

I
<••'

.
j
^lv^^:lS^TVJ?L^^.

ALFRED
WORKING PAPER

SLOAN SCHOOL OF MANAGEMENT

SOLUTION OF THREE RELATED COMBINATORIAL
PROBLEMS BY NETWORK-FLOW AND
"BRANCH AND BOUND" liETaODS

Christopher R. Sprague

March 1970

451-70

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

SOLUTION OF THREE RELATED COMBINATORIAL
PROBLEMS BY NET\>IORK-FLOW AND
"BRANCH AND BOUND" METHODS

Christopher R. Sprague

March 1970

451-70

MASS. INS'- 1^'-''

I

MAR 25 1970

1

DtWtY LIBRARY

I am indebted to J.D.C. Little, D.N. Ness and G.A. Moulton for their aid.

SOLUTION OF THREE RELATED COMBINATORIAL
PROBLEMS BY NET\>JORK-FLOW AND
"BRANCH AND BOUND" METHODS

By

Christopher R. Sprague

ABSTRACT

We describe a highly efficient computational procedure for the

Assignment Problem, based on Ford-Fulkerson Network-Flow methods. The

Travelling Salesman Problem can be viewed as an Assignment Problem with

side constraints, and "Branch and Bound" methods due to Eastman and

Little can be used to extend the Assignment Problem procedure for the

Travelling Salesman Problem. A more constrained problem, here called

the "Travelling Gourmet Problem" can be solved by straightforward

extensions to the Travelling Salesman procedure.

We present several alternative algorithms for the Travelling Sales-

man Problem and one for the Travelling Gourmet Problem. Computational

results are Included.

5353.'51

Preface

This is the first of two papers about methods for solving a par-

ticular class of combinatorial problems: this one examines the Assignment

Problem and Eastman's subtour-elimination method (modified and extended)

for the Travelling-Salesman Problem and a close relative, the Travelling

Gourmet Problem; the second paper discusses the Capacitated Transportation

Problem and its relationship to the special (but common) case of symmetric

Travelling Salesman and Travelling Gourmet Problems. Both papers stress

the synergy between Branch and Bound techniques for evoking subproblems,

and Network-Flow methods for solving them.

This first paper, however, has another purpose as well. The algorithm

presented for the Assignment Problem, while very close to the Standard

Ford-Fulkerson algorithm, depends heavily on a set of techniques which

D. C. Carroll has called "Semi-List Processing." The term is not well-

defined, but refers to the use of lists of pointers, switches, indicators,

etc. to introduce an appropriate amount of flexibility into data-handling,

allowing faster computation. In this specific case one very significant

in5)rovement, "reorganization," is made possible only by t he fact that lists

of in^jortant entities are maintained at each stage of the computation.

Many other operations also depend on lists. These techniques have been

conventional wisdom among programmers for years and are not themselves

particularly exciting. On the other hand, it is safe to say that the

standard mathematical notation used to express algorithms in most journals

tends to obscure the best choices of computational methods.

I often feel that the more elegantly an algorithm is stated, the more

likely it is that the statement, straightforwardly coded, will produce a

con5)utationally inefficient procedure. This is not to say that the ori-

ginal designer of algorithms should present them as machine-level (or even

ALGOL) code. That would be just as tragic in another way. It does mean

that many insights into an algorithm can be obtained from attenuating to

produce a really efficient in^jlementation; and if the original designer

chooses not to seek high efficiency (and sometimes even if he does)^ then

there is a distinct need for others to try.

*See, for example, D. N. Ness, "On the Computational Efficiency of

Conventional Notations," Sloan School Working Paper -70.

