necessary and sufficient condition for

it to be optimal to purchase flexible capacity. Its proof uses the

concept of product subproblems. We consider these subproblems

because the only linkage between products A and B is their sharing

of flexible production capacity. If the firm does not purchase flexible

capacity, the problem decomposes into two subproblems. one for

each product. The subproblems are convex programs that can be

solved independently. Subproblem i for i = A or B is:

Max V = -r. K, - ^tpsl R^( Y^+l]^-
i;,)

- C^jIy^j)- h^(l*)!

subject to:

Yy -K, < j = 1.2; s = 1..S.

I^- Y--i;-<0 j = l,2;s=l..S.

with all variables nonnesative.

The corresponding KKT conditions are:

(I) Yp,(R^'(Y^+I;--I*) - C^'( Y^)) =ay-5j-sj
j
= U: s = 1..S

j = 1,2; s = 1..S

S 2

(III) ri = SS«ij + mi
5=:j=i

17



(IV) a;j(K.-Y;j) =

(V)

s ,s

mi Ki =
s s s s

(VI) aij,5ij, qij.Sy, and mi are all nonnegalive.

j
=



The right hand side of this condition is the marginal benefit of

a unit of flexible capacity, so this theorem simply asserts that the

firm should invest in flexible capacity if and only if its marginal cost

is less than the expected marginal benefit. It is useful because it

shows how to measure the marginal benefit of investing in flexible

capacity without solving the full problem. Only the subproblem

solutions are needed, and generally solving both subproblems is

much easier than solving the full problem.

Proof: Denote the right hand side of the inequality in the statement

of Theorem 3.3 by S. Suppose r,j^ > S. Then augment the solutions

and multipliers for the subproblems with Z = 0, K^b = 0, u, y and

m^B as defined in Theorem 3.2. This yields a solution to the full

problem and a set of KKT multipliers that satisfy all the KKT
conditions. By Theorem 3.1 the solution is unique, so r^B ^ S implies

Kab* = 0.

Now suppose r^s^ < S. The formulas in Theorem 3.2 yield a set

of optimal multipliers. If K^i^ = 0, then the multipliers for the

subproblems satisfy the formulas of Theorem 3.2. But since r^B *^ S,

this implies m^ < which contradicts the nonnegativity of the KKT
multipliers. Hence, r^^ < S implies K^^ = is not optimal. Since an

optimal solution always exists, r^s^ < S implies K^^b* > 0-

Let r = {t^, rg, r^a) and denote the optimal value of problem

USDP as a function of r by V*(r) = - r' K + f(E).

Theorem 3.4:

(i) V*(r) is convex in r,

(ii) V*(r) is nonincreasing in r, and

(ill) ^yJA = - K, for i = A, B, and AB.

That V*(r) is nonincreasing in r is quite intuitive; decreasing

costs of capacity acquisition increase the maximum profit the firm

can earn. The convexity of V*(r) suggests that as the cost of

acquiring advanced manufacturing technology continues to decline.

19



firms will enjoy increasingly large profit improvements. Part (iii)

tells exactly how rapidly profits improve as capacity acquisition costs

decline.

Knowledge of V*(r) is useful for evaluating potential returns to

reductions in acquisition costs and because there is often uncertainty

about these costs, so sensitivity analysis with respect to the capacity

costs can be informative. In general, obtaining V*(r) is difficult, but

Theorem 3.4 describes its form and guarantees that it is a well-

behaved function, so it is reasonable to draw inferences about V*(r)

from points obtained numerically.

Proof: Proof of (i). Let ri and ri be two capacity cost vectors

satisfying Assumption A7. For arbitrary X e [0,1] let r = Xti + (1-X)

r2. Let (K,Z) be the unique optimal solution corresponding to r.

Since (K,E) is feasible for all cost vectors, V*(ri) > - ri^ K + f(E) and

V*(r2) > - r2' K + f(E). Thus XV*(ri) + (l-X)V*(r2) > - (Xrit + (1-X)

r2')K + f(E) = V*(r) = V*(?cri + (1-X) r2), so V*(r) is convex in r.

Proof of (ii). Let ri and vi be two capacity cost vectors

satisfying Assumption A7 such that ri > ri and ri ^ r2. Let (K,2) be

the unique optimal solution corresponding to ri. Then V*(ri) = - ri'

K + {(E). Since (K,Z) is feasible for rj, V*(r2) > - r2' K + f(S). But

then V*(r2) - V*(ri) > (ri'- r20K > 0, so V*(r) is nonincreasing in r.

Proof of (iii). This is a direct application of the envelope

theorem (Varian, 1978) as extended to nondifferentiable functions by

Fine and Freund (1987).

3.3 Analysis of Special Case of Quadratic Revenue and

Holding Cost Functions and Linear Production Costs

As discussed above, knowledge of V*(r) is valuable for several

reasons. For a general USDP, V*(r) is a well-behaved function of r,

but even more can be said when the USDP has quadratic revenue and

holding cost functions and linear production costs. Theorem 3.6 gives

an exact, second order Taylor expansion for V*(r -t- Ar). Theorem 3.5

shows that the optimal values of the decision variables are

20



continuous, piecewise linear functions of r. Hence for this special

case of the USDP, the entire solution, not just the optimal value

function, is a well-behaved function of r, and its dependence on r is

of a particularly simple nature.

