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Software Complexity and Software Maintenance Costs

Abstract

In an empirical analysis of sixty-five software maintenance projects in a large IBM COBOL transaction

processing environment, the impacts of correctable software complexity upon project costs were

estimated. Module size, procedure size, and the use of complex branching were all found to significantly

affect software maintenance costs. It was estimated that projects involving maintenance of systems with

greater underlying code complexity cost approximately 25% more than otherwise identical projects dealing

with less complex code. These costs are estimated to amount to several million dollars at this data site,

suggesting that the aggregate cost across the industry may be extremely large. A generalizable model is

provided to allow researchers and managers in other environments to estimate and reduce these costs.

ACM CR Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution and
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Introduction

While the Unk between the difficulty in understanding computer software and the cost to maintain it is

appealing, prior empirical evidence linking software complexity to software maintenance costs is relatively

weak^ Many of the attempts to link software complexity to maintainability are based upon experiments

involving small pieces of code, or are based upon analysis of software written by students. Such evidence

is valuable, but several researchers have noted that such results must be applied cautiously to large scale

commercial application systems that account for most software maintenance expenditures [11, 14].

Furthermore, the limited large scale research that has been undertaken has generated either no or

conflicting results; as, for example, on the effects of software modularity and software structure [6, 10].

Nor does any of the previous work develop estimates of the acmal cost of complexity, estimates that could

be used by software maintenance managers to make best use of their resources. While research supporting

the statistical significance of a factor is, of course, a necessary first step in this process, practitioners must

also have an understanding of the practical magnitudes of the effects of complexity if they are to be able to

make informed decisions.

This study analyzes the effects of software complexity upon the costs of COBOL maintenance projects

within a large commercial bank. It has been estimated that 60 percent of all business expenditures on

computing are for maintenance of software written in COBOL^. Since over 50 billion lines of COBOL are

estimated to exist worldwide, this also suggests that their maintenance represents an information systems

activity of considerable economic imponance. Using a previously-developed economic model of software

maintenance as a vehicle [2], this research estimates the marginal impact of software complexity upon the

costs of software maintenance projects in a traditional information systems environment. The model

^See, for example, J. Kearney, et al.. Software Complexity Measurement, Communications of the ACM 29, 1 1 (1986)

1044-1050.

^Freedman, D.H. Programming without Tears, High Technology 6, 4 (1986) 38-45.



employs a multi-dimensional approach to measuring software complexity, and it controls for additional

project factors under managerial control that are believed to aifect maintenance project costs.

The analysis confirms that software maintenance costs are significantly affected by software complexity,

measured in three dimensions: module size, procedure size, and branching complexity. The findings

presented here also help to resolve the current debate over the functional form of the relationship between

software complexity and the cost of software maintenance. The analysis further provides acmal dollar

estimates of the magnitude of this impact at a typical commercial site. The estimated costs are high enough

to justify strong efforts on the part of software managers to monitor and control complexity. This analysis

could also be used to assess the costs and benefits of a class of computer-aided software engineering

(CASE) tools known as restructurers.

The remainder of this paper is organized as follows. The next section, "Previous Research and

Concepuial Model" presents the conceptual model and summarizes previous field research in this area.

The section "Model and Results" develops the research model and hypotheses, and presents the statistical

results. Managerial results and implications for software practice are presented in the section entided

"Implications for Software Maintenance Management". A final section provides some concluding remarks

and suggestions for future research.

Previous Research and Conceptual Model

Software Maintenance and Complexity - Introduction

This research adopts the ANSI/IEEE standard 729 definition of maintenance: "Modification of a software

product after delivery to correct faults, to improve performance or other attributes, or to adapt the product

to a changed environment" [22]. Research on the costs of software maintenance has much in common

with research on the costs of new software development, since both involve the creation of working code

through the efforts of human developers equipped with appropriate experience, tools, and techniques.

However, software maintenance involves a fundamental difference from development of new systems in

that the software maintainer must interact with an existing system. The goal of the current research is to



identify the factors that affect the assimilation process and thereby increase (decrease) the amount of effon

required to perform the maintenance task. In panicular, the current research focuses on measuring the

impact of aspects of the existing source code that are believed to affect the amount of effort required.

Basili defines software complexity as " ...a measure of the resources expended by another system while

interacting with a piece of software. Iftlie interacting system is people, the measures are concerned with

human efforts to comprehend, to maintain, to change, to test, etc.. that software." (1980, p. 232). Curtis

etal. similarly define this concept as psychological complexity: "Psychological complexity refers to

characteristics of software which make it difficult to understand and work with" ( 1 979, p. 96). Both of

these authors note that the lack of use of structured programming techniques is believed to increase the

cognitive load on a software maintainer. In the current research this will simply be referred to as software

complexity, with the focus being on correctable software complexity, i.e., complexity that results from

specific syntactical choices made by the developer. It is this type of complexity that offers the greatest

opponunity for managerial actions to reduce complexity.