I. INTRODUCTION

The Problems

This paper discusses the use of the Network-Flow methods of Ford

1

and Fulkerson-^ in the solution of three related combinatorial problems:

2 3The Assignment Problem^ The Travelling Salesman Problem, and the Trav-

elling Gourmet Problem. Each of these problems begins with an m x m

cost matrix C = > c^^ (and asks for an optimal (least-cost) permutation

of the integers 1 . . . m. where each permutation is evaluated as follows:

A permutation of the integers 1 . . . m consists of an order-

ing of those integers. In position 1 of this ordering is an

integer ii, 1 "^
Ji £- ^' in position 2 is a (different) integer

J2' ^ ^ J2 - ^'' ^''^^} ^^ general, position i contains an integer

m
Ji:. 1 i: Ji f m. The cost of this permutation is Z = <^ '^ii-'

i=l ^
Another way of expressing the same requirement: Z is the sum

of exactly ra elements of C =
-I' Cj^i , where exactly one element is

chosen from each row of C and exactly one element is chosen from

each colvimn of C.

The Assignment Problem allows all possible permutations. There are

thus m.' possible solutions, of which it is required to find one with leaat

cost (there may be ties).

The Travelling Salesman Problem has an additional constraint often

called the tour constraint ; consider each integer 1 . . . m as the number

of a city, and the occurrence of j ^ in position i of the permutation as

designating a trip from city i to city j^. Then the pairs of integers

- J.
-

(i, j) must form a connected tour visiting every city once and only once.

For example, in a 5 x 5 problem, the permutation p = (2, 5, A, 1,3) repre-

sents the trips (1, 2) (2,5) (3,4) (4 ,1) (5 ,3) . Reorganizing this in order of

visit we have (1,2) (2 ,5) (5,3) (3,4) (A ,1) which is a connected tour visit-

ing each city once and only once. On the other hand, the permutation

p^ = (2,5,4,3,1) represents the trips (1 ,2) (2,5) (3 ,4) (4 ,3) (5 ,1) which

becomes two disconnected subtours: (1 ,2) (2 ,5) (5 ,1) and (3,4) (4,3). This

latter permutation (p„) i^ not a feasible solution to the Travelling

Salesman Problem although it is^ a feasible solution to the Assignment

Problem. There are thus only (m-1) I possible solutions to a Travelling

Salesman Problem.

The Travelling Gourmet Problem has a class of constraints in addition

to those of the Travelling Salesman Problem X'jhich we shall call cluster

constraints. For simplicity we here assume only one such constraint. We

designate a set of cities K, called a cluster, and an associated number

S, . We require that no more than S of the cities in K be visited sequen-

tially without an intervening visit to some city not in K. For example,

let K = (2,3,5) and S, = 2. The permutation p, = (2,5,4,1,3) which

reorganizes to (1 ,2) (2,5) (5,3) (3,4) (4,1) violates the cluster constraint

since cities (2,5,3) are all visited in order and our S was 2. The permu-

tation p = (2,4,5,3,1) reorganizes to (1,2) (2,4) (4 ,3) (3 ,5) (5 ,1) and only

2 of the cities (2,3,5) are visited in order, thus satisfying the cluster

constraint. While we have assumed only one such constraint, generalization

to two or more is straightforward. There are less than (m-1) I possible

- 2 -

solutions to a Travelling Gourmet Problem and, indeed, it is very easy

to define a set of cluster constraints which reduce the number of possible

solutions to zero. For example, try a 5 x 5 problem with K = (2,3,4,5),

S = 2

Applications

Applications for all three problems range from the fanciful to the

practical. While the Assignment Problem has been suggested for matching

brides to grooms, it is used to match jobs to machines. The Travelling

Salesman Problem may have actually been used for scheduling salesmen,

but more often for sequencing jobs through machines. The Travelling

Gourmet Problem was conceived to allow a gourmet to visit most economl-

g
cally all of the three-star restaurants in France without eating the

same regional specialties more than twice in succession. It has obvious

application to the scheduling of sports teams, dispatching of trucks,

performance of tasks in contaminated environments, etc.

- 3

II. SOLUTION OF THE ASSIGNMENT PROBLEM BY FORD-FULKERSON NETWORK-FLOW
METHODS

Theory

The following is a discussion of a version of Ford and Fulkerson's

Primal-Dual Method for the Transportation Problem^ •'^ especially adapted

for the Assignment Problem and particularly well-arranged for automatic

computer solution. We begin by noting that the Assignment Problem may

be restated as follows:

Find an m x m matrix X "^
/•

'<^ii')^

m m
x^. = 0^1 all i^j such that Z = ^ •'- c^^^x^^

1=1 j=l

is minimized^ subject to:

'> x^- = i^ all i

i=l

m< X.. = 1, all j,

1=1

By duality^ this is equivalent (except for the integer constraint on

the X. .