Theorem 3.5: For the USDP with quadratic revenue and holding cost

functions and linear production costs, all decision variables' optimal

values are continuous, piecewise linear functions of the capacity cost

vector r, and the optimal value function is a continuous, piecewise

quadratic function of r.

Proof: The second statement follows directly from the first and the

fact that the objective function is a quadratic function. The first

statement is a consequence of the theory of quadratic programming

and Theorem 3.1 which guarantees the solution is unique.

Theorem 3.6: If r is in the interior of a region for which V*(r) is

quadratic and K is the optimal capacity vector, then for Ar

sufficiently small,

(1) V*(r+ Ar) = V*(r)-rAKA-rBKE-rABKAB + -Ar'MAr, where
1

M = -

dr^ dr^ dr^

drg drg drg

^AB ^^AB ^^AB

and M is positive semi-definite

Proof: Formula (1) follows directly from Taylor's Theorem. M is

positive semi-definite because V*(r) is convex. By Theorem 3.3,

av*(r)

dli
= -K, for i = A,B, and AB, where K, is the optimal capacity.

Hence, M^j = a v*(r) a /av*(r)

arjar. ar. ar,
^(-K,) = -^
ar. ar,

21



3.4 Example

This section gives an example of a USDP with linear cost

functions and unitary inelastic demand. A firm facing unitary

inelastic demand earns constant revenues per unit sold, up to some

maximum volume. If per unit production and holding costs are

constant, then production costs can be absorbed into the revenue and

holding cost functions. Hence, without loss of generality, production

costs will be assumed to be zero.

Revenue functions generated by unitary inelastic demand

curves are concave but not strictly concave, so they violate

Assumption A3. Similarly, linear holding cost functions are convex

but not strictly convex, so they violate Assumption A5. As a result,

uniqueness of the optimal solution is not guaranteed, but that is not a

concern for this example.

The USDP with linear costs and unitary inelastic demand can be

restated as follows. Let

k € { 1,2 } be the index of the sales period,

Djjc be the maximum sales volume for product i in period k if

state s is realized,

Rji^ be the constant revenue per unit sold of product i in period

k if state s is realized,

hij be the cost of carrying one unit of product i from period j to

period j if state s is realized,

^ijk = Rik ~ hjj be the profit from producing one unit of product

i in period j and selling it in period k if state s is realized,

Yjjj. be the amount of product i produced on dedicated capacity

in period j and sold in period k if state s is realized, and

Zjjij be the amount of product i produced on flexible capacity in

period j and sold in period k if state s is realized.

So Y^ = X Y^,, z;, = I Z^k, and ![ = Y^^- + Z^.-.

k=l k=l

22



The objective function can be written as:

V = -r'K + XPs
s = l

(y^.+ z;JI II '^.jklvjjk+z;

i=A j=l k=l

The maximum sales condition imposes the following constraint:

^iik + Zji,^ + Yi2k + Zi2k ^ Dik for all i,k, and s

in addition to the usual constraints.

This is a linear program, so it can be solved by standard

techniques such as the simplex method. It can also be solved

numerically because solving the second stage problem is trivial. One

simply continues meeting, to the greatest extent possible, the

remaining demand for the product/production-period/sales-period

triplet yielding the greatest per unit profit until either (1) all

production capacity has been allocated or (2) all demand has been

met from product/production-period/sales-period combinations

yielding a positive profit.

If one lists the k's in descending order of profitability, then a

general formula for solving the second stage problem with unitary

inelastic demand and linear cost functions is:

Yijk = Min{ Dik - U(7iijk, JrijkXY.jk + Zijk), Ki - U(7tijk, :tijk)Yijk }

Z.jk = Min{ D,k - U(7rijk, 7tijk)(Yijk + Z,jk) - Yjjk,

K-AB- U(7:,jk, rtijk)Zijk - U(7tijk, Kijk)Zijk - U(7tljk, 7tijk)Ziji^}

where U(7Cx, T^y) is a modified unit step function. U(7ix. T^y) = 1 if :tx >

Ky or Kx = TCy and k^. precedes rty in the list of Jtijk's. Otherwise, U(;rx.

Ky) = 0.

Example The example (parameterized by ^) considers how the

nature of the uncertainty about market conditions affects the

relationship between inventories and flexible capacity. Specifically,

it considers two extreme situations: (1) when the firm knows with

certainty what total demand for each product will be, but it does not

know how seasonal the demand will be (^ = 1) and (2) when the firm

knows with certainty what total demand for each period will be, but

it does not know how it will be divided between the two products (^

= 0).
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The underlying demand is assumed to be for one unit of each

product in each period, and total demand is always four units.

However, the actual demand in product/period pair (A,l) is a

random variable with the following distribution:

Pai x =

1-2Pai x=1
x = 2

Assume for the moment that these two random variables are

independent.

Furthermore, let ^ ^ < 1 be the fraction of the change in

demand for product/period pairs (A,l) and (B,2) that comes from the

same product but the other period, and 1 - ^ be the fraction that

comes from the same period but the other product. Thus if ^ = 0, all

the variability is between products, and if ^ = 1, all the variability is

between periods. Table 3.1 summarizes the demand distribution in

each of the nine possible states of the world.