Factors that increase maintainer effort will increase project cost, since maintenance costs are most directly a

function of the professional labor component of maintenance projects. Therefore, this research is designed

to measure the impact of aspects of software complexity of the existing system that affect the cost of

maintenance by increasing or decreasing the amount of maintainer effort to comprehend the software,

while controlling for project factors that may also affect performance. Given the growing economic

importance of maintenance, several researchers have attempted to validate hypotheses relating to

complexity. However, researchers have not been able to empirically test the impact of complexity upon

maintenance effort while controlling for additional factors known to affect costs [16, 24]. The main

research objective in this paper is on investigating the relationship between existing software complexity

and maintenance costs. However, in order to properly understand this relationship, the effects of project

factors will be controlled for. Figure 1 presents a simplified view of the concepaial model that will be

tested in this research.
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Figure 1: Software maintenance project costs conceptual model

Modularization

Researchers have employed many measures in attempts to operationaiize the concept of software

complexity. The consensus is that there is no single best metric of software complexity [5, 11, 21].

However, two main concepts have emerged, modularity and branching.

Schneidewind estimates that 75-80 percent of existing software was produced prior to significant use of

strucuired programming (1987). A key component of structured programming approaches is modularity,

defined by Conte etal. (1986, p. 197) as "the programming technique of constructing software as several

discrete parts." Structured programming proponents argue that modularization is an improved

programming style, and therefore, the absence of modularity is likely to be a significant practical problem.

A number of researchers have attempted to empirically validate the impact of modularity on either software

quality or cost witii data from actual systems. (See Table 1

)

In terms of positive impacts of greater modularity, perhaps the first widely disseminated field research in

this area was by Vessey and Weber ( 1983). They studied repair maintenance in Australian and US data

processing organizations and used subjective assessments of the degree of modularity in a large number of

COBOL systems. In one data set they found that more modular code was associated with fewer repairs; in

the other data set no effect was found. A later study by Korson and Vaishnavi (1986) conducted four

experiments comparing the time required to modify two alternative versions of a piece of software, one



modular and one monolithic. In three of the four cases the modular version was significantly easier to

modify.

Card et al. (1985) reached the opposite conclusion. They tested the impact of module size and strength

(singleness of purpose) on programming effort, measured as programmer hours per executable statement.

They found that effort decreased as the size of the module increased. However, effort decreased as

strength increased, but increases in strength were associated with decreases in module size. They

concluded that nothing definitive could be stated about the impact of module size. A study by An et al.

(1987) analyzed change data from two releases of UNIX. They found that the average size of unchanged

modules (417 lines of C) was larger than that of changed modules (279 lines of C) Unfortunately, they

did not provide any analysis to determine if this difference was statistically significant.

An alternative hypothesis is that modules that are either too large or too small are unhkely to be optimal. If

the modules are too large they are unlikely to be devoted to single purpose. If the modules are too small,

then much of the complexity will reside in the interfaces between modules and therefore they will again be

difficult to comprehend. In contrast to the unidirectional studies cited above, a few researchers have

suggested the possibility of bi-directional effects. For example, Conte et al. (1986, p. 109) note that: "Tfie

degree ofmodularization affects the quality ofa design. Over-modularization is as undesirable as

undermodularization." In an analysis of secondary data, Bowen (1984) compared the number of source

lines of code (SLCXT) / module with a set of previously proposed maximum desirable values of two well-

known metrics, McCabe's V(G) and Halstead's N. He concluded that the optimal values of SLOC /

module differed across languages, but that all were much lower than the Department of Defense's

proposed standard of 200 SLOC / module. In his suggestions for future research, he notes (p. 331) that

"More research is necessary to derive and validate upper and lower boundsfor module size. Module size

lower bounds, or some equivalent metric such as coupling, have been neglected; however they are just as

significant as upper bounds. With just a module size upper bound, there is no way to dissuade the

implementation ofexcessively small modules, which in turn introduce inter-module complexity,

complicate software integration testing, and increase computer resource overhead."



Boydston ( 1984) undertook a study of completed systems programming projects at IBM whose main

purpose was to gain greater accuracy in cost estimation. One additional analysis he performed (p. 155)

was to attempt to estimate the optimum SLOC / module ratio for new code, based on the hypothesis that,

"Complexity ofprogramming increases as the lines of code per module and the number of modules to

interface increase ." In other words, extremes of either a very small number of large modules or a very

large number of small modules would both be unlikely to be optimal. His regression analysis developed

multiple, non-linear functions of work-months as a function of the number of new modules, with SLOC

held constant. He concludes (p. 159) that "...as a project gets larger, tlie additional complexity of larger

modules has to be balanced by tfie increasing complexity of information transfer between modules."

However, his model does not control for any non-code factors.

