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Abstract

Many design tasks involve selection from a set of configurations followed by

parametric optimization of the chosen configuration. The models used for these

tasks tend to be large, non-linear and involve both discrete and continuous vari-

ables. It is rarely possible to use any single formal algorithm to solve these problems

and as a result there are very few tools to help designers solve such problems. We
believe computer environments that allow flexible access to a varied set of computer

tools will help designers rapidly generate high quality solutions. We demonstrate

our arguments on a design problem taken from a commercial auto manufacturer,

propose a framework for dealing with the general class of problems and describe

a preliminary implementation of a novel design system that integrates math pro-

grajnming, knowledge-based and graph theoretic tools.

Keywords: Knowledge-based systems, mathematical programming, hybrid sys-

tems, graph theory, design.

Number of Words (text): 5800, (abstract, appendices etc): 1100

1 Introduction

This paper explores decision support tools for engineers who deal with complex input-

output models. An input-output model is used to compute a set of performance param-

eters from a set of input parameters, based on a set of equations (see Figure 1). The

•Direct all correspondence to this author at MIT Rm E53-389, Cambridge MA 02139, (617)253-0487,

ulrich'@ai. mit.edu.



design task is to specify a set of inputs that yield outputs satisfying certain criteria.

These inputs typically include a configuration choice and values for the various param-

eters cissociated with that configuration. This is a hard problem when the number of

configurations is large and the models are nonhnear.

Input Parameters



available for lookup of database parameter values. Then, the designer tries to achieve the

target values by manipulating the inputs to the computer model (see Figure 1). If this

cannot be done, the targets are modified through a negotiation process with marketing.

In current practice, the designer receives no support from the computer system other

than the ability to recompute the outputs once the inputs are changed. Using this

methodology, experienced users can achieve acceptable results in a reasonable time (usu-

ally a day or two) but are usually unable to generate multiple solutions. Some features

the users desire in an improved system are,

• Automatic computation of several sets of inputs that achieve the desired targets.

• Use of an exphcit optimality criterion.

• Faster re-calculation of outputs when inputs are changed.

In addition, there is interest in developing better computer-based data representations

for this apphcation. Most current representations trade off efficiency for maintainability

and flexibility. None of these properties can be neglected if the system is to be successful.
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1.3 Sample I/O Model

Because of size considerations (see Table 1), it was not possible to study the entire

model for an automobile. Instead, we conducted our work on a 30 percent sample of the

complete model. Table 1 shows a size comparison.

Figure 2 shows the graph of an input-output model used to compute two performance

parameters. The examples given in this paper refer only to this example. The equations

corresponding to Figure 2 are explained in Section 8.

1.4 Organization of the paper

In Section 2 we describe how graph representations and algorithms can be applied to re-

veal problem simplifications and decompositions. Section 3 covers the use of knowledge-

ba^ed systems to make discrete choices. In Section 4 we discuss how nonlinear program-

ming can be applied once the discrete variables are fixed and also discuss how mixed

integer nonlinear programming can be used to determine suitable values for both the

continuous and discrete variables in a single step. The final section describes how the

different algorithms described can be usefully combined and accessed from a single envi-

ronment. Appendix 1 is a review of the relevant literature and Appendix 2 contains the

complete equations corresponding to Figure 2.

2 Graph-Based Problem Simplification

Conventional wisdom on solving large mixed integer nonlinear problems is that physical

insight is useful in simplifying and constraining a problem. Often, this insight is the

difference between getting a solution and dismissing the problem as too complex to solve.

However, we are not aware of any efforts to study the nature of these insights or to perceive

common features between different fields. We would like to know what insight amounts

to in a mathematical sense. Is insight related to notions of independence, monotonicity

and irrelevance or has it no known mapping into mathematics? One possibility, is that

this insight is the ability to locate minimally coupled portions of the design which may
be examined independently. In this section, we describe some algorithms that can be

used to simplify equation trees of the type shown in Figure 2, and hence automate this

form of problem simplification.

2.1 Tools for Managing Complexity

We present a few examples of the types of information that can be automatically derived

from a constraint network. We have implemented these methods as LISP functions that

can be called on the network.



