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Abstract

The diffusion equation for electrons in a nonuniform field is solved and the breakdown

condition derived. The breakdown condition is expressed in such a manner that an effec-

tive characteristic diffusion length A is determined; the meaning of A expresses thee e
equivalent characteristic diffusion length for uniform electric fields. From the experi-

mental breakdown fields, Ae is determined and used to predict theoretical breakdown

curves which are compared with experiment.
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ELECTRON DIFFUSION IN A SPHERICAL CAVITY

Electrical breakdown of a gas at microwave frequencies has been considered theoret-

ically and experimentally for the case in which the electric field is uniform (1)(2)(3). It

is sometimes important to consider cases in which the electric field is not uniform, so

that the shape of the volume from which diffusion takes place may be varied. The case

of a cylindrical cavity of arbitrary length has been solved by Herlin and Brown (4), and

the procedure of this paper is similar to theirs. The diffusion equation for electrons in

a nonuniform field is solved and the breakdown condition derived. The breakdown con-

dition is expressed in such a manner that an effective characteristic diffusion length

Ae is determined; the meaning of Ae expresses the equivalent characteristic diffusion

length for uniform electric fields. From the experimental breakdown fields, A is deter-
e

mined and used in the theories developed in References 2 and 3 to predict theoretical

breakdown curves which are compared with experiment.

I. Diffusion Theory

The differential equation to be solved for the characteristic diffusion length of elec-

trons in a gas is

vk + E2Z = 0 (1)

where q = Dn, the electron diffusion current density potential; D is the electron diffusion

coefficient; n is the electron concentration; E is the rms value of the electric field; and

5 is defined by the equation

= /DE 2

where v is the ionization rate per electron.

The boundary condition on Eq. (1) is that the electron concentration and thus ~ go to

zero within a mean free path of the walls of the metal cavity.

C may be expressed as a function of E/p and pX where p is the pressure and k is the

free space wavelength of the applied electric field. Integration of Eq. (1) is simplified

by the use of the approximation employed by Herlin and Brown (4)(5).

(E) -2 (j) 2 (I)P 2 ( 2 )

where o is the value of the ionization coefficient at the maximum field point; k is intro-

duced for mathematical convenience and has the units of reciprocal length. The quantity

1-2 is obtained as the slope of the vs. E/p plot on a logarithmic scale. The slope

required is that of for which pX is kept constant. The approximation of Eq. (2) is very

good where the ionization is high. It is inaccurate only where there is little ionization

and since the regions in which there is little ionization contribute only slightly to the

determination of breakdown fields, the procedure obtained leads to correct results.
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The electric field in the lowest electric mode in a spherical cavity may be given

by (6)

E = Eo cos 0 [1(2 75 r/a (3)

a a
E = E . 7r sin 0 [2.75 r/a)Jl (4)

E =0

where r, and 4) are the spherical coordinates, a is the radius of the sphere and jl is

the first-order spherical Bessel function.

It is seen that the electric field depends on both r and 0, the introduction of which

makes Eq. (1) inseparable. Since, in breakdown, we are interested only in the energy

transfer from the field to the electrons, we need take into account only the magnitude of

the field at a given point. Near the center of the cavity, where the field (and therefore

the ionization) is high, the magnitude of the electric field is approximately spherically

symmetric. This fact is illustrated in Fig. 1 which shows the maximum variation of

fields with 0, as a function of r. If we assume that the electric field may be expressed

as the average of these values over the whole of the cavity, we may write

E = E[1 - (r/a) ] . (5)

Equation (5) is also plotted in Fig. 1 where it is seen to be a good approximation to the

average electric field except near the boundaries where it does not matter.

Fig. 1 Electric field in a
spherical cavity showing the
'maxlmtum variation and the
analytic approximation to the
average field as a unction of
radius.

r/a

The assumption that the electric field is independent of O and 4) leads one to the inde-

pendence of 4) on these variables. Therefore, we may write Eq. (1) with the assumption

of Eq. (2)

1 d 2 d 2 E
- - ( r - + k\Eo/ : or (r 0
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and introducing the value of E from Eq. (5), we have

2 r 2 +k2 [ - (r/a) j P = (6)
r

We expand the term in r/a by the binomial theorem and drop powers of (r/a) greater than

2. This makes an appreciable error only near the boundaries, where again the accuracy

of the method is unimportant. Then

+-r + k(1 - 2 r2 ) =O (7)
dr

where 2 = P/a 2 . 1/pL is the radius at which the ionization goes to zero under the above

assumptions. Beyond 1/., these assumptions lead to a negative which is not physically

correct so we set = 0 for r > 1/p.

For mathematical convenience we transform to a dimensionless independent variable

and let kpur 2 = x; Eq. (7) becomes

~~/2 2= 0 X< (8)
2 2x E + x -R(dx 4k

We transform the dependent variable by letting LP = e -x/2 g and then

+ a- ( 1) g = o (9)
dx

where a = 3/4 - k/4p.