While not examining maintenance cost direcdy, Lind and Vairavan (1989) obtained empirical evidence

supporting the hypothesis of an non-extreme optimum value for module size, i.e., that the best sized

modules were ones that were neither too big nor too small. They analyzed the relationship between the

change rate (number of changes per 100 lines of code, a surrogate for cost) versus a discrete (categorical)

lines of code-based variable. Their five discrete SLOC categories were 0-50, 50-100, 100-150, 150-200,

and 200+. They found that minimum change rates occurred in the 100-150 range, a result they describe

(p. 652) as indicating the "...program change density declines with increasing metric values up to a certain

minimum value. ..beyond this minimum value, the program change density actually increases with an

increase in the value of the metrics."

The results of these previous smdies can be summarized as follows. Researchers testing for unidirectional

results (i.e., that either smaller modules or larger modules were better) have found either no or

contradictory results. Other researchers have suggested that a U-shaped function exists, that is, modules

that are either too small or too large are problematical. In the case of many small modules, more inter-

module interfaces are required. In the case of a few large modules, these modules are less likely to be



devoted to a single purpose^. However, researchers who suggest the U-shaped curve hypothesis either

provide no or limited data Unking size and cost. In general they also do not provide a model for

determining the optimum module size"^.

The most recent research includes an earlier study at the current research site where thirty-five application

systems were analyzed to develop a basis for selecting among dozens of candidate software metrics that

the research literature has suggested [25]. Figure 2 shows the relationship among the three software levels

identified in this research.

Figure 2: Software Level Hierarchy

An application system has M modules. In turn, each module m has Nm procedures. Table 2 provides the

definitions for these levels.

Previous research investigating a large number of proposed software complexity metrics has found them to

be variations on a small number of onhogonal dimensions [21]. An analysis of software complexity

metrics at this research site identified three major groups: procedure-level modularity, module-level

modularity, and branching [25]. Despite their apparent similarities, previous research has suggested that

the two kinds of modularity represent independent aspects of software complexity [13]. A commercial

^Interfaces are relevant because they have been shown to be among the most problematical components of programs (Basili

and Perricone 1984). Modules not devoted to a single purpose have been shown to result in a larger number of errors and

therefore higher amounts of repair maintenance, which can be interpreted as increased cost (Card et al. 1985) (Vessey and

Weber 1983).

^Boydston (1984) does extrapolate from his data set to suggest a specific square root relationship between number of new

lines of code and number of modules for his Assembler and PLS language data.



static code analyzer was used to compute these metrics. Given the high levels of correlation within (but

not across) complexity metric groups, a representative metric from each group was selected, based in pan

upon the ease with which it could be understood by software maintenance management and its ease of

collection. This approach has been recommended by previous research [21].

The first metric is PROCSIZE, the average size in executable statements of a module's procedures. There

is an almost universal tendency to associate large procedure size with poor procedure-level modularity.

However, inuiitively, neither extreme is Ukely to be effective. If modules are broken into too many small

procedures, complexity could rise, and in this case increasing the average procedure size would be

expected to decrease complexity.

Module length, in executable statements (MODLSIZE) was selected as the metric of module-level

modularity [5]^ . The effect of this complexity metric is expected to depend upon the application systems

being analyzed. As discussed in the survey of previous research, it is generally believed that large

modules will be more difficult to understand and modify than small ones, and maintenance costs will be

expected to increase with average module size. However, a system can be composed of too many small

modules. If modules are too small, a maintenance project will spread out over many modules with the

attendant interface problems. Therefore, complexity could decrease as module size increases.

Therefore, two specific research hypotheses concerning modularity are proposed:

Hypothesis I : Controlling for otherfactors known to affect software maintenance costs, software

maintenance costs will depend significantly upon average procedure size as measured by PROCSIZE, with

costs risingfor applications whose average procedure size is either very large or very small.

Hypothesis 2: Controlling for otherfactors known to affect software maintenance costs, software
maintenance costs will depend significantly upon average module size as measured by MODLSIZE, with

costs risingfor applications whose average module size is either very large or very small.

Branching

Previous work has suggested that control constructs (branching) are expected to have a significant impact

on comprehension [12]. Structured programming is a design approach that limits programming constructs

^This metric was found lo be uncorrelated with PROCSIZE (Pearson correlation coefficient =
. 10).



to three basic means of branching through a piece of software. Because it is difficult to comply with these

structures using the GOTO syntax found in older programming languages, this approach is sometimes

colloquially referred to as "GOTO-Iess programming." A review of work in this area before 1984 was

conducted by Vessey and Weber (1984). While few negative results have been found, they note the

absence of significant results is as frequent as a finding of positive results. They attribute this outcome, in

part, to the fact that researchers have not adequately controlled for other factors. They also note the

difficulty of achieving such control, particularly in non-laboratory real-world settings.