Table 3.1

Description of Demand States

State s



First consider what happens when ^ = 1 so all variability is

between periods.

Let the per unit holding costs h be equal for all product/period

pairs. Similarly, let revenues per unit sold be equal for all

product/period pairs and be high enough to ensure the firm always

meets demand. With these assumptions revenues are the same for

all states and all solutions, so they can be omitted from the objective

function. Demand over both periods and both products is four in

every state, so the firm can always meet demand if K^s^^ ^ (l/2)(4 -

2(Ka + Kg)). Finally, assume capital investment costs are large

relative to holding costs (Specifically, r^B > [1 - (1 - 2Pai)(1 -

2PB2)]h) so the firm does not idle any purchased capacity; i.e., K^^ =

(l/2)(4 - 2(Ka + Kg)). With these assumptions it is easy to solve the

second stage problems to determine how much inventory will be

held under each state s.

Ignoring the constant revenues and the part of holding costs

that do not depend on the decision variables, the objective function

reduces to:

Max V = (fab - ta - 2 PaiPbz h)KA + (tAB " rfi - 2 PaiPb2 h)KB.

So, if fAB < ta + 2 PaiPb2 h, then Ka = is optimal. Otherwise, Ka = 1 is

optimal. Likewise, if tab < ^b + 2 PaiPbz h, then Kb = is optimal;

otherwise. Kg = 1 is.

Hence, for this problem and these parameter values, increasing

holding costs favors investment in flexible capacity, and decreasing

the cost of flexible capacity reduces the expected amount of

inventory. So flexible capacity and inventory are substitutes. Note,

however, that even if only flexible capacity is purchased, in six of the

nine states inventory is still used. This is simply because no amount

of flexible capacity can shift a unit from one period to the next; only

inventory can. Also, increasing variability, i.e. increasing Pai or Pb2.

favors investment in flexible capacity. (However, if Pai ^ —2h—

'

then Kab = is optimal no matter how large Pbz is, and vice versa.)

Intuitively one would expect that if demand for the two

products were positively correlated the firm would be less likely to

purchase flexible capacity and, conversely, if their demand were
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negatively correlated, the firm would be more likely to invest in

flexible capacity. This intuition is correct.

Suppose P(s = 6) = P(s = 8) = PaiPb2 - e and P(s = 5) = P(s = 9) =

PaPb + £• Then the correlation coefficient between demand for A and

2e
demand for B in the same period is P = r=—

5

=. The objective

function is now
Max V = (rAB- ta- 2(PaiPb2 - e)h)KA + (rAB" rfi- 2(PaiPb2 - e)h)KB.

So, positively correlated demand favors larger inventories, and

negatively correlated demand favors investment in flexible capacity.

Now consider the other extreme, ^ = 0, so all variability is

between products. The firm knows for certain what demand in each

season will be, but it does not know how demand will be divided

between products A and B. If revenues are sufficiently high, or

equivalently, stockout costs are sufficiently severe, the firm will

meet demand under all states. Then as long as Pai and Pb2 are both

nonzero, the firm must have Kab ^ 2-Min{KA, Kg} because it is

possible there will be four units of demand for one product. Since

Tab < ta + rg, this implies that it is always optimal to have Ka = 0, Kg =

0, and Kab = 2, and it is not optimal to carry inventory even if

holding costs are zero!

Clearly in this case inventory is not a substitute for flexible

capacity. The only way to meet uncertainty about which product will

be demanded is to purchase flexible capacity. No amount of

inventory of product A can create even a single unit of product B.

Kab ^ 2-Min{KA, Kg} is not necessarily optimal, however, if

stockout costs are not arbitrarily large. In a sense, stocking out

converts one product into another. Shortage of one product is

converted into dollar losses which can be recovered by reduced

initial outlays or increased sales of another product.

This example suggests that insight can be gained by

decomposing total demand variability into variability between

products and variability between periods. Flexible capacity is best

suited for meeting variability between products and inventory is
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best suited for meeting variability between periods. However, since

the objective function is measured in dollars, which can be generated

by either product in either period, stocking out provides a means by

which flexible capacity can compensate for variability between

periods and inventory can compensate for variability between

products.

In this example, both increasing variability in general and

negatively correlated demand for the two products favored

investment in flexible capacity. This matches intuition and suggests

how safety stock considerations would modify the results obtained in

this paper for seasonal stock considerations.
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4 The Known Seasonal Demand Problem

This section reports results for the Known Seasonal Demand

Problem (KSDP), a special case of the USD? in which market

conditions vary periodically, but are deterministic. The formulation

of the KSDP is identical to that of the USDP except that there is just

one state.

Market conditions are rarely deterministic, so it is unlikely this

model will be applied in practice, but it gives useful insights

nonetheless. For example, we observe that (1) holding inventory and

investing in flexible capacity can be complements, (2) it can be

optimal to purchase less capacity dedicated to a product than is sold

in any period, and (3) it may be optimal to use flexible capacity to

produce a product even if its demand is known and constant.