DE2 (displacement change)

FE

uel efficiency)

DE3 (transmission ratio change)

DE6 (idle revolutions change)

BFT (front brake force)

BRAKEG
Draking force)

BRT (rear brake force)

• CFE (current fuel efficiency)

VOL (displacement)

VOLO (current displacement)

RO (current tire radius)

R (tire radius)

IF (1st gear ratio)

IT4 (4th gear ratios)

IFO (current 1st gear ratio)

IT40 (current 4th gear ratio)

Nl (idle rpm)

NIO (current idle rpm)

MCYLTYPE (master cylinder type)

FBTYPE (front brake type)

• MBD

PMO

DR1

DR2

RDRUMBTYPE
(rear drum brake type)

RDISKBTYPE
(rear disk brake type)

' WS (total weight)

Figure 2: Dependency graph for fuel-efficiency and braking-force performance parame-

ters. (Physical significance of selected variables is shown in parentheses, "current" values

refer to existing model of car)
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The first class is composed of functions that do not do any searching and gather

useful information only by traversing links within the network. They help designers by

automatically deriving high level information about the network. Some such functions

are as follows:

• Get-General-Network-Info retrieves general information about network. For exam-

ple, when this is run on the network in Figure 2 it prints the following information.

Tree Statistics
Number of Performance Parameters: 2

Number of Parameters (including intermediate): 36

Number of Input Parameters: 22

Performance Parameter Statistics

Performance Parameter BRAKEG
Number of Intermediate Parameters 11

Number of Input Parameters 12

Exclusive Input Parameters (RDISKBTYPE RDRUMBTYPE FBTYPE
MCYLTYPE MBD PMO DRl DR2 WEIGHT
NPASS ONEPASS)

Performance Parameter FE
Number of Intermediate Parameters 3

Number of Input Parameters 11

Exclusive Input Parameters (CFE VOL VOLO RO IF IT4

IFO IT40 NI NIO)

Intermediate parameters are those that are neither roots nor leaves of the tree. The

exclusive input parameters are leaves of the tree that are connected to one and only

one performance parameter. Simple predicates are available to tell if the type of

an input parameter is concept, database or design.

• Get- All-Input-Parameters retrieves all the input parameters affecting a particular

performance parameter. For example, when called on the braking distance pa-

rameter, it returns RDISKBTYPE, RDRUMBTYPE, FBTYPE, MCYLTYPE, R,

MBD, PMO, DRl, DR2, WEIGHT, NPASS, ONEPASS.
• Get-Exclusive-Design-Parameters retrieves input parameters that aiFect only the

named performance parameter (and no other) and are also design parameters.

For example, the results of calling this function on BRAKEG (braking force) are

RDISKBTYPE, RDRUMBTYPE, FBTYPE and MCYLTYPE.
• Get-Common-Input-Parameters searches for and retrieves input parameters shared

by two performance parameters. For example, the function can tell the designer

that the FE (fuel efficiency) and the BRAKEG (braking force) parameters have

only a single common design variable, namely R (tire radius). Other pairs such as

starting acceleration and cruising acceleration (two other performance parameters)

may be more strongly coupled and have more than one common input.

• Get-Related-Performance-Parameters tells the designer which performance-parameters



would be affected by changing the value of a particular input parameter. For exam-

ple, a change in R (tire radius) will affect both FE (fuel efficiency) and BRAKEG
(braking force) but a change in MCYLTYPE (master cyhnder type) will affect only

BRAKEG and will not change FE.

These functions are a useful addition to the system because both experienced designers

and new users can use them to advantage. For example,

• A designer can explicitly recall and confirm dependencies or even discover new ones.

This is particularly useful in situations where models are constantly being updated.

New users can use these functions as a learning or exploration tool.

• If a computer program returns a solution that is almost acceptable to the designer,

the designer can get help on how to effect local changes. This helps avoid solving

the entire problem again with only a slightly modified constraint.

• The designer can reliably predict the effects of changes i.e. in terms of which

variables will be affected. One obvious extension is also to say how the variables

will be affected.