More recently, Gibson and Senn (1989) have investigated the impact of software structure using a

laboratory experiment. They found that more structured versions of the same piece of software required

less time to maintain on average. They also found that maintainers' subjective assessments of the

complexity of the existing systems were not very accurate, a result they attribute to the maintainers'

inability to separate task complexity from existing systems complexity. They recommend using objective

measures of systems complexity to remedy this defect. However, the expected results from their

experiments did not hold in all cases. In addition, as noted by the authors, laboratory experimentation is

not a substitute for field research: "Further research is needed to determine whether the relationships

observed in this tightly controlled experiment exist in live settings." (p. 357). In panicular, laboratory

experimentation is unlikely to provide estimates of the actual cost impacts of ill-structured programs in

commercial settings.

In a recent pilot study of seven maintenance projects on Fortran and Pascal-based real-time systems. Gill

and Kemerer (1991) found that maintainer productivity decreased as existing systems complexity

increased, as measured by complexity density, a size-adjusted measure of branching complexity.

However, their model does not control for any non-code factors. The authors also note the need to

validate these results on a larger sample of commercial systems. Therefore, the question of a negative

impact of excessively complex branching on maintenance costs has only limited empirical support, and

there is a need for funher research.



In the current research the initial candidate metric chosen for branching was the proportion of the

executable statements that were GOTO statements (GOTOSTMT). This branching metric is normalized for

module size, so that it would not be confounded with MODLSIZE. This metric is also a measure of

module divisibility, as the degree to which a module can be divided into small and simple procedures

depends directly upon the incidence of branching within the module. Highly divisible modules (modules

with low values of GOTOSTMT) should be less cosdy to maintain, since a maintainer can deal with

manageable portions of the module in relative isolation.

While the density ofGOTO statements (GOTOSTMT), like other candidate control metrics examined, is a

measure of divisibility (each GOTO command makes a module more difficult to understand by forcing a

programmer to consider multiple portions of the module simultaneously), it does not distinguish between

more and less serious structure violations. A branch to the end of the current paragraph, for example, is

unlikely to make that paragraph much more difficult to comprehend, while a branch to a different section

of the module may. However, none of the existing structure metrics examined clearly differentiate

between the two cases. In addition, the modules analyzed have a large incidence of GOTO statements

(approximately seven per hundred executable statements). If only a relatively small proportion of these

seriously affect maintainability then the GOTOSTMT metric may be too noisy a measure of branching

complexity. At this research site over half of the GOTOs in these modules (19 GOTOs out of 31 in the

average module) are used to skip to the beginning or end of the current paragraph. Such branches would

not be expected to contribute noticeably to the difficulty of understanding a module (in most high-level

languages other than COBOL they would probably not be implemented by GOTO statements). Therefore,

a metric such as GOTOSTMT, which does not distinguish between these and the approximately forty

percent less benign branch commands, will be unlikely to be managerially useful.

To avoid this problem, a modified metric was computed, GOTOFAR, which is the density of the GOTO

statements that extend outside the boundaries of the paragraph and that can be expected to seriously impair

the maintainability of the software^. Since the automated static code analyzer was not able to compute this

^This is believed to be similar in concept to Gibson and Senn's (1989) elimination of "long jumps in code (GO TOs)".
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metric, it was computed manually. Due to the large amount of data collection effort and analysis this

computation required, the metric was not computed for all the modules analyzed, but only for a random

sample of approximately fifty modules per application system. This random sample consisted of

approximately 1500 modules in total, or approximately thirty percent of all modules in the total data set^.

Therefore, the third research hypothesis is:

Hypotfiesis 3: Controlling for otherfactors known to affect software maintenance costs, software

maintenance costs will depend significantly upon the density of branching as measured by GOTOFAR.
with costs rising with increases in the incidence ofbranching.

Table 3 summarizes the software complexity variables used in the model. Figure 3 presents the full

conceptual model.

Procedure

Size

Module Size

Branching

Software

comprehension

Project factors

Software

maintenance

project costs

Figure 2: Software Maintenance Project Cost Model

Project Factors^

The research model has two main components, one consisting of factors related to existing source code

complexity, and one of controllable project factors that are believed to affect maintenance costs. While the

current research focuses on assessing the effect of software complexity upon maintenance costs, it is

^A later sensitivity analysis regression using GOTOSTMT instead of GOTOFAR lends credence to the belief that the

excluded branch commands represent a noise factor. The estimated effect of GOTOSTMT had the same relative magnitude as

that of GOTOFAR, but the standard error of the coefficient was four times as large.

^This section draws heavily on work presented in [2].
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necessary to control for project factors (such as task size and the skill of the developers) known to affect

these costs [16, 24]. The most significant of these is the size of the maintenance task. Excluding task size

or other relevant factors would result in a mis-specification of the model and incorrect inferences about the

impact of software complexity on costs'. To control for this factor and for other project factors known to

affect costs, the research began with a previously-developed economic model of software maintenance.

