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Abstract

A study is made of the limits within which diffusion phenomena control the breakdown

of a high-frequency discharge. The discussion is based on proper variables for dimen-

sional analysis, using the parameters pA, pX and EA, where p is the pressure, A 'the

characteristic diffusion length, X the wavelength of the excitation, and E the breakdown

electric field. The limits of applicability of the diffusion theory are found to be a uniform

field limit, a mean free path limit, and an oscillation amplitude limit. Within these

limits, a single function for the effective breakdown voltage, EA, and the energy per

mean free path, E/p, correlated the breakdown voltages for all published data tested,

covering a wavelength range from 10 cm to 17,000 cm.
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LIMITS FOR THE DIFFUSION THEORY OF

HIGH-FREQUENCY GAS DISCHARGE BREAKDOWN

The breakdown mechanism for a high-frequency a-c gas discharge is much simpler

than that for the corresponding d-c breakdown. It is for this reason that relatively simple

exact theories may be written for breakdown at the high frequencies. It is important to

determine over how wide a range in frequency and pressure these discharge theories

are applicable, and such a study for the case of hydrogen is the subject of this paper.

I. Dimensional Analysis

If a gas contained in a vessel is placed in an alternating electric field, for a certain

value of the electric field, the gas will break down into an electrical discharge. This

breakdown field can be expressed as

Eb =E(ui ,A, X, p)

where E is the electric field intensity, u i is the ionization potential, A is a parameter

describing the vessel, X is the wavelength of the exciting field, and p is the pressure.

The field E is measured in volts per cm, and ui is measured in volts. The termA has

the units of length, and its appearance in explicit calculations also involves various

known dimensionless ratios to describe the shape of the vessel. It is customary to

measure pressure in millimeters of mercury, and the mean free path, which is inversely

proportional to pressure, is measured in centimeters. A relation between pressure

and mean free path is obtained by introducing a quantity, Pc, which is the number of

collisions per mean free path at 1 mm Hg pressure. Thus, Pc, which is called the proba-

bility of collision, may be regarded as having the units of reciprocal length, even though

this is not its true dimension.

Treating the breakdown problem dimensionally, there are five variables with but two

fundamental dimensions, volts and centimeters. This leads to three independent dimen-

sionless variables between which there is a functional relation (1). It is often convenient

in physical problems to introduce variables which are not dimensionless but are never-

theless proper variables for dimensional analysis because the completely dimensionless

variables contain one or more physically invariant quantities which need not be carried

along in a practical discussion. There are a number of sets of such proper variables

in a gas discharge problem which may be transformed into one another and their rela-

tive convenience depends on the purpose for which they are to be used.

One very useful set of proper variables is

EA, p, pX . (1)

The advantage of these variables lies in the fact that p,A, and X are the experimentally

independent parameters which determine the dependent variable E, the observed break-

down field. These are the same variables which give the Paschen law in d-c breakdown,
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since in d-c, pX has no meaning; EA is analogous to voltage, and pA to the parallel plate

pd.

Another set of proper variables which we shall use is obtained by dividing the first

variable in (1) by the second and so obtaining

EA, E/p, pX . (2)

This set has the particular advantage, in a discussion of breakdown phenomena, that we

may define (2) an ionization coefficient = 1/E A2 which is a function of E/p and pX. In

many ways, is equivalent to the Townsend first coefficient (volts - 1 ) which is a function

of E/p alone.

II. Diffusion Theory

The simplest breakdown condition to calculate is for the high-frequency case in which

the ionization rate is balanced by the loss of electrons by diffusion. The simplicity lies

in the absence of complicating secondary phenomena. This breakdown criterion may be

derived from the solution of the equation

V2 + D:0 (3)

where = Dn. D is the diffusion coefficient for electrons and n is the electron density,

and the product must be equal to zero on the boundary. The quantity v is the net produc-

tion rate per electron. For the case of infinite parallel plates with a uniform field, the

solution to Eq. (3) is

4 = A sin A (4)

where z is the distance from one plate to an arbitrary point in the cavity, and A is a

constant. The length parameter A used in the above dimensional analysis is called the

characteristic diffusion length, and can be calculated exactly for a few common shapes

of discharge tube. For example, with a cylinder of radius R and length L,

1 ) (z 2405 2 (5)
A = - R ) (

When the sideways diffusion to the walls is negligible, the parallel plate case results,

namely A= L/ir, while only the last term of Eq. (5) is important for very long cylindri-

cal tubes.