Equation (9) is the equation for the confluent hypergeometric equation in parameters

3/2 and a (7). The second solution is not allowed by the boundary condition and therefore

qJl = e -x/2 M (a; 3) (10)

where we designate by 1J that part of for which r is less than 1/4 or x < k/[u. When

x > k/p., is zero and the differential equation (1) becomes

d(x3/2 d,) = 

whose solution is

1/2

'2 = (xX°O ] (11)

where xo = kLa2 and is determined by the condition that 2 be zero on the boundary; C is

an arbitrary constant. We must match the solutions of Eqs. (10) and (1 1) at the point

where r = 1/p. and therefore

-1 -2

'~l 'Pz
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which gives us

2/3 aM (a + 1; 5/2; x) 1 1 (12)

M(a; 3/Z2; x) x 2x 1 - I

1/2
where x l = k/ = ka/PB/2.

Equation (12) relates a, the radius of the cavity, determined from the slope of the

curve and k which is inversely proportional to the characteristic diffusion length, and

may be written

2/3 aM (a +; 1; 5/2; ) ] y = x (13)
M(a; 3/2; y) 2 y---

1/2 1/2
where a = 1/4(3 - y), y = ka1/P and x = /. Equation (13) is an equation in which

the left-hand side is a function of ka/p1/2 only and the right-hand side is a function of

p1/ only. Therefore, it is a simple matter to find ka as a function of P. For the case

O.B

02
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Fig. 2 Ratio of effective
diffusion length to charac-
teristic diffusion length.

V"2 3 4 5 6 7 8 9 10 11 12 13 14

of a uniform field, the characteristic diffusion length in a sphere is a/wr and inspection

of Eq. (1) indicates that for a uniform field, k = iT/a. k now may be considered as a

measure of the effective radius of the discharge for diffusion and ka/Tr then is A/A where

A is the characteristic diffusion length as determined by the geometry of the container

and Ae is the effective characteristic diffusion length. Equation (13) is solved numeri-

cally and plotted in Fig. 2.

II. Experiment

Breakdown fields have been measured for hydrogen in a spherical cavity operating

in the lowest electric mode. The details of experimental method are similar to those

previously reported (2). The microwave apparatus is shown in Fig. 3. Microwave power

with a free space wavelength of approximately 10 cm generated by a c-w magnetron is

coupled to a microwave resonant cavity through coaxial transmission lines. A known

fraction of the power delivered is measured by a bolometer. The power absorbed by the
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cavity is combined with the cavity Q and the known field configuration to determine the

electric field by standard methods (8)(9). The cavities in which breakdown takes place

AV T DETECTOR MILLIAMMETER

BOLOMETER
MATCHED (THERMISTOR)

LOAD AND BRIDGE CRYSTAL

PADHXl ENUATO
POWER CALIBRATED

W 11 E DIVIDPER( rATTENUATOR
C.W.

MAGNETRON
DIRECTIONAL

COUPLER SLOTTED TMoi0
SECTION CAVITY

Fig. 3 Block diagram of experimental microwave apparatus.

are made of oxygen free high conductivity copper and connected through Kovar to an all-

glass vacuum system. The vacuum system would hold at a pressure of better than

10 - 7 mm of Hg for a period of about two hours with the pumps turned off. A single

series of breakdown measurements takes about this time.

III. Calculation of Effective Diffusion Length

Figure 4 is a vs. E/p plot for hydrogen. Constant pX lines are plotted, the data

being combined from breakdown measurements of cavities with different A's. This plot

illustrates the use of the theory developed in this
rea _ Ae_+ a *b; A 'Q-+4 4+

JiptJl' UI' CUlI JULI .Il ll± LJVCJI 1. D)UL Lit:

corrected and uncorrected data are presented.

The procedure used in finding Ae begins with

a plot of vs. E/p, using the geometrical value

which is a first approximation. If the geometri-

cal characteristic diffusion length is equal to the

actual diffusion length, we shall find A /A frome
Fig. 2 to be equal to 1. This is not generally

true, so we take the value of P for the slope of a

constant pX curve for the pressure and wave-

length in which we are interested, find Ae/A and

recalculate to obtain a second approximation.

The process is convergent and is continued until

successive calculations agree.

t4 The sphere used in the experiment had a radius

E/p (E-.-H) of 4. 69 cm and a geometrical A of 1.49 cm. The

Fig. 14. Plot illustrating the actual effective A determined from the theory variesFig. 4 Plot illustrating the actual
calculation of effective A's. Both from 0.43 cm for a low E/p to 0. 61 cm for a high
the corrected and uncorrected C E/p. (The effective radius of the discharge
curves for the spherical cavities are
shown. depends on the ionization coefficient.)
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In Fig. 5 are plotted the theoretical values of E as a function of p, using the calcu-
lated values of Ae . These are calculated from the theory developed in two previous

papers (2)(3). Experimental breakdown fields are compared with theory on the same

figure. The good agreement illustrates the validity of the method.

E

102

0. 1.0 I0 100
p (mm- Hg)

Fig. 5 Comparison of experimental electric field and values predicted for theory.
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