The second class of algorithms actively search the network to identify portions that

can be decoupled, allowing the designer to break a large problem into several smaller

problems. If it is possible to separate 20 performance parameters of a large model into

two independent groups of 10 parameters each, the reduction in complexity is appreciable.

In most problems, we do not expect the algorithm to reveal such drastic simplifications.

Obvious simphfications are likely to have been noticed by previous designers. In such

cases, the search procedure can be modified to find "almost separable" groups of perfor-

mance parameters, i.e. those with only one or two variables in common. This is helpful

because, the problem can be decoupled by fixing the common inputs. The consequent

loss of design freedom is more than compensated by the reduction in problem size.

• Find-Separable-Portions. It is sometimes possible to replace entire branches of a

tree by a single, suitably-bounded variable. This is best illustrated through the

following example. Let a performance parameter P be calculated as,

P = fHA,B)
and the equations governing A and B be,

A = f2{C,D)
B = fZ{E,F)

where bounds are available on C, D, E, F. This set initially involves optimizing

over 6 variables but can be reduced to two subproblems with 4 and 2 variables

respectively.

p = n{A,B)

B = f3{E,F)

where bounds are available on A, E and F.

Once the value of A at the optimum is found, it is known to be achievable because of

the bounds previously calculated. The values of the design variables C and D that



will yield the required value of A can then be determined. The advantage of this

approach is that the number of equations to be handled during the optimization

step can be reduced. However, the following condition must be satisfied.

Condition I: If the portion of the tree below A is replaced by a bounded variable

with bounds Amai and -4,„,„, then every value of A in that range must be achievable

for some legal values of the input variables C and D, i.e. the equation f2(C, D) - x

= 0, must have at least one solution satisfying Am,n < 3- < Amax-

• Find-Separable-n-pairs-of-Tree. This is a generalization of the above concept to

handle a situation where a search of the network does not result in removal of any

separable nodes pairs. In this case, it is possible to find a groups of n nodes that

satisfy the criterion of being independent. For example, consider a caise where n=2

P^f\iA,B,C)
A = f2{D,E)

B^f3{E,F)
C = fA{G,H)

Here, the influence of design variables D, E and F is limited to the two intermediate

variables A and B. Hence the pair (A, B) forms a separable pair which can be

optimized as a sub-problem. However, the higher dimensional analog of Condition

I must hold. In our experience, this condition is hardly ever satisfied for groups of

size greater than two.

2.2 Results

There is considerable potential for using the results of graph algorithms to simplify the

optimization problems. The basic idea is to identify ways of decomposing the problem

into smaller, simpler problems that can be handled without the need for human inter-

vention. The graph algorithms described are much less computationally intensive than

numerical optimization; they can be repeatedly run on very large networks in a few sec-

onds. Hence it is economical to run them on every problem even if they do not always

result in a substantial simplification. Secondly, the graph-based representation described

turns out to be a good basis for building other applications because of the variety of

information that can be ecisily stored and retrieved. The structure can also be easily

maintained and modified.

3 Knowledge-Based Systems

Once the problem size has been reduced to the extent possible using the graph algorithms

just described, the designer can use a Know ledge- Based System (KBS) to fix the values

of the discrete design variables so that nonlinear programming techniques can then be

used.
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The knowledge-based approach is typically applied to problems where rigorous math-

ematical modehng is not possible[38]; math-programming techniques are more suited to

problems where reliable mathematical models exist. We applied KBS technology to this

problem because,

1. The complete model is too large for math programming- based solvers that we are

aware of. This is due to a large number of integer variables^.

2. Mixed integer nonhnear solvers that use branch-and-bound can be very slow and

ineffective. We felt knowledge could be used to reduce the search space and hence

achieve better performance.

3. For structural choices, rules are easier to read and interpret than the numeric

constraints required by math solvers. Basic explanations for system actions can be

generated more easily.

4. Designers are able to learn how to use the existing input-output system, pointing

to the existence of heuristics for estimating the behavior of the network.