Certain basic assumptions are made in the calculations of breakdown as a balance

between the ionization rate and the loss of electrons by diffusion. We examine here the

limits which the assumptions place on the application of the theory to various experi-

mental conditions. These can be discussed in terms of the proper independent variables

of Eq. (1), pA and pX. One can plot on the pA-pX plane the conditions for all breakdown

data for a single gas and derive limits in these variables which will define the applica-

bility of the diffusion theory.
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III. Uniform Field Limit

The solution of Eq. (3) in the form given in Eq. (4) assumes a uniform field between

infinite parallel plates. At low frequencies, the experimental measurements of break-

down are always taken in vessels whose dimensions are small compared to a wavelength

of the exciting power. For this case, the uniform field assumption may be very good.

At very high frequencies, there exists a limit to the size of the discharge tube consistent

with the uniform field assumption of the diffusion theory. This can be written in terms

of the size of vessel allowable to sustain a single loop of a standing wave of the electric

field. The relation between the parallel plate separation, the wavelength, and the dif-

fusion length given in Eq. (5) may be written as

X
2f1fA . (6)

For parallel plates where the separation is small, so that sideways diffusion can be

neglected, / = L. In general, however, we must use both terms in Eq. (5). Thus one

arrives at a limit which may be written in terms of pX and pA as

pX = 2rr(pA) . (7)

This limiting line is plotted in Fig. 1 and designated as the uniform field limit.
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Fig. 1

A plot of the limits of the diffusion theory for break-
down at high frequencies in terms of variables derived
from dimensional analysis. The extent of experimental
data is represented by 450 lines.
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IV. Mean Free Path Limit

The diffusion theory will not apply where the electron mean free path becomes com-

parable to the tube size. In the limiting case, this can be expressed as the mean free

path, , being equal to A. The probability of collision, Pc, is equal to l/pi. To plot

this condition in Fig. 1, we may write

pA= 1/P c (8)

The value of Pc is not a constant, but depends upon the electron energy. Assuming that

the average electron has an energy equal to one-third of the ionization potential, the

average electron energy would be 5.1 volts for hydrogen. Using Brode's (3) measured

value for the probability of collision in hydrogen for the average electron, Pc = 49

(cm - mm Hg) . With this value, we obtain the horizontal line in Fig. 1 marked mean

free path limit.

V. Collision Frequency Transition

Within the limits of experimental conditions in which diffusion theory adequately

explains the breakdown behavior, several different phenomena may occur. One of the

phenomenological changes which is important is the transition from many collisions

per oscillation of the electron to many oscillations per collision. This can be written

as the condition that v = where v , the collision frequency, is the ratio of the averagec c
velocity v to the mean free path, and w is the radian frequency of the applied field. From

Brode's data, we can obtain a relation, Zvc = 5.93 x 109 p. Putting this in terms of the

proper variables, we obtain

pX = 32 . (9)

This relation is plotted in Fig. 1 as the dotted line marked as the collision frequency

transition.

On the low pressure side of this transition, the oscillatory velocity of the electron

lags the applied field by nearly 90', and little energy is transferred from the applied

field to the electron. As the pressure increases, the increasing frequency of interrup-

tion of electron oscillation decreases the lag, and the resulting in-phase component of

the velocity represents an increasing absorption of energy. This may be taken into ac-

count by introducing an effective field (4) for energy transfer, defined by the relation

2
2 2 P

E E 2 (10)

C

where E is the rms value of the applied alternating field and is the radian frequency.