's) to:

Find vectors U =) uA , V =) Vi ' such that

m m
W = '^^ u^ + J2: v^ is maximized,

i=l j=l

subject to: Uj^ + Vi ^ '^il^ ^^^ ^! J-

By complementary slackness, an optimal solution to both the primal

and dual problems will occur only when Xj^4 = everywhere that u^^ + Vi <! c^^

Our procedure is then to form a feasible dual solution (an easy thing to do

_ 4 _

— see below) and see if a feasible solution to the primal can be found

allowing only those x^j's where Uj|^ + v^ = c^^^l to differ from zero. This

so-called "restricted primal" takes the siii^jle form of maximizing the flow

in a network defined by those Cj^j's equal to u^ + vj . If the restricted

primal is feasible, we have an optimal solution. If not, the results of

the attempt at primal feasibility are used to derive a new (higher cost)

dual and the process is repeated. One pleasant consequence of this method

is that the resulting x^j's inevitably are or 1; another is that the

m m
value of W = ^^ u^^ + ^ v^ rises monotonically throughout solution, of

i=l i=l

which more later.

In reaching a solution, we shall make use of eight m-vectors, as fol-

lows: T = \^±i and F = ffiV take the place of x = S x^j\ . Since no

more than one x^^ will differ from zero in each row and in each column,

the entire matrix X can be represented thus:

If no Xj^4 in row i differs from zero, then tj^ = 0. But

if some x^^j in row i equals 1, then t^ = j . Similarly, if no

x^^ in column j differs from zero, then f- =0. But if some

Xj^i in column j equals 1, then fj = i.

U =
t "i (iind V = i V::

I
are the dual solution spoken of above; T,F,U,V

and W represent the entire primal and dual solutions.

In order to understand the use of the other four m-vectors, a conmon

vocabulary must be established. A row i will be said to be labeled from

the source iff ti = 0, i.e., no x-j^j differs from zero. A colvmm j will

be said to be labelable from row _i iff row i is labeled and c^^j = u^ + v^

.

- 5 -

While a column may be labelable from many different rows^ it can at any

time be labeled from no more than one. A row i is said to be labeled from

column i iff column j is labeled and x^^ = 1, i.e.^ £z = i.

R =) r
j^ I

contains the row labels: if row i is unlabeled, r^r = 0;

if row i is labeled from the source, r^ = -1; and if row i is labeled from

column j, r-j^ = j. P =
! Pj (contains the column labels: if column

j is unlabeled, p- = 0; and if column j is labeled from row i, p^ = i.

At any point in the computation, some rows are labeled and others are not.

The first n^ elements of S = ^ ^q (^^^ *^^^ indices of labeled rows. Simi-

larly, some columns are labeled and the others are not. The first n^ ele-

ments of D =
[^

djj ^ are the indices of labeled columns, while the last

m - n^ elements of D are the indices of unlabeled columns.

m m
It was noted previously that the value of W = ^ "i + ^T v^ rises

i=l i=l
-^

monotonically throughout the computation. We shall find it useful later

to be able to suspend the conqjutation if W becomes equal to or greater than

some arbitrary value B. The algorithm described below includes this capa-

bility.

ForminR an Initial Solution

We begin by finding an initial solution which consists of a con5>letemm
feasible dual (W = -^ "i "^ £1 ^i ^"'^ '^ii

'" "i
"*"

'^i^
^'^'^ ^'^^ ^^'^ ^

i=l j=l

partial primal (at least one x^^ =1):

min
1. For every i, set u^ =

j
(c^j)

set t^ =

„ _, . min , »

2. For every j, set v^ =
. (cj^j-ui)

set f j =

- 6

m m
3. Set W = ^ Ui + £^ Vj

i=l j=l

4. For every i, j where c^j = Ujj^ + Vj^ and t^ = and f^ = 0^

set t^ = j and set f:: = i

5. For every h, set d, = h.

Set Initial Labels

We now set all columns unlabeled^ and set all rows without assignments

(ti = 0) labeled from the source. Rows with assignments are set un-

labeled, S will contain a list of labeled rows, and ng will be its length.