The initial data collection procedures and model development are described in detail in [18] and [2]. They

will only be summarized here.

Basic maintenance cost model

This model adopts the standard cost model formulation developed in the software engineering literature [3,

7]:

Effon = f (Size. Other Cost Drivers)

Table 4 summarizes the measures of the maintenance function used based upon the model developed in

[2]. The unit of analysis for this model is the project as defined by the research site. Each maintenance

project has its own task requirements and its own budget. Table 5 shows the project factors that are

included in the model for each project. The output of the software maintenance process is the modified

system, and therefore measures of the size of the additions and changes need to be included in the model.

Measures of size in a maintenance context are the size of the ponions of the system that were added or

changed by the maintenance project. While SLOC added or changed is the most widely used measure of

size. Function Points (FPs) added or changed are gaining in acceptance [3] FPs have an additional

advantage of including a measure of task complexity ^^.

'it should be noted that this research's inclusion of factors other than complexity militates against finding any statistical

effect resulting from complexity, in contrast to previous research that examines the effect of complexity without controlling

for other factors. While the model presented does not possess undesirable multicollineanty, no empirical model of this type

has factors that are completely orthogonal. Therefore, inclusion of the other factors parually reduces any effect found for the

complexity factors, making this a conservative test of the complexity hypotheses.

'^^is should not be confused with the application software complexity that is the focus of this research. Task complexity

in Function Points mcludes such factors as whether the project will be held to above average reliability standards, or whether

the operational system will run in a distributed environment

12



The SKILL variable is important, as previous research has found large differences in ability between top

rated developers and poorer ones (7] . All maintainers in the organization at the research site are rated on a

numerical scale, and the measure used in the model is the percentage of hours that were charged to the

project by staff who were highly rated. The SKILL variable is often neglected in research due to the

practical difficulties involved in collecting these data These practical difficulties include the fact that

formal personnel ratings may not always be available, and, even if collected by the organization, may not

be made available to researchers for confidentiality reasons. For the current work strict control over these

data were guaranteed to the research site by the researchers.

A personnel-related variable distinct from ability is LOWEXPER [7, 17]. Even a good developer is at a

disadvantage when faced with an unfamiliar system, as time must be expended in comprehending the

software and becoming famihar witii it.

METHOD, the use of a structured analysis and design methodology, is meant to increase developer

performance. However, previous research has shown that such methods add costs in the short term at this

site [2]. QUALITY may also be important, as it has been suggested that doing a careful job of error-free

programming will cost more than a rushed job, although benefits will be realized in the long term.

Conversely, some researchers believe that careful and systematic programming may not take longer, with

some even arguing that it should be less expensive. The measure used here was one of operational

quahty, the degree to which the system operates smoodily after the maintenance project's changes are

placed into production. The measure was generated from data on abnormal ends and user problem reports

collected on an on-going basis by the research site. Data from the two-month period following

implementation were compared with data from the previous twelve months' trend. Statistically significant

deviations from the previous mean resulted in above or below average operational quality ratings [18].

The RESPONSE variable is included as there has been some evidence that fast-turnaround environments

enhance developer performance, an effect tiiat is likely to be seen in maintenance work as well.

Based upon the software economics literature the effects of these factors are believed to be proportional,

rather than absolute [3, 7]. Thus they are weighted by project size, either FP added or changed or SLOC

13



added or changed, depending on whether they are thought to be associated more strongly with the analysis

/ design phase or with the coding / testing phase of the project [2]. Skill and application experience are

weighted by FPs, as it was believed their impact would be felt most strongly during analysis / design,

where the greatest amount of leverage from capability and experience would be obtained. Use of the

structured analysis / design methodology is also clearly associated with the analysis and design phase,

measured here by FPs. Operational quality was weighted by SLOC, as the types of errors represented by

the operational quality measure used reflect poor coding technique and / or insufficient testing. Response

time was also weighted by SLOC, as it seems more relevant to coding / testing activities than to analysis /

design work since the latter is not dependent upon access to machine cycles. Finally, all complexity

measures are weighted by SLOC since the impact of existing code complexity would be felt most strongly

during coding / testing rather than analysis / design. As noted earher, any collinearity that may exist

between the weighted complexity metrics and other independent variables that have been weighted by

SLOC will cause the model to underestimate the significance of the complexity metric variable. Therefore,

the analysis presented below is a conservative test.

Statistical Model and Results

The previous section described the selection of the variable in the model, including both the existing source

code complexity variables and the project factors. In this section, following a brief description of the

research site, the statistical model and its results are presented, followed by tests of the research

hypotheses.

The Research Site

Data were collected at a major regional bank with a large investment in computer software. The bank's

systems contain over eighteen million Unes of code. Almost all are written in the COBOL programming

language, and are running on large IBM mainframe computers. The software is organized into large

apphcation systems (e.g., Demand Deposits), which have an average size of 226 thousand SLOC^^.