Section 4.1 gives properties of optimal solutions to the KSDP
and shows by example that some 'properties' one might expect to be

true do not, in fact, always hold. It is possible to obtain closed form

expressions for the optimal values of the decision variables when

revenue functions are quadratic and costs are linear. This special

case is called the Quadratic Known Seasonal Demand Problem or Q-

KSDP. Section 4.2 gives properties of optimal solutions to the Q-KSDP.

Section 4.3 describes how the solution is derived. Section 4.4 gives

sensitivity analysis results.

The derivations of these results are quite involved, and if they

were compressed sufficiently to present here, they would no longer

be informative. They are reported in their entirety in Caulkins

(1988). Interested readers are invited to request a copy.

4.1 Properties of Optimal Solutions

The following statements about production and inventory hold

for all optimal solutions to the KSDP.

1) If it is optimal to purchase flexible capacity, it will all be

used to produce one product in one period and the other product in

the other period.
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2) For at least one product, the dedicated capacity that is

acquired is fully utilized in both periods.

3) All capacity is fully utilized in at least one of the two

periods.

4) It is never optimal to carry inventory out of both

product/period pairs in which flexible capacity is used.

5) In any product/period pair in which flexible capacity is

used, all dedicated capacity for that product will also be employed.

It is also possible to make statements relating production and

sales.

6) There is never slack capacity for a product in a period in

which sales for that product are at least as great as they are in the

other period.

7) If sales for a product are constant, capacity dedicated to that

product will be fully utilized in both periods.

8) Sales for at least one of the product/period pairs in which

flexible capacity is used must be greater than sales for that product

in the other period.

9) If the optimal solution has sales of both products equal in

each period, then no inventory or flexible capacity will be used.

Combining these properties gives the following useful result.

Theorem 4. 1

:

If it is optimal to purchase flexible capacity for the

KSDP, then in the optimal solution either:

Zai = ^82= K^B. Za2=Zbi = 0, Y^i = Ka, Yb2= Kg,

(Ya2 = Ka or Ybi = Kb or both),

(1^1 = or Ib2 = or both), and

( Sai> Sa2 or Sbi < Sb2 or both),

or

2ai=Zb2=0,Z;^=Zbi= KaB' Ya2= Ka, Ybi = Kg,

(Yai = Ka or Yb2 = Kb or both),

(Ia2 = or Ibi = or both), and

( Sai< Sa2 or Sbi > Sb2 or both).

And, if it is optimal to purchase no flexible capacity, then

Za1=Za2= Zbi = Zb2=0-
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As a result, all optimal solutions belong to one of three

categories, one with Kab =0 and two with Kab > 0- The two

categories with Kab >0 are symmetric (See Figure 4.1.) because

either product could be called product A and, by Assumptions A 10

and All, either the odd or the even periods could be labelled with a

Figure 4.1

Optimal Patterns of Allocation of Flexible Capacity

Period 1 Period 2

Zbi = Za2- Kab>
Period 1 Period 2

Product A

Product B X

Product A

Product B

X denotes a product/period pair in which flexible capacity is used.

The following example of a KSDP with unitary inelastic demand

and linear costs demonstrates that several 'properties' one might

intuitively expect to be true do not, in fact, always hold. In

particular, it shows that the following intuitively appealing heuristic

can lead to suboptimal solutions. "Use dedicated capacity to meet

'base demand', i.e. demand present in every period and state, and

use flexible capacity and/or dedicated capacity coupled with

inventories to meet 'swing demand', the demand in excess of base

demand." The heuristic does not specify how to meet swing demand.

It just tells the firm to purchase at least as much dedicated capacity

as the minimum that will be sold in any state and period. In

symbols,

k' > Min{s-j} fori = A,B.
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This heuristic simplifies the problem by 'subtracting out' base

demand so the analysis can focus on the more difficult problem of

meeting swing demand.

Example

rA = rB= 1.0 r^ = 1.1

Dai =5 Da2 = 5 Dbi=0 Db2 = 10

^Al = hA2 = 0.25 hBi = hB2 = ~

Rai = Ra2 = Rbi = Rb2 = °°-

By Hbi = hB2 = «> it is meant that holding costs for product B are so

high the firm would never inventory product B. Similarly. Rai = Ra2
= Rbi=Rb2='*' means that stockout costs are high enough to ensure

demand is always met. Using the properties of the KSDP. the

problem reduces to the following linear program:

Max -Ka-Ke-1.1Kab-0.1Iai
s.t. Ke+Kab^ 10

Ka+ Kab- Iai ^ 5

Ka+Iai ^ 5

with Ka, Kb, Kab. and Iai nonnegative.

The heuristic K^ ^ Min\ S,j/ implies that it is safe to assume Ka

> 5 and Kb ^ 0. The optimal solution constrained by Ka ^ 5 and Kg

>0 is: Ka = 5, Kb = 10, Iai = 0. and Kab = 0. Its cost is 15. The true

optimal solution: Ka = 0, Kg = 0, Iai = 5, and Kab = ^0 ^^^^ a cost of

12.25, is completely different. So, for the given parameter values,

the heuristic leads to a suboptimal solution. It gives the optimal

solution if rAB > 1.375 or if hAi = hA2 > 0.8.

This example leads to some striking conclusions.

1) It is not always optimal to purchase as much dedicated capacity as

the minimum of sales over all state/period pairs.