3.1 System Design

Automobiles are usually designed by perturbing an existing configuration and not by

generating an entirely new one. We decided to use this methodology for the knowledge-

based system also. We classify possible changes to the existing configuration as

1. Minor changes, e.g. changing the type of turbo mounted on an engine already

equipped with a turbo.

2. Medium changes, e.g. adding a turbo to a normally aspirated engine.

3. Major changes, e.g. changing over from caxburetion to throttle body fuel injection.

We assume that the magnitude of the difference between the target and current

performance parameters can be used to decide on suitable modifications. For example,

a 5 percent improvement is possible using a turbocharger but a 50 percent improvement

is not. Another assumption is that the improvement required is monotonically related to

the cost of making that improvement. For example, a 50 percent improvement in starting

acceleration is hkely to be more expensive than a 5 percent improvement. These numbers

differ between performance parameters - in a particular situation, a 5 percent reduction

in braking distance may be possible but a 5 percent reduction in 0-60 acceleration time

may not. This knowledge has to be acquired from the designers.

'in subsection 4, we discuss how integer variables arise when modeling configuration choices



The characteristics of the current configuration are also relevant. A designer deals

differently with an engine that is loaded with all the available performance enhancing

accessories than with one that is a basic configuration. This presents an additional

dimension for reasoning but we did not use this in our knowledge base.

Working with these ^lSsumptions and some preliminary information gathered from the

users of the system we developed a prototype KBS which is described next.

3.2 System Implementation

The system first computes a qualitative descriptor for the change required in each per-

formance parameter and uses these descriptors to select a course of action. Consider a

ccise with three performance parameters Pj, P2 and P3.

The change code is a triplet as follows.

(Ci, C2, C3), Ci, C2, C3e(X,5,A/,Z)

where C, is the change code corresponding to the performance parameter P, while the

letters X, S, M and L correspond to no change, small, moderate or large changes in a

performance parameter.

When the system is presented with a set of targets, it computes the change code based

on the difference between the existing configuration and the target and uses this code to

decide which rules to fire. The following example illustrates this. Note that improvement

of fuel efficiency and braking force means a numerical increaise while for 0-40 acceleration

time it means a numerical decrease.

Assume that the Current Performance Parameter Values are:

0-40 Acceleration Time(Pl) = 10.0 s

Fuel Efficiency (P2) = 9 km/1

Braking Force(P3) = 7.5 m/s^
and the Target Performance Parameter Values are:

0-40 Acceleration Time = 10.0 s

Fuel Efficiency = 9 km/1

Braking Force = 8.25 m/s^

A Sample Change Code Computation Table (Braking Force) is

Change



Hence the change code in this example is (X, X, L). A sample rule that could then fire

is,

If (Change Code is (X, X, L))

And (Current Configuration Has Drum Brakes)

Then (Add Disk Brakes)

And (Remove Drum Brakes)

The knowledge about magnitude of changes is implicitly encoded in the target code

computation table whereas the knowledge about the configuration changes that can result

in reaching the target for a performance parameter is encoded explicitly in the rules.

For example, the rule just shown records the knowledge that disk brake performance is

superior to drum brake performance.

The system was implemented in 0PS5 and used as a preprocessor to a parametric

optimization program. Details of how this system was integrated with other available

tools are given in Section 5.

3.3 Results

Experiments with this system and discussions with expert designers yielded the following

observations:

1. There are several problems inherent in developing qualitative descriptors of config-

uration and required target changes. For example, when discretizing a continuous

range into approximate values we sacrifice precision; values which just barely fall

into a particular class are made indistinguishable from values that fall squarely

into the middle of the class. Hence, empirical studies using the acquired heuristic

knowledge are an important part of the validation process.

2. Many designers feel that our model of their reasoning process, based on control

codes, is not reahstic. However, they are unable to come up with models of their own
thinking. Some even question the very existence of simplified mental models. In

our view, some type of qualitative model is used by the designers. Some improbable

alternatives are that designers use pure generate-and-test(random search) or that

they can visuahze such a large nonlinear model. A more likely alternative is that

they can learn simphfied models that are valid only in very small regions of the

space.