1 iMean = 226 KSLOC, standard deviauon=185 KSLOC, min=54 KSLOC, max = 702 KSLOC.

14



Some of the bank's major application systems were written in the mid-1970's and are generally

acknowledged to be more poorly designed and harder to maintain than recently written software.

Given that COBOL and IBM are the most widely used software and hardware in commercial information

systems, this software environment appears to be a typical commercial data processing environment.

Thus, the research results should apply to other commercial environments, especially those with financial

services transaction processing systems. The projects analyzed were homogeneous in that they all

modified COBOL systems, and therefore the results are not confounded by the effects of multiple

programming languages.

Sixty-five software maintenance projects from seventeen major application systems were analyzed. These

projects were carried out between 1985 and 1987. An average project took about a thousand hours (at an

accounting cost of forty dollars per hour) and added or changed approximately five tiiousand SLOC.

Statistical Model

The statistical model is described by:

HOURS = po + Pl*FP + (32*SLOC + p3*FP*FP+ (34*SLOC*SLOC + p5*FP*SL0C +

p6*FP*SKILL + p7*FP*LOWEXPER + p8*FP*METHOD +

P9*SL0C*QUALITY + Pio*SLOC*RESPONSE +

Pll*SLOC*PROCSIZE + Pi2*SLOC*PROCSIZE2+ pi3*SL0C*M0DLSIZE +

P14*SL0C*M0DLSIZE2 + pi5*SLOC*GOTOFAR + e

This model, without the five complexity terms (the terms associated with parameters Pi i through Pi 5),

has been previously validated at the research site. The relationships between maintenance costs and

procedure size and between maintenance costs and module size are expected to be U-shaped, rather than

monotone, with costs being lowest for some optimal size and higher for larger or smaller sizes. The

squared terms PROCSIZE2 and MODLSIZE2 are included to model this effect.

In this model project costs (measured in developer HOURS) are primarily a function of project size,

measured in function points (FP) and in source lines of code (SLOC). To model the known nonlinearity

of development costs with respect to project size, not only FP and SLOC are included, but also their
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second-order terms. This approach is expected to result in a high degree of multicollinearity among the

size variables (the terms associated with parameters pi through P5) which will make the interpretation of

their coefficients difficult [3]. The multicoUinearity among the size variables, however, is of no current

concern for examining the current research hypotheses relating to the impact of complexity, since the

complexity variables are not collinear with the size variables. Table 6 presents the summary statistics for

this data set. The values given for the complexity metrics are application system averages.

The model was estimated using Ordinary Least Squares regression, since the OLS assumptions were

satisfied in the context of the estimation. The statistical results from two-tailed tests are presented in Table

7 with the complexity metric variables in bold type. The summary statistical results are as follows:

Fi5,49 = 28.63 (p<.0001), r2= 89.76%, Adjusted r2= 86.62%.

Although not all project factor variables are significant for this sample, none of the project factor variables

are ehminated so as to achieve a more parsimonious fit. The interest in the current research is in assessing

the marginal impact of adding the complexity metrics to an earlier version of the model (see [2]). The

Belsley-Kuh-Welsch multicollinearity diagnostics indicated that the complexity metrics are not

significantly confounded with the other regression variables. Thus, their coefficients may be interpreted

with relative confidence. Also, no significant heteroskedasticity was detected. This supports the decision

to model the complexity effects in the regression as proportional ones rather than use the unweighted

metrics alone. If the complexity effects were not proportional to project magnitude, use of the weighted

metrics would cause the model to overestimate the costs of large projects, resulting in residuals negatively

correlated with size.

Tests of the Research Hypotheses

Hypotfiesis 1 was that maintenance costs would be significantly affected by procedure size. This

hypothesis is confumed by an F-test on the joint effect of the two procedure-size terms:

P(Ho: pll=Pl2=0)<0.0001 as F2,49 =14.20.

A U-shaped relationship between procedure size and software maintenance costs was hypothesized, and

the data confuro this relationship, given that the two coefficients are significantly different than zero and

16



that the linear term is negative and the squared term is positive. The minimum of the U-shaped curve may

be computed by dividing the negated coefficient of the linear term by twice that of the quadratic term'^ .

At this site the minimum-cost procedure size was computed to be (0.0106/(2*0.00012)) = 44 executable

statements per procedure (See Table 7). This value is very close to the mean (43) and to the median (40)

for this organization. However, individual applications vary in average procedure size from 13 to 87

executable statements.

As is often the case in this type of estimation there was a high degree of multicollinearity between the linear

term and the quadratic term. This does not lessen the significance of their joint effect, but it does mean that

the estimates of the two individual coefficients (and hence the minimum point) are to be taken with caution.