2) It may be optimal to use flexible capacity to produce a product

even if its demand is known and constant. In fact, it may be optimal

to purchase no capacity dedicated to that product.
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3) Flexible capacity and inventory can be complements. If 1^3 >

1.375 no inventory or flexible capacity is used, but if r^^^ < 1.375, it

is optimal to inventory 5 units of product A from each odd period to

each even period and to acquire 10 units of flexible capacity. Thus,

decreasing the cost of flexible capacity can increase optimal

inventory levels as well as investment in flexible capacity. Similarly,

with r^B = 1-1' if holding costs for product A increase above 0.8 per

unit, it is no longer optimal to purchase flexible capacity. So,

increasing holding costs can lead to less investment in flexible

capacity as well as smaller inventories.

4.2 Properties of Optimal Solutions to the Q-KSDP

The KSDP with quadratic revenue functions and linear holding

and production costs is called the Quadratic-Known Seasonal Demand

Problem (Q-KSDP). Since the holding costs for the Q-KSDP are linear,

they are convex but not strictly convex, and so violate Assumption

A5. The only consequence of this is that uniqueness of the optimal

solution cannot be guaranteed, but if the probability distribution for

the model parameters is any continuous distribution over any open

set, then nonuniqueness occurs with probability 0.

For the Q-KSDP many additional properties of optimal solutions

hold unless the model parameters exactly satisfy a certain "knife-

edge" condition. (There are different conditions for each property.)

If the parameters are randomly distributed according to any

continuous probability distribution over any open set, these

conditions are satisfied with probability 0. Furthermore, even if the

condition is satisfied, it is not always the case that an optimal

solution will violate the property, and there is always an optimal

solution that does not violate the property. Hence, although these

properties could in principle be violated by an optimal solution, it

can safely be assumed that they hold. See Caulkins (1988) for details.

With probability 1, in any optimal solution using flexible

capacity:
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(1) The firm will not carry inventory into both product/period pairs

in which flexible capacity is used.

(2) If one or both types of dedicated capacity are used then

inventory of both products will not be carried into the same period.

(3) If capacity is not fully utilized in some product/period pair then

no inventory of either product will be carried into that period.

(4) If both types of dedicated capacity are used, inventory will be

carried into at most one of the four product/period pairs.

4.3 Solution of the Q-KSDP

It is possible to completely solve the Q-KSDP. and this solution

leads to some useful insights. The derivation of the solution, which is

very long, is only briefly described here but can be found in its

entirety in Caulkins (1988).

There are 15 decision variables: Ijj, Yij, and Zjj for i = A.B and j
=

1,2 and r; for i = A, B, and AB. A strategy is defined as a specification

of which variables are zero, which are positive but not at their upper

bound, and which are at their upper bound. By definition, variables

that are positive but not at their upper bound cannot be on the

boundary of the region corresponding to a strategy, so setting the

derivative of the objective function with respect to one of these free

variables equal to zero always gives a necessary condition for

optimality. Solving the system of equations comprised of the first

order conditions of all the free variables yields closed form

expressions for the decision variables' optimal values when that

strategy is optimal.

In principle there are over four million strategies, but using the

properties in Section 4.1, one can show that only 137 can ever be

optimal. It is possible to derive necessary and sufficient conditions

for each of the strategies in the category with K^^ = to be optimal

within that category. It is also possible to find necessary and

sufficient conditions for a strategy in a category with K^g > to be

optimal within its category for a fixed value of Kab- Then using the

expressions for the decision variables derived from the first order

conditions, one can compute the optimal value within the category as
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a function of K^^^^. Comparing the optimal solutions within each of the

three categories for all possible values of Kj^q yields the overall

optimal solution.

The necessary and sufficient conditions for a strategy to be

optimal within its category are of three types: conditions comparing

the cost of dedicated capacity to the demand and holding cost

parameters, conditions on the relative strength of demand in each

period, and conditions on K^. The conditions all have

straightforward economic interpretations, as do the expressions for

the optimal values of the decision variables and objective function.

No one of these economic interpretations by itself is particularly

significant, but being able to give the interpretations is the key to

obtaining the following sensitivity analysis results and developing

intuition for the problem in general.

4.4 Sensitivity Analysis for the Q-KSDP

Since the solution gives closed form expressions for the

decision variables for all strategies in terms of the problem

parameters and K^^^, the sensitivity of any function Y of the decision

variables with respect to changes in a parameter x can be computed

by the chain rule:

dY* aY* aY* 5Kab

dx 3x -.T^* 3x
(4.1)

3Y 3Y
The partial derivatives —— and can be computed

directly. If the optimal solution Z is in the category of solutions with

^AB = 0' ^nd there is no alternate solution with K^ > 0, then
dK*

dx
*

0. For solutions with K^ >

*

'AB

ax
(4.2)
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where V^ denotes the partial derivative of V with respect to x, V,,

denotes the second partial derivative, etc.... This formula can be

obtained by differentiating the first order condition

av(KA^xU)

dK
= 0.

AB

_a_

ax

av (Ka^x), x)

dKAB

aV (Ka^x). x| aK^^x) aV (K^x).

aK^B
^^ ^^AB^'

= 0.

Rearranging terms gives (4.2).'