D contains a list of columns and, since all are unlabeled, n-, will be

zero.

6. Set n^ =

Set ng =

7. For every i, set r^ =

8. For every i where t^ = 0,

Set r^ = -1

Set ng = ng + 1

Set Sjj = i
s

9. For every j, set p. =

10. Set q = 0.

- 7

Feasibility Check

We now check to see whether all rows have assignments. If so, we

are finished, and we return with the x. .'s in^jlicitly contained in T and

F. W contains the objective function value,

11. If n = 0, return
s '

Bogey Check

We now check to see whether W < B. If not, we return with an in-

con5)lete solution.

12. If W ^ B, return.

Primal Continuation Check

We now increment q (the index of s, set in step 10 or 37) and test

whether there remains a labeled row to scan. If so, we continue, but if

not, a revision of the dual is required.

13. Set q = q + 1

If q > ng, go to step 30.

Attempt to Label Columns

Here we scan a labeled row i = s to see whether an unlabeled col-

umn j exists for which c^^ = Uj^ + v^

.

If so, this column can be labeled.

If not, we return to step 13 for another labeled row.

14. Set i = s
q

Set h = n^

15. Set h = h + 1

- 8 -

16, If h > m, go to step 13

Set j = dj^

If c^j / Uj^ + Vj^ go to step 15.

Label a Coltmin

Here we label the column found in step 16. If this column already

has an assignment (fj ^ 0) we can label a new row (fj) and continue

searching row i for labelable columns. If not^ we can make a new assign-

ment. Step 17 labels column j, reorders d-^, and increments n^ to preserve

the convention that the first n^ elements of D call out labeled columns,

while the last m - xy elements refer to unlabeled columns. Note that we

only search the latter part of D in this procedure.

17. Set n J = n^ + 1

•d

Set d^ = d„

Set d„ = j
"d

Set pj = i

18. If f j = 0, go to step 20.

Set a New Row Label

Here we label a new row, specifically the row in which the just-labeled

column j has an assignment. This is perhaps a good point at which to men-

tion the physical significance of labels. A row labeled from the source

m
is one which has no assignment in it (i.e., tj^ = 0, or <^ x^^ = 0)

i=l

A column j labeled from row i indicates one of two things: if column j

has no assignment, one could be placed in row i; if column j has an assign-

ment y " f _, it could be moved from row y to row i. A row y labeled

- 9 -

from column j already has an assignment in column j, but another could be

made by moving the assignment in column j to row p^.

For example, suppose row 1 is labeled from the source and column 5 is

labeled from row 1. Suppose also that f^ = 3, which means that row 3 is

labeled from column 5. Now suppose that column 2 is labeled from row 3,

but f2 = 0, as in the following table:

Row or Column

Make a New Assignment

Here we follow the procedure outlined above to make a new assignment,

following the chain of labels back to the source. As we go back to the

source, we set each row label in the chain to zero, to indicate that it

is no longer valid.

20. Set i =
pj

Set ti =
j

Set £j = i

Set j = r^

Set v^ =

21. If j ^ -I, go to step 20.

Unwind Labels

Here we contract the lists of labels to account for those no longer

valid because of a new assignment. The straightforward way of coping with

this problem is to effectively discard all labels by returning to step 6,

but considerable computation may have gone into producing those labels

some of which would simply reappear, so some effort is called for. Basic-

ally, we have two loops. The first, steps 22-26, removes the labels from

columns which have no intact chain back to the source. The second, steps

27-29A, removes the labels from rows which are labeled from unlabeled col-

umns, and it also removes unlabeled rows from S. At the end of both, we

return to step 10.

22. Set h =

23. Set h = h + 1

- 11 -

24. If h > n^, go to step 27

Set J = djj

25. Set i = Pj

If i = 0, go to setp 26

Set j = ri

If J = -1. go to step 23

If J ^ 0, go to step 25

26. Set j = di^

Set dh - d„

Set d„^ = j

Set p.