To test the robustness of this calculation the analysis was repeated using a model that replaced the linear

and quadratic PROCSIZE terms with two linear variables, representing positive and negative deviations

from a conjecnared optimum respectively'^. This model was repeatedly estimated using a different

conjectured optimum value each time. The results consistently showed cost increases resulting from

deviations in either direction from the minimum point. This sensitivity analysis suppons the results shown

in Table 7 suggesting a bi-directional (U-shaped) relationship.

Hypothesis 2, that costs increase for both large or small values of MODLSIZE, was not supported, as the

conditions described above in the discussion for PROCSIZE were not met. Since the coefficients for both

the linear and quadratic MODLSIZE variables are in the same direction, they are likely picking up each

other's effect, and therefore the individual t-test values are low. However, a hypothesis that maintenance

costs are not significantly affected by module size can be rejected:

P(Ho: Pi3=pi4=0)=0.0076 as F2,49 =5.39

which supports the notion that MODLSIZE, as suggested by previous research, is a variable worthy of

managerial attention. A similar insight is obtained from a simplified version of the model that excludes the

'^This can easily be seen by differentiating with respect to x the quadratic equation y = ax + bxr , and setting dy/dx=

which yields x = -aJ2b .

'^This can be seen as measuring the relationship as a "V" rather than a "U."
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MODLSIZE^ term. There the coefficient for the SLOC*MODLSIZE term = -.00012, t = -3.32

(p= .0017). This result can be interpreted in the traditional way, that is, the effect at this site tended to be

linear over the observed range of module sizes (controlling for project factors) with costs decreasing as

module size increased^'*.

It should be noted, however, that while these data do not suppon a U-shaped relationship, they are not

necessarily inconsistent with such a hypothesis. The observed linear relationship is consistent with the

data falling on the downward sloping arm of this U, with the possibility that costs would again begin to

rise had sufficiendy large modules been available. Therefore, if there is a U-shaped relationship, the

turning point appears to be outside the range of data collected at this site. Further empirical work at other

research sites will be required for this alternative interpretation to be verified.

Hypothesis 3 was that maintenance costs would be significantly affected by the density of branch

instructions within the modules. This hypothesis is confirmed.

P(Ho: (3i5=0)=0.0021 as U9 = 3.25.

Software maintenance costs are seen to increase linearly with an increase in the number of long GOTO

statements, as defined earlier.

Implications for Software Maintenance Management

Through the above analysis the effect of software complexity upon software maintenance costs has been

estimated. While it is a firmly established article of conventional wisdom that pxxjr programming style and

practices increase programming costs, little empirical evidence has been available to support this notion.

As a result, efforts and investments meant to improve programming practices have relied largely on faith.

The current research has extended an existing model of software maintenance and used it as a vehicle to

confum the significance of the impact of software complexity upon project costs and to estimate its

magnitude.

l'*With this simplified model it is noteworthy that while concern over modularity typically focuses upon large modules, at

this site the systems thai cost more to maintain tended to have modules that were too smaill.

18



This model provides managers with estimates of the benefits of improved programming practices that can

be used to justify investments designed to improve those practices. Given these data and estimates relating

software complexity and costs, the form of the model allows inference about the productivity of software

maintainers. Productivity is typically defined as the ratio of output to input. Since the model controls for

task size (output) variables on the RHS, any LHS increases in required inputs that are associated with

increases in complexity can be interpreted as decreases in productivity. Therefore, the model results may

be interpreted to mean that increased existing software complexity significantly decreases the productivity

ofsoftware maintainers. This result accords with strongly held intuition. The current research also

provides actual estimates of tiie magnitude and significance of this effect, results tiiat have generally not

been available, particularly for commercial applications involving actual maintenance activities and

controlling for project factors believed to affect productivity.

This model enables managers to estimate the benefits of improving software development and maintenance

practices, and to justify investments designed to improve those practices. In the illustrative computations

below, the impact of a one standard deviation change in the value of each of the complexity variables is

computed for a project of 5416 SLOC with average complexity values. The effects of PROCSIZE upon

HOURS is estimated in the regression model as follows:

0.0{)012*PROCSIZE2*SLOC - 0.0106*PROCSIZE*SLOC

Solving this equation once for the mean value of PROCSIZE (43) and once for a one standard deviation

increase in PROCSIZE (to 61), and then subtracting the first result from tiie second results in a difference

of 183.28 hours, or an increase of 20% of the average project cost of 937 hours. The equivalent

calculation for a decrease of one standard deviation in PROCSIZE (to 25) is 25% i^. The calculations for

MODLSIZE and GOTOFAR are similar, and the results are shown in Table 8.

Another way to use the results of die model for managerial planning is to estimate the aggregate cost

impact to the organization of software complexity. To do tiiis a manager might postulate the following

l^Note that these results are not symmetric as the site mean is not identical to the optimum value.
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question: what would be the estimated cost savings if the more complex systems were improved, not to

some optimal level, but merely to the current average level of all systems?