By direct computation, ^k^k^ is strictly negative for all

strategies that can be optimal (with nonzero probability), so (4.2)

aK vD
does not entail division bv zero. Furthermore, sgn( . ) =

dx

sV

With (4.1) and (4.2), obtaining the sensitivity of any decision

variable to any of the reduced model's parameters is a

straightforward calculation. The values of the derivatives were

computed but are not reported here because they depend on the

particular strategy used, and hence do not yield general insights.

The signs of many of the derivatives, however, are the same for all

combinations of strategies and have interesting economic

interpretations, so they will be described. (Since most, if not all, of

the derivatives can be zero for certain combinations of strategies, the

term 'increases' (increasing, greater than, more, etc..) will be used to

describe quantities that increase or remain the same. Similarly for

the term 'decreases'.)

The most important of these results is that holding inventory

and using flexible capacity are not always substitutes. The optimal

amount of flexible capacity is increasing in the cost of carrying

inventory into a product/period pair in which flexible capacity is

used, and decreasing in the cost of carrying inventory out of those

product/period pairs. Hence, using flexible capacity in a

product/period pair is a substitute for carrying inventory into that

product/period pair and a complement to carrying inventory out of
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that product/period pair. Since it is not known a priori to which

product/period pairs flexible capacity will be allocated, general

statements cannot be made about the complementarity or

substitutability of inventory and flexible capacity.

The sensitivity analysis reveals how decision variables

associated with one product are affected by changes in parameters

associated with the other product. For any function Y of the decision

variables associated with one product, ^ = for all parameters x
dx

associated with the other product, so the sensitivity is determined

entirely by the second term of (4.1), . ^^ . Hence, if changing

a parameter associated with product i does not influence the optimal

value of y^AB' then it will not influence the optimal value of K[, the

amount of capacity dedicated to the other product. Furthermore,
dK-

since -1 ^ 377— ^ 0, if changing a parameter associated with
'1

product i changes the optimal value of K^b. it will change the optimal

value of K" in the opposite direction and by an amount no greater in

/d|K-+KABJl (dKABl
absolute value. Hence sgnl = sgnl—— . Thus changes in

product i's parameters affect the optimal amount of capacity

dedicated to the other product only through their effect on the

optimal amount of flexible capacity.

The sensitivity analysis also shows how changes in demand and

holding costs affect the optimal solution. If demand for a product

increases in a product/period pair in which flexible capacity is used,

then it is optimal to purchase more flexible capacity and thus less

capacity dedicated to the other product. Production of the other

product may increase or decrease, but overall production will

increase. As one would expect, the firm will inventory less of the

first product out of that period, but it will also inventory less of the

other product out of that period. Increased demand in the other

period generally has the opposite effect on inventories. It also leads

to increased investment in capacity dedicated to the first product,

but the direction of the effect on investment in flexible capacity and
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in capacity dedicated to the other product depends on which strategy

is in use.

If it costs more to carry inventory out of a product/period pair

in which flexible capacity is used, production of that product will

decrease. Production of the other product may increase, and it is

possible that its increase will more than offset the decrease in

production of the first product, giving rise to an increase in overall

production. Of course it is cenainly possible that both production of

the second product and overall production will decrease. Not

surprisingly, the firm will inventory less out of that product/period

pair. On the other hand, it will inventory more of the other product

out of that period, but that increase will be smaller in magnitude

than the decrease in the inventory of the first product. Inventory-

out of the other period is not affected for either product, so total

inventory levels decrease.

If it costs more to carry inventory into a product/period pair in

which flexible capacity is used, the firm will purchase more flexible

capacity and less capacity dedicated to the other product. The

direction of the effects on capacity dedicated to the first product,

overall capacity, and production levels depend on the parameter

values. Not surprisingly, if it costs more to carry inventory into a

product/period pair in which flexible capacity is used, the firm will

carry less inventory into such a pair. It will, however, increase its

inventory of the other product between the same two periods.

If the price of one of the dedicated capacities increases the firm

will purchase less of both kinds of dedicated capacity and more

flexible capacity. Production of the product whose dedicated

capacity became more expensive will decrease; production of the

other product may increase or decrease.

Finally, the derivatives of the optimal objective function value

are all consistent with one's intuition about the model. When

demand increases, profits increase. When costs go up. profits go

down.
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5 Conclusions and Discussion

The advent of flexible manufacturing technology has made

assessing the economic value of flexible manufacturing systems

(FMS's) an active research topic. Holding inventory and investing in

flexible capacity are both ways firms can respond to varying market

conditions so it is useful to explore both in one model. This paper

extends the Fine and Freund (1986, 1987) model for assessing the

value of product-flexible FMS's to the case when the firm can hold

inventory, reports on the complete solution for a special case, and

gives some intuition building insights.

The FMS investment decision problem was first formulated as a

T+1 period investment and production dynamic programming

problem called the General Stochastic Demand Problem (GSDP) that

explicitly allows the firm to hold inventory. Few analytic results

can be obtained for the GSDP unless some structure is imposed on the

uncertainty about market conditions.