Ee is therefore the effective field which would produce the same energy transfer as a

steady field.
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VI. Optimum Breakdown

The most striking characteristic of the effects of changing pressure on the breakdown

field intensity is the fact that at high pressure the field decreases with decreasing pres-

sure, and at low pressure the field increases with decreasing pressure. In discussing

this effect let us start with high pressure. Here the power which goes into the electron

from the electric field is dissipated in elastic collisions between the electrons and the

gas molecules. The region corresponds to the lowest values of E/p measured experi-

mentally. The data on either the Townsend first ionization coefficient or the a-c ioniza-

tion coefficient (5) show that here E/p is a constant equal in hydrogen to 10 rms volts/

cm/mm Hg. Thus for a discharge in which nearly all the loss goes into non-ionizing

collisions, the field and pressure are related by the equation

E = 10 p . (11)

In the low pressure region, the electrons make many oscillations per collision and

the breakdown field may be determined by equating the number of collisions to ionize to

the number of collisions to diffuse out of the tube. The change in energy of an electron

on collision is Au = (m/2e)(v 2 ) where Av2 is the average value of the square of the

change in velocity on collision. Since

AV 2 = )t2
m c

where E is the effective value of the field, and the mean squared collision time t is

given by 21 2/v from kinetic theory, we may write for the change in energy on collision

2 2Ee2 Ee

u m Z m 2
v Vyc

An electron can reach ionization energy in n collisions when nAu = u i . The number of

collisions to diffuse out of a tube of size A is calculated from kinetic theory (6) to be

(3/2)(A2/I 2 ) and hence

2
ui/c 3 A 2

E I

Substituting in this equation the value of the effective field from Eq. (10) and rearranging

terms, the resulting expression for E becomes

E =AXP 7 . (12)

For hydrogen, this equation reduces to

E 785= (13)
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Equation (11) gives the relation between field and pressure at high pressure and

Eq. (13) the relation at low pressure. Eliminating the field between these two equations

will allow us to calculate the pressure at which breakdown will occur most easily. In

terms of the variables of Fig. 1, this leads to the equation

78.5 (14)

This relation is plotted in Fig. 1 as the line marked as the optimum breakdown.

VII. Oscillation Amplitude Limit

When the amplitude of the electron oscillation in the electric field is sufficiently

high, the electrons can travel completely across the tube and collide with the walls on

every half cycle. The presence of the gas complicates the problem somewhat, but Gill

and Donaldson (7) showed that this phenomenon accounts for abrupt changes in the break-

down behavior.

The electric field may be written in the form E = E sin wt where E is the peak

value. Under the action of the field, an electron is accelerated an amount Ee/m for the

time between collisions tc to attain a velocity given by

v = at eE 1 (15)c my
c

where Vc is the collision frequency. Putting in the sinusoidal variation of the field withc
time

eE
v - 1- sin wt

m 7 c

eE
x P cos t

mO c

The limiting case on the diffusion mechanism in which all of the electrons will hit the

walls would be calculated by setting the oscillation amplitude equal to one half of the

electrode separation. In order to take account of the greater density of electrons at the

center due to the sinusoidal spatial distribution, the distance the electrons must travel

is multiplied by the average value of the sine function. Thus, the oscillation amplitude

becomes equal to

eE p _L (16)
(16)

c

Substituting X in terms of G, v/i in place of vc, and /PP for , we obtain

me pL
pX= (2mc vP) ( EI) (17)

Examination of Brode' s data for the probability of elastic collision of an electron with
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hydrogen shows that over most of the energy range, the hyperbolic form of the curve

gives vP = 5.96 x 109 (sec - mm Hg) . Putting this numerical value in Eq. (17), and

using the parallel plate relation that L = rrA, Eq. (17) reduces to

pX = 2r X 105 ( pA (18)

This equation can be solved numerically where experimental values of the breakdown

field are available. Experiments of this sort have been carried out for parallel plate

geometry using hydrogen gas, and numerical values for Eq. (18) can therefore be deter-

mined. This calculation yields the oscillation amplitude limit of Fig. 1.