The measurement of the individual systems and the model can be used to develop such an estimate. The

first step is to note that the current actual projects have an average cost of 937 hours. The second step is to

modify the data set in the following manner: test each of the three complexity variables for each of the sixty

five projects to determine whether it is of higher complexity than average. If yes, replace that value with

the average complexity value. If not, leave it unchanged. Once this transformation of the data is complete,

the model is used to estimate the cost of hypothetical projects based on the transformed data, which gives a

predicted cost of 704 hours for an average project, a twenty-five percent savings over the actual situation.

In order to determine the estimated dollar value to the organization of this reduction in complexity, a

'back-of-the-envelope' calculation of the estimated aggregate possible savings can be done. Two

assumptions are necessary for this calculation to be valid, (1) that the projects studied represent a typical

mix (believed to be the case), and (2) that maintenance projects represent seventy percent of the budget

(also true for this site). The result is that improving the site's more poorly written systems, not to

optimality, but merely to the level of the site's average complexity, could result in an aggregate savings of

more than seventeen percent (.25 * .7) of the applications software budget, which at this site translates into

a savings of several million dollars in the year following such an improvement.

These quantified impacts of complexity can help software maintenance managers make informed decisions

regarding preferred managerial practice. For example, one type of decision that could be aided by such

information is the purchase of CASE tools for code restructuring. The benefits of these tools have

generally had to be taken on faith. The current analysis, however, indicates that the magnitude of the

economic impact of software complexity is sufficienUy great that many organizations may be able to justify

the purchase and implementation of CASE tools for code restrucmring on the basis of these estimated

benefits.

More generally, a common belief in the long-term importance of good programming practice has not been

powerful enough to stand in the way of expedience when "quick-and-dirty" programming has been
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perceived to be needed immediately. An awareness of the magnitude of the cost of existing software

complexity can combat this tendency. Tlie cost of software complexity at this research site is the legacy of

the practices of previous years.

Taken together these ideas show how, through the use of the model developed here, managers can make

decisions today on systems design, systems development, and tool selection and purchase that depend

upon system values that will affect/wrure maintenance. This model can be a valuable addition to the

traditional exclusive emphasis on software development project schedules and budgets because it allows

for the estimation of full life-cycle costs. Given the significant percentages of systems resources devoted

to maintenance, improving managers' ability to forecast these costs will allow them to be properly

weighted in current decision making.

As with any empirical study some limitations of these research results must be observed. The results were

found to exist in a site which, due to its size, software tools, hardware tools, and application type, is

typical of a large number of commercial information systems applications, particularly financial transaction

processing systems. However, additional studies at other sites, especially maximally dissimilar sites with

applications such as real-time command and control applications should be done before claims can be made

about the overall generalizability of these results. Also, values of specific parameters, such as the optimal

number of SLOC / module, are likely to differ with different programming languages^^, particularly non-

third generation languages.

In summary, this research suggests that considerable economic benefits can be expected from adherence to

appropriate programming practices. In particular, aspects of modem programming practice, such as the

maintenance of moderate procedure size and the avoidance of long branching, seem to have great benefits.

The informed use of tools or techniques that encourage such practices should have a positive net benefit.

'^Although ii is interesting to note that the optimal value of statements / module found here for COBOL code, 44, is similar

to the maximum size heuristic used at Toshiba in Japan for Fortran code, 50 (See K. Matsumura, K. Furuya, A. Yamashiro

and T. Obi, Trend toward Reusable Module Component: Design and Coding Technique 50SM, Proceedings of the llih

Annual International Computer Software & Applications Conference (COMPSAC), (October 7-9 1987, Tokyo, Japan), pp.

45-52.
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Concluding Remarks

This study has investigated the links between software complexity and software maintenance costs. On

the basis of an analysis of software maintenance projects in a commercial application environment, it was

confirmed that software maintenance costs are significantly affected by the levels of existing software

complexity. In this study, software maintenance costs were found to increase with increases in the

complexity of a system's implementation, as measured by its average procedure size, average module size,

and its branching complexity.

Historically, most models of software economics have focused on new development. Therefore, they have

not used software complexity metrics. After controlling for project factors believed to affect maintenance

costs, the analysis at this site suggests that high levels of software complexity account for approximately

twenty-five percent of maintenance costs or more than seventeen percent of total life-cycle costs. Given

the extremely large dollar amounts spent on maintenance in commercial applications, the neglect of

software complexity is potentially a serious omission.

The results presented here are based upon a detailed analysis of maintenance costs at a site judged to be

typical of traditional transaction processing environments. These types of environments account for a

considerable percentage of today's software maintenance costs. Based upon this analysis, the aggregate

cost of poor programming practice for industry as a whole are likely to be substantial.
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Table 2: Source Code Definitions

Level



Table 3: Software Complexity Variables

Name



Table 4: Cost Drivers

Activity



Table 5: Maintenance Model Project Factor Variables [2]

Name
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Table 8: Estimated cost impacts

Name
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