Set n^j = i\j - 1

Go to step 24

27. Set a =

Set q =

28. Set q = q + 1

If q 7 n , go to step 29A

Set i = s^

If r^ = 0, go to step 28

If Tj^ = -1 go to step 29

Set j = r^

If Pj i" 0, go to step 29

Set r^ =

12 -

29. Set a = a + 1

Set s^ = i

Go to step 28

29A. Set iig = a

Go to step 10.

Revise Dual

Now we revise the dual solution, based on the primal solution. We

came here from step 13 and at this point no more columns can be labeled

from labeled rows. In order to make at least one more Cj^i = u^^ + v^ in

some labeled row, we must add some number to the u^^'s of all labeled rows.

But. to preserve the current assignments and labels, we must subtract the

same number from the v, 's of all labeled columns. Our first task is to
J

find that number, which is:

min (c£j - u^ - Vj)

(i labeled, j unlabeled)

We will also make a list of all rows in which this minimum value occurs.

This will save us considerable computation when we restart the primal. In

order to do this, we need a working m-vector E = > e_ ^ and a length n^.

30. Set q =

Set a = "^^

31. Set q = q + 1

If q > r^
,

go to step 34

Set h = nd

^"^ ^ = ^q - 13 -

32. Set h = h + 1

If h > m^ go to step 31

Set j
= d^

If a < c^j - u^ - v^, go to step 32

If a = c,ij "i " "^jj 8° ^° step 33

Set iig =

Set a = c^j - u^ - Vi

33. Set Rg = rig + 1

Set e^^ = q

Go to step 32.

Revise W

SOj a is the number to be added to all u^'s (i labeled) and subtracted

from all v^'s (j labeled).

34. For every q^, 1 ^ q •- ng

Set i = Sq

Set u^ = u^ + a

35. For every h. 1 f h '^ nj

Set j = dh

Set vj = Vi - a

36. Set W = W + (ng - n^) " a

Reorganize S

We have revised the dual solution, and can begin to label again.

However, only those rows whose q-indices are called out in E contained

- 14 -

'^ii
" u^ - Vj = a, and only those rows will now contain c^i - u-j^ - v^ = 0.

Therefore we reorganize S, placing these eligible rows at the end, setting

q so that a return to step 12 will restart the primal in such a way that

only these eligible rows will be scanned.

37, Set q = ng

For all g, 1 -^ g ^ n^

Set a = Sq

Set s„ = Sp
q Kg

Set s„ = a

Set q = q - 1

38. Go to step 12.

This coii5)letes our description of a network-flow procedure for the

assignment problem. Readers familiar with the standard versions of similar

algorithms (such as for the transportation problem) will note some differ-

ences .

First, the major loops of the procedure are concerned with setting

labels. Consequently, much care is taken to see that no label is ever

discarded unless it must be discarded.

Second, search is reduced to a minimum by the use of what Carroll has

termed "semi-list" processing. For example, X is compressed into T and

F, The procedure maintains lists of labeled rows and columns so that the

labels themselves are rarely tested. The keeping of lists also makes possi-

ble the reorganization performed in steps 37-38, which again results in a

lessening of search time.

- 15 -

Third, as long as the current state of U, V^ T^ F and W is dual-

feasible, the procedure can be safely (and profitably) entered at step 6.

We now describe a procedure for changing any given c^= while maintain-

ing dual feasibility.

Changing cij

We enter with i^ j and a, the new value of c^j

.

41. If a = Cij, return

If a <1 c . . go to step 44

42. Set c. . = a

If t^ ^ j, return

Set y = j

43. Set t^ =

Set f =

Return

44. Set c^j = a

If c^. -
Uji^

- Vj ^- return

45. Set W = W + c^j - u^ - Vj

Set Ui = Cij - Vj

If t^ =0, return

46. Set y = tj^

Go to step 43,

- 16

Computatioml Experience

The following times, in seconds, were observed for 20 runs of the

Assignment Problem procedure described above. Runs were made on an IBM

1130 located at the Sloan School of Management, M. I.T. Source language was

FORTRAN.