Section 3 considers the GSDP when the variability in market

conditions is periodic and known when production and inventory

decisions are made but unknown at the time the firm makes its

investment decision. With this structure it is possible to show a

unique optimal solution exists; give explicit formulas for the optimal

Karush-Kuhn-Tucker multipliers; state necessary and sufficient

conditions for it to be optimal to purchase flexible capacity; show the

optimal value is a well-behaved function of the capacity costs; and

characterize the optimal solution as a function of the capacity costs

for the special case of quadratic revenue and holding cost functions

and linear production costs.

Section 4 reports on the special case when the variability in

market conditions is periodic and known at the time the firm makes

its investment decision. Many properties of optimal solutions are

stated for general revenue and cost functions as are conclusions

drawn from the complete solution for the case of quadratic revenue

functions and linear production and holding costs.
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Two overall conclusions from Section 4 are that flexible

capacity can be useful even in a world of certainty and that

determining the value of a FMS investment when inventories are

allowed is difficult. The model in Section 4 only considers the

benefits of product flexibility, and more importantly, it is

deterministic. Nevertheless, the derivation of the solution is long, the

solution itself is complex, and the example showed that unguided

intuition can be misleading. Hence it seems unlikely that closed form

expressions for the value of flexible capacity when inventories are

allowed will be obtained for more realistic models. In practice,

intuition and numerical solutions will probably be the rule. The

ability to draw inferences from numerical solutions depends on

results, such as those in Section 3, that guarantee the solution is a

well-behaved function of the parameters. Likewise, it is hoped that

the analysis of this special case and the examples in this paper will

contribute to the intuition of modellers and practitioners. Some

results from the examples and Section 4 are a consequence of the

special structure of those problems, but the following can be

expected to hold more generally.

1) Although holding inventory and investing in flexible

capacity are both ways firms respond to market variability, the two

are not always substitutes. They may be complements, substitutes,

or neither. Hence it is not possible to make general statements about

how changes in the cost of holding inventory affect the value of

flexible capacity or how changes in the cost of flexible capacity affect

optimal inventory levels.

2) It may be optimal to purchase flexible capacity even if

demand is known with certainty. In fact, it can be optimal to

produce a product exclusively with flexible capacity even if all

demand is known with certainty and demand for that product does

not vary over time.

3) Sometimes it is useful to decompose uncertainty about

demand into two components: uncertainty between products and

uncertainty between periods. Flexible capacity is most useful for the

first kind of uncertainty; inventory is most useful for the second.
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4) It is not always optimal to use dedicated capacity to meet

'base demand', demand the firm knows for certain will exist in every

state and period. Thus heuristics that 'subtract out' base demand, to

be met with dedicated capacity, leaving a smaller and hopefully

simpler problem can lead to suboptimal solutions.

The ultimate objective of research in the economic evaluation

of FMS's is to develop tools practitioners can use to assist technology

investment decision making. Developing practical tools from the

models in the literature will require a great deal of work, including

testing them on real world problems. This will be a long and difficult

process, so it is important that it begin now, but there is also more to

be done at the level of academic research.

This paper was based on the Fine and Freund (1986, 1987) model

for quantifying the value of product-flexible FMS's. There are a

number of models in the literature that focus on benefits of FMS's

other than product flexibility. It is likely that extending them to

consider inventory effects would yield useful insights.

There are at least three reasons why firms hold inventory

and/or invest in flexible capacity: varying market conditions, product

life cycle considerations, and economies of scale. These factors can

have quite different and even opposing effects on the relationship

between inventories and flexible capacity. Hence comprehensive

models that include all three are unlikely to yield simple, qualitative

statements about the overall nature of the relationship. This paper

focuses exclusively on the effects of varying market conditions, but

the other two deserve study.

Further work could center on these related problems, but there

is also certainly more to be learned about how holding inventory

affects the value of product-flexible FMS's when market conditions

vary. The analysis in this paper rests on many assumptions and

simplifications. It would be useful to know what results presented

here continue to hold when these assumptions and simplifications

are relaxed.

Direct generalizations of the model presented here, however,

may not be the most productive avenue for further research. The
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problem of determining how holding inventory affects the value of

flexibility with no particular structure to the variability in market

conditions is too general to analyze. The analysis in this thesis was

possible because it considered periodically varying market

conditions. Periodic conditions are complex enough to bring out the

dynamics of the interaction between inventory and flexible capacity,

but simple enough to facilitate analysis. It would be useful to

explore other types of market variability that are complex enough to

be interesting but simple enough to analyze and compare the results

obtained with those presented here. The key to this may be the idea

mentioned above, that overall variability can be decomposed into

simpler constituents, such as variability between periods and

variability between products.
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Appendix: Proof of Theorem 3.2

Proof: Let X denote the collection of multipliers defined in the

theorem. By Theorem 3.1, E is uniquely determined so the

multipliers above are uniquely specified. By direct substitution they

satisfy KKT conditions I - IV, and it is obvious that all variables

except perhaps mi for i = A, B, and AB are nonnegative. So, the proof

will be complete if it is shown that these three multipliers are

nonnegative and X satisfies V and VI. Let X be any set of optimal

KKT multipliers.
— _S _S

First it will be shown that X satisfies V. Sij-qii =

s . s _ s

Y Ps\ ^i2~hii- Rii/. So since the optimal solution is unique, by III,

_S —S ~s ~s _s _S —s ^s _s _s

5.i-qii = Sii - qn- Likewise, 5i2- qi2= 5i2 - q,2 • Since 5ij q^ = 0,

^S _s ~S _s

5ij
>

5,
J and q^ > q^ for all i,j, and s. Similarly, the formulas in the

_s _s —s ~s ~s __s

Theorem and KKT condition I imply a,j- 5^- Sij= a^- 5,j- s^.