3. The idea of using target codes to control rule firings is not scalable. For N per-

formance parameters and M qualitative ranges on each parameter, the potential

number of change codes is M^ . If detailed knowledge on how to handle each type

of change code existed, the system would then require M^ rules. For N=3 and

M=4, the number is 64 and seems manageable. However, for N=19, M=4, the
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number is 4'® and clearly unusable. An intuitive way to approach the solution of

this problem is to reduce the number of target codes to a reasonable number. This

may be done in several ways, such as decouphng the problem into smaller groups,

applying clustering on target codes. The decouphng approach was discussed in

Section 2.

4. The system uses a very "shallow" model. It adopts the simplistic view that the

information content of the target codes is sufficient to achieve a satisfactory solution

and hence suffers from fundamental limitations. It may be necessary to use a more

detailed model to be able to reason effectively in a wide variety of solutions.

We have described how a knowledge-bcised system can be used to decide on values for

the discrete valued variables in the problem. If the knowledge-based system can choose

all the discrete variables, then the reduced problem is one of nonlinear programming

(to decide the continuous variables). If some discrete variables cannot be fixed, then

either the designer can fix them and use nonlinear programming or decide to use mixed

integer nonlinear programming to determine the remaining discrete and all the continuous

variables in a single step.

4 Math Programming

In this section we first describe some methods of solving the nonhnear programming

problem that arises when the configuration (discrete) variables of the model are fixed

and then describe how mixed integer nonhnear programming may be apphed to the

problem of determining both discrete and continuous variable values.

4.1 Nonlinear Programming

Background In the first stage of our investigation, we tried to reduce the problem to

one of nonlinear programming by fixing all the discrete variables using the knowledge-

based system and, if necessary, designer choices. The problems we experienced while

formulating and solving the resulting nonlinear program were as follows,

1. Formulation of a suitable objective function: The problem requires optimization in

the presence of multiple, conflicting objectives. We decided to reduce the problem

to one of scalar optimization by creating a composite objective function.

The first objective function tried was a symmetric quadratic penalty.

penalty = ^(p, - <,)^

t=i

performance parameters

ti — target values

12



However, imposing em identical penalty for violation or over-satisfaction of a spec-

ification does not reflect actual practice.

To correct this problem, we used a smooth function created by the weighted addition

of exponentials.

n

penalty = ^(e"i*<P'-''-<') + ^n2*(p,-t,-d)^^

1=1

|nl| > \n'2\

nl > 0,n2 <

d = /(nl,n2)

(The constant term d is needed to ensure that the minimum penalty occurs for

exact satisfaction of the target.)

2. Convergence: Important factors in improving the chances of convergence were,

(a) Starting guesses. The characteristics of the current model of car were found to

be excellent for this purpose, since most calculations are perturbation-based.

(b) Bounds. The benefits of having good bounds are especially dramatic in multi-

dimensional problems. For example, the actual legal range of engine displace-

ment is 1500 to 3000 cc. However the actual change made by a designer is

never more than ±200 cc because of other, unwritten, constraints. This in-

formation can be used to significant advantage. Other implicit bounds, such

as those on quantities with physical meaning (pressures, temperatures etc.),

should also be used to the maximum extent possible.

(c) Infeasibility. The problem of infeasibility can be controlled with tight bounds

and good starting guesses. This is especially important in this model, because

of the large number of equafity constraints.

(d) Local Optima. Due to the nonlinear nature of the problem, there is no way

of avoiding local optima. Automatic reformulation of the inputs to math

programming solvers and the availability of fast computer hardware make it

possible for designers to explore many local optima.

Implementation The model was implemented using the GAMS modeling language[7].

GAMS is a commercially available system that provides a uniform interface to a variety

of linear and nonhnear solvers. The high-level nature of the language makes it possible

to rapidly formulate and modify even complex models quite rapidly. We added another

layer of abstraction to this lEinguage so that the designer could fix variables, choose config-

urations or make other changes in an interactive LISP environment. When optimization

is required, the system automatically creates a GAMS input program incorporating all

changes made since the leist run, submits it to the solver, parses the results and displays

13



a summary of the solution on the screen. This high-level facihty for running the opti-

mization program is instrumental in maximizing the utilization of the math-programming

facihty because making minor changes and re-running the analysis is no longer a problem.