VIII. Correlation of Data of Various Workers

Many experimenters have studied the breakdown of a gas discharge at various fre-

quencies and in various different geometrical arrangements. Most workers have obtained

breakdown data for hydrogen and several have included in their reports sufficient detail

to enable the parameters p, X, and A to be determined. Since the data were determined

by measuring breakdown voltage in a given size container at a given applied frequency at

various pressures, a single run plots as a line at 45° in Fig. 1. In this figure, the range

of data in pX and pA taken by several observers is indicated by such lines. Many of the

breakdown curves which have been obtained have complicated shapes and it is difficult

to visualize a correlation in a two-dimensional plot between different workers. On the

other hand, if we make a three-dimensional plot in which the horizontal axes are the pk,

plA parameters of Fig. 1 and the vertical axis the effective breakdown voltage EA, all

available data may be represented on a single surface. This is done in Fig. 2. Break-

down voltage data between parallel plates for hydrogen for the experimental conditions

of pX and pA (shown in Fig. 1) were used to construct this surface. The data covers a

wavelength range from 17,000 cm to 10 cm and a range in A from 1.4 cm to 0.0275 cm

and the surface extends only as far as experimental data exist from which to construct

it. One can see that in the diffusion theory regions, the curves are smooth and well

behaved, as one would expect if a single theory were applicable. In crossing over the

oscillation amplitude limit, the breakdown curves appear to be much more complicated

due to the effects of secondary electrons produced by the collision of the electrons with

the walls or electrodes of the discharge vessel.

Sufficient data are available to check the generality of the breakdown theory at high

pressure where the electrons make many collisions per oscillation. In the region where

the diffusion theory is valid, one should observe the same value of the effective break-

down voltage EA at a given value of the energy per mean free path E/p, independent of

the frequency at which the measurements are made. Figure 3 shows this to be the case

since a single curve is determined, within the limits of experimental accuracy, for

breakdown in hydrogen using data taken by various observers over a wide range of wave-

length and discharge tube size.
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Fig. 2 A surface constructed from the experimental determinations indi-
cated in Fig. 1, correlating the breakdown voltage measurements
in terms of variables derived from dimensional analysis.

Fig. 3 Effective breakdown voltages as a
function of E/p calculated from
breakdown measurements of numerous
workers (5)(8)(10).

i
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IX. Discussion

The general agreement of the shape of the experimental curves with the limits shown

in Fig. 1 is illustrated by the position of these limits on the three-dimensional projection

of Fig. 2. To illustrate this agreement in a more quantitative fashion, sets of curves

by different workers are shown in Figs. 4 and 5. Figure 4 shows data taken with a given

lptrrndp nnrincr hpnrP fiwPrd A

for different wavelengths (8). The

calculated positions of the oscilla-

tion amplitude limit for the given

frequencies are shown by the appro-

priately marked arrows. The por-

tions of the curves to the right of

these arrows lie in the region where

electron diffusion controls, and it

is from these parts of the curves

that the data in Fig. 3 were taken.
Th onmrlifnrl chnnoa of -tho lrl

p(mm- Hg) s L 1F a L. 

to the left of the oscillation ampli-
Fig. 4 tude limit involves the production

Breakdown measurements in hydrogen by Githens
(8) showing calculated and observed transition of secondary electrons at the elec-
points. trodes or walls of the container.

Such curves have been reported by

numerous observers (8)(9)(10). Well-defined changes in the data can be recognized where

the data cross the mean free path limit.

Experiments carried out at microwave frequencies (5) allow one to explore the transi-

tion through the optimum breakdown
.,4 *.** 

condition. Figure 5 sows a series

of runs for breakdown field as a

function of pressure taken at a

constant frequency for different

values of A. When A is high, corre-

sponding to large plate separation,

the curves cross only one controlling

transition, that from many collisions

per oscillation to many oscillations

per collision where the shape of

1Q 0.5 I 5 10 50 100 tne curve is given Dy expression
p(mmHg)

(1). When the value of A is very

Fig. 5 small, on decreasing pressure, the

I Breakdown measurements in hydrogen (5) at data first cross the optimum break-
10-cm wavelength showing calculated and down condition and then the mean
observed transition points.and then the meanobserved transition points.
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free path limit. The values of A shown in Fig. 5 are the geometrical values calculated

from Eq. (5), since it is these values which are used in computing pA-pX values for

inclusion in Fig. 1. In calculating the EAlvalues in Figs. 2 and 3, a correction must be

applied for those cases where the height is so great that the cavity cannot be considered

a parallel plate system. The two largest cavities of Fig. 5 required this correction

which was carried out in accordance with the non-uniform field theory given in a recent

paper by Herlin and Brown (11).
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