~S s / _„S _s \ -s ~s —s —

s

Transposing terms, a,j=a,j + ( 5..- 5.J
- Sy+ Sjj. Since a^ Sij= 0,

~s _s ~s _s ~
aij>aij. Similarly, Yj^Yj . Because X is an optimal set of KKT
multipliers, it satisfies V. Hence, since a > a, y >

"i,
and q > q, X

also satisfies V.
~' — * s

Next it will be shown X satisfies VI. Since X satisfies VI, SyYjj

= Oifi"J<rij. So 7jjY-j = if 7jj>rjj implies Y-j =0. Suppose l\>'s;y

S _S s

Then since a^ Sij=0, 0^, =0. Also, from the formulas in the Theorem

and KKT condition I, 7jj = 7'j + (5ij-5j-(aij- a-J
• So if rij>s'ij, it must

~S _s ~
be that 5,, > 5;;. Since X is an optimal set of multipliers, by V
~s

S S S
—S — s ~s ^%

5ij > implies that I,j=Y,j+Zij. Furthermore, since 5ij- qij= 5ij
-

q^,

~s _S —

s

_s s

Sjj >
5ij

implies that q^j > qi,>0. By VI this implies lij = and thus

Y-j =0. Hence s"ij>7ij implies yJj
= 0. So since SjjYJ, = 0, s^,jYJ, = 0.
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_s ~s
Next it will be shown that UijZij=0. Suppose u,j>Uij. Then since

"ij = "u+l5ij-5j-[Yj-Yj and Yj^Yj. 5,j>5,j. Since S.-q,- 6, -
q,

~S _s ~
this implies that q,, > q, > . Since X is an optimal set of multipliers,

llj ' MlJ-

~s —

s

. .. s ~»
t'y V^ qij>qij^O implies lij=0. Likewise, 5,j > implies that

I-j = y'j + zJj , so Z-j =0. Hence u,j>u,j implies Z-j=0,so UjjZij = 0.

Next it will be shown that mAKA=0. If mAKA>0, then 01^ >

_ s 2 _s
and K^ > 0. Ka> implies mA= . So by IV, rA= XX°^Aj. and thus

S=l J=l

"^A = 2-2^\"aj~ *^aJ^ . This implies there exists some state/period

S=l J=l

~s _s s
~S _s

pair (s,j) such that a,j>a,j. Then by V, Ya,= Ka>0. Also a,j>aij

~s _S S S S
~S _s

implies 5ij>5jj, which by V implies Iaj= Yaj+ Z^> . Buta,j>a,j also

~s _s s

implies q,j>qij. which by VI implies Iaj=0. Contradiction. So

'^aKa=0- Similarly mBKB = 0. Several more steps are required to

show m^K^ = 0, but the reasoning is similar.

~s _s ~* s — s s

""

Also, since q|j >
q,j and q^ lij=0, qjj lij=0. So X satisfies VI.

Finally, it will be shown that m^,mB, and m^ are nonnegative.

Since aij>a,j, m^ =rA-SS«A. ^ r^ - XS"aj = m^ ^ 0. Similarly,

S=lj=l S=l J=l

mg > and m^ > 0. So X is a set of optimal KKT multipliers.

Furthermore, X is the unique set of optimal KKT multipliers if

K > 0. Suppose X and X are tw^o distinct vectors of optimal KKT
multipliers. K > implies m^ = mg = m^B = = m^ = mB = rn^e •

Hence by IV and the formulas in the Theorem, XX ^aj = ""a
=

s=lj=l

S 2 ^^5 ^^ s s ,^ s s "^

XS^aj- So since a,j>a,j, a,j=a,j for all i,j, and s. Similarly, Y = Y.

s=lj=l

Then by I, 5
-j
+ F-j = 5

,j
+ T.j . Since 5,j>5,j, 5,j+ s,j= 6,j + s,j

~S _s _S ~S ~ -5 ~S

unless 5„ > 5,>0 and s„> s,>0. But since X satisfies VI, s,,>s,,
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5
— — _S _S ~S ~S __s _S

implies Yy = 0. Similarly, smce Y=Y, 5ij+ Uij= 5,j + u^, so 5^ > 5ij

implies ujj > Uij>0 which implies Zij=0. Yij= Z-j= implies I-j = . By

Assumption A6, Y* = 0<Ki implies lij=0. Then by I, YPsR-j(O)- cJj(O)

= aii-Sii-Sji- But Sij>0 implies 0^=0, so r[j(0)- cjj(0)< which

contradicts Assumption A8. Thus 5 = 6, s = s, andu = u • And since

_s _s ~s ~s _ ~ _ ~
5ij+ Sij= 5ij + Sij, q = q. Thus X = X, contradicting the hypothesis that

they are distinct. So if K > 0, the optimal multipliers given by the

formulas above are unique.
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