Results The important conclusion from this study is that even in large nonlinear pro-

gramming problems it is possible, with care and patience, to achieve satisfactory results.

This is not a startling conclusion. However, we are interested in studying how our expe-

riences with this problem can help us tackle other similar ones. Specific points of interest

are:

1. The role of iterative human tuning. In the course of solving such problems, re-

peated human intervention seems unavoidable. However, many tricks of the trade

can be systematically recorded and automated. For example, proper scaUng and

generation of tight bounds.

2. Error checking. Correct interpretation of the results produced by an optimization

program is crucial. In complex models there is always the possibihty of modehng

blunders which result in non-intuitive results (such as the wrong set of constraints

being active at the optimum).

3. Local Decouphng. This is a useful phenomenon which we noticed that can be used if

the search space can be very strongly bounded. It is best illustrated by an example.

Consider two performance parameters Pi and P2. Each has its input variables Cn
and C2, and there are three common variables x, y and z. The equations are

Pl = Mx,y,z) + f2{Cu)

P2 = Mx,y,z,C2,)

The two performance parameters are said to be locally decoupled if we are operating

in the vicinity of a point (xq, j/oi ^0) where dfi/dx, dfi/dy, dfiz/dz ~ 0, leading

to the equations,

PI = /2(Ci,) + const

P2 = Mx,y,z,C2,)

Hence, even though a graph search for global decoupling (described in Section 2)

would find that PI and P2 are coupled, they are locally decoupled and this can be

used to simplify the equations.

4. Choice of optimization algorithm. The nonlinear solver used by our version of

GAMS is MIN0S5, which is based on solving a series of hnearly constrained sub-

problems. This is not the best strategy in our case because most of our constraints

are nonhnear. However, it is the most widely applied method for large-scale prob-

lems and will remain so until other methods such as sequential quadratic program-

ming are widely applied to large problems.

14



In many cases, the system produced answers that were surprising enough that the

users felt compelled to verify the system-generated values by hand. Some of the useful

feedback received from users was as follows (along with our opinion of their feasibility).

1. Justifying the choice of an optimum. Designers felt more comfortable about the

answers once they understood which constraints were active and why a particular

solution was reached. However, interpreting a matrix of Lagrange multipliers is an

unnecessary burden to place on designers. We have no real solution to this problem

in the context of math programming systems.

2. Allowing interactive tuning of the coefficients corresponding to each performance

parameter in the objective function would enable individuals to exert more precise

control over the actions of the solver.

3. Generation of multiple solutions. Many users wanted the system to generate multi-

ple solutions, i.e. several choices of inputs that satisfied the performance variables.

They felt more confident if the choice of which of these solutions to use was left to

them.

4.2 Mixed Integer Nonlinear Programming

Introduction Mixed integer nonlinear programming (MINLP) has the potential to

handle problems in which discrete and continuous variables occur simultaneously. Most

of the approaches to MINLP have been based on branch and bound search or variations

thereof (see Section 7 for references).

Given the principles of mixed integer programming and the specific objectives of our

project, the following points are relevant.

L The scientific community does not have much experience with solving MINLPs and

this technique is only gradually gaining acceptance.

2. Limits on the number of integer variables that can be modeled using existing

MINLP solvers require that the number of configuration variables be first reduced

by some other means.

3. The presence of local optima strongly affects algorithms that use nonhnear program

solutions as bounds for branching. Global optimum-seeking methods such as sim-

ulated annealing[30] were rejected because they were too slow for this apphcation.

Implementation Techniques for formulating if-then rules, Boolean constraints etc. as

equivalent sets of algebraic constraints involving zero-one variables are well known in the

math programming community[32]. For example, consider the if-then-else type constraint
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numerical equations then achieve the effect of picking a single turbo and caxn type

and lookup of the appropriate value from the table.

1=1

j=l

i i

7^.,C, e(0,l)

This formulation uses 5 binary variables (3T,s and 2Cjs) and is nonhnear in the

binary variables. A linear form can be achieved by associating a binary variable

with each entry in the lookup table.

£',j, i = 1,2,3 and j = 1,2 are the binary variables

3 2

^ = L Z] ^'J * ^i

The linear formulation requires as many binary variables as there are possible con-

figurations. A typical automobile design allows thousands of configurations and

hence size is a major restriction.

Results

1. Most solutions were achieved not by branch-and-bound but by one of the pre-

liminary heuristics applied by ZOOM, the linear solver used by our version of

DICOPT-|-+^. Moreover, experience with ZOOM has shown that it does not per-

form reliably on problems with more than 20 variables[37]. DICOPT-f-|- has the

potential capability of using other, more reliable linear solvers, but these were not

tested.

2. To achieve solutions using branch-and-bound, compilation of as much constraint

information as possible is essential. Performance can be further enhanced by infor-

mation such as an intelligent variable ordering.

3. Handling the complexity of the input manually was a major problem. Checking

large numbers of integer constraints is difficult. This is evident when looking at

any MINLP formulation.

4. Interpretation and justification of the results was difficult. Not having an explana-

tion for why a particular configuration was the best one did not inspire confidence

in the system.

Solution of the MILP problem is an intermediate step used by DICOPT-f-|- to solve MINLPs
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which makes the three technologies described earlier available to a designer. The original

solution methodology, using only the model, allowed only one path of information flow:

from the user through the nonhnear model and back to the user. The new framework,

while retaining the old mode of functioning, introduces many new paths that the design

information can traverse. The automated tools available make it significantly easier to

achieve a suitable design in a short time. More of the users' effort is directed into the

actual problem solving because the procedural details are handled automatically by the

system.

The computer-assisted design process now consists of the following steps,

1. Tools such as graph-based algorithms are used to identify new problem simplifica-

tions and decompositions.

2. On these reduced problems, a rule-based system provides advice on the discrete

choices.

3. If all the discrete variables are fixed in Step 2, a non-linear program is automatically

formulated and solved. Otherwise, a mixed-integer problem is formulated and

solved.

4. At any stage, the designer can revert to the manual mode to achieve a solution.

The system performs consistency checks in the background and flags violations.

5. The entire model, or parts of it, can be summarized or viewed and changes are easy

to make. The graph-based representation allows automatic change propagation and

correctness checking.

6. The system's expertise in any area can be smoothly complemented by the designer's

knowledge. At any time, the designer can rapidly intervene, modify the algorithm

and then return control to the system.

7. When tools fail, the system is still usable as it provides an indication of the reason

for failure and it is easy for the designer to correct the problem and run the program

again.

In this paper, we have attempted to examine the practical aspects of solving para-

metric design problems using available tools and extensions to these tools (graph repre-

sentations and searching, new interfaces etc). We have proposed a novel framework for

integrating new and existing tools that enables designers to solve problems from the real

world. An example of using this methodology on a design problem drawn from industry

hcis also been presented. We hope that these results will enable others facing problems

of this nature to solve them more rapidly.
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7 Appendix 1: Related Work

7.1 Knowledge-Based Systems

Knowledge-based systems research is an established part of artificial intelligence (AI). The
major issues include representation of knowledge, knowledge acquisition and implemen-

tation related issues such as environments, programming languages etc. Basic textbooks

on AI discuss all these issues briefly [9, 27]. The classic papers on knowledge represen-

tation are available in collected form[33]. Similar collections of the important papers

on pattern-directed inference systems[10] and rule-based systems[ll] are also available.

Several authors have discussed how to identify problems suitable for the application of

expert system technology and give practical hints on implementing expert system tools

[38]. Specific tools for implementing expert systems have also been widely discussed (see

for example [5]).

The use of knowledge-based systems for design has been studied extensively and

papers are available on the subject from widely diifering domains, ranging from circuit

design to machine element design [8, 25, 20, 34, 22, 24].

7.2 Mathematical Programming

There is a huge body of work on non-linear programming including several textbooks on

the subject [12, 6]. These cover various aspects of optimization such as necessary and

sufficient conditions for existence of extrema, use of computed and estimated derivatives

and convergence. Papers describing specific optimization techniques also abound and

are too numerous to list here. Important references can be found in the textbooks cited

above. Integer linear programming techniques are covered in textbooks by Nemhauser

and Wolsey[26] and by Garfinkel and Nemhauser [13].

There is also a considerable body of literature on the subject of optimization in design,

including many textbooks[29, 31]. Interest in discrete optimization is more recent and

till a few years back was Hmited to MILP solution. More recently, mixed integer- non-

linear linear programming has become feasible due to the availabihty of cheap, high-speed

computing. Much of the work in this area has been related to process plant synthesis

for chemical engineering[39, 19, 1, 18] but mechanical design applications have been

examined as well[23].

7.3 Graph Theory

Graph theory has many applications in science and engineering and has been studied

extensively. Many excellent textbooks are available, for example the one by Henley [17].

The idea of representing constraints as graphs is standard in computer science (for ex-
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ample, Gosling[15]) and attempts have been made to use graph-based algorithms to aid

mechanical design [35, 16].

7.4 Combining Artificial Intelligence (AI) and Operations Re-
search (OR)

Fundamentally, the fields of AI and OR both address the problem of search. However

they approach the solution from different points of view. The AI community has been

primarily concerned with symboUc reasoning in domains where good models do not exist

while OR research has focused on the formulation and efficient solution of well-defined

mathematical models. Conventionally, AI and OR have been independent academic areas

with very little communication of methods or results. However, similarities have been

noticed and the idea of combining AI and OR techniques has been suggested in the

literature[14, 36]. In practice, many hybrid numeric-symbolic systems have been applied

successfully [21, 3, 2, 4], Though, the consensus seems to be that most real- world design

problems require well- integrated and flexible hybrid systems for their efficient solution, no

systematic methodology seems to be evolving to guide the development of such systems.
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8 Appendix 2: Sample Equations

The equations corresponding to Figure 2 are as follows,

FE = CFE * (1 + {AP2 * DE2 + APS * DE3 + AP6 * DE6))
DE2 = VOL - VOW
DE3 = R * IFO * ITAO/RO * IF * 774

DE6 = NI - NIO
BRAKEG = {BFT + BRT)IWS
BFT = MBD * PMT * AF * RF/R
If {RBDISKTYPE 7^ 0), Then

If {PMT > PMO), Then
BRT = MBD * DR\ * PMT + DR2 * PMO *AR* RR/R

Else

BRT = MBD * PMT *AR* RR/R
If {RBDRUMTYPE ^ 0), Then

If PMT > PMO Then
BRT = BEE * {{DRl * PMT + DR2 * PMO) * ARD - DLOSS)/R

Else

BRT = BEF * PMT * ARD/R - DLOSS
WS = NPASS * ONEPASS + WEIGHT

Note here that RBDISKTYPE and RBDRUMTYPE are discrete variables that decide

whether the rear braking system is of the disk or the drum type. Hence, only one of

these can be non null. Similarly, FBTYPE and MCYLTYPE choose the type of front

brake type and the master cylinder type and hence must both always be non-null. This

information must be represented explicitly in a MINLP model.

Some of the variables in the network are characteristics of a component and hence

their value is decided by the choice of component. For example, AF is a friction factor

that varies between brake systems. Hence, if say front brake of type 1 is chosen the

corresponding value for AF must be looked up from a table using type 1 as the index

into that table. The variables that depend on tables are as follows and are shown along

with the appropriate index.

Variable



It is also instructive to know what the type of each input variable is. This is shown

in the following table.

Database CFE, VOLO, RO, IFO, IT40. NIO
Design R, IF, 1T4, NI,VOL (continuous)

FBTYPE, RDISKBTYPE, RDRUMBTYPE. MCYLTYPE (discrete)

Constants .-\P2,.-\P3,.AP6, MBD. PMO,
DRl, DR2, NP.'\SS. ONEPASS. WEIGHT
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