- 17 -

Table I

PROBLEM TYPE
Method

SIZE

Key:

Type = RECT — Costs were random 3-digit rectangularly distributed

integers 0-999. All diagonals were set to ^
.

Type = EUCL — Costs were linear distances rounded to integers^

between points located on a cartesian plane. Points were located randomly

be choosing integer X and Y coordinates rectangularly distributed in the

range 0-999. All diagonals were set to <>»
,

Method = — As described, but no unwinding (steps 22-29A) and

no reorganization (steps 37-38).

Method = 1 — As described, but no unwinding

Method = 2 -- As described, but no reorganization

Method = 3 — As described.

We can see that reorganization appears to reduce the required time by

257o or more. Unwinding, on the other hand, seems to be of value primarily

for larger problems, and is of marginal help even then. But we expect

unwinding to help more for larger problems, because rebuilding labels must

2be an m process, while unwinding itself, as can be seen from the descrip-

9
tion. should go as less than m'^.

To test the ability of the Assignment Problem procedure to re-solve

after changes in C, the following was tried:

After a problem was solved, one row was chosen at random and the c^::

corresponding to the assignment in the chosen row was changed to ^''^
.

- 19 -

The problem was then solved again. Then another different row was chosen,

another '^ put into it, and so on until m Cj^i's — one in each row —

had been set to O' and the problem had been solved a total of ra + 1

times.

The process was then reversed and each Cj^j was restored to the ori-

ginal value, again in random order, and again with a new solution after

each change, for a total of 2m + 1 solutions. Table II summarizes the

results. The problems are a subset of those in Table I. T-j^ is the time

for the first solution and corresponds exactly to solution time by method

3 in Table I. T2 is the mean time for each re-solution after an upward

revision in a c^^. T-j is the mean time for each re-solution after a

downward revision.

20

III. SOLUTION OF THE TRAVELLING SALESMAN PROBLEM
BY VARIANTS OF EASTMAN'S SUBTOUR-ELIMINATION METHOD

Though the Travelling Salesman Problem has fewer solutions than does

the equivalent Assignment Problem, it has proven much harder to solve. Of

exact methods for its solution, the "Branch and Bound"^-'^ methods of Little

et. al., Eastman^-* and Shapiro-"-^ seem most useful for problems of non-

trivial size. We begin by describing the elements of Branch and Bound

methods for the Travelling Salesman Problem.

Branch and Bound

We begin with the original problem which we mark "open." We also

establish a best solution value or "bogey" equal to '>^
.

1. Choice: Choose some open problem (initially, there is only one).

Mark it "closed."

2. Attempt to Solve: Take the problem chosen in step 1 and attempt

to solve it "by inspection." If it is possible to do so, go to

step 5, If not, go to step 3.

3. Branching: By some method, divide the problem chosen (now called

the parent problem) into two or more new problems, each of which

is "easier" than the parent problem, but which, among them all,

contain every solution feasible in the parent. Mark all these

new problems "open."

4. Bounding: Examine each of the new open problems produced in

step 3 and assign to each a lower bound on the value of the best

solution in cash. If any such lower bound equals or exceeds

"bogey," discard the new problem immediately. When finished, go

- 22 -

to step 7.

5. Bogey test: If the value of the solution found in 2 is strictly

less than "bogey", go to Step 6. Otherwise go to Step 7.

6. Record New Bogey: Set "bogey" to the value of the solution

found in 2. Record the solution itself as "tour." Now look at

all problems remaining and discard any problem whose lower bound

as found in step 4 is greater than or equal to "bogey."

7. Test for con^jletion: If there remain any open problems^ return

to step 1. Otherwise terminate. "Tour" is the optimum solution,

and 'Tjogey" is its value.

Obviously, Branch and Bound methods can be used for problems other

than the Travelling Salesman Problem. For the present, however, we confine

our attention to the Travelling Salesman Problem, and we now proceed to

specialize the description above to Eastman's Method, which depends on

the observation that the value of an Assignment Problem solution under a

matrix C is a lower bound on the value of a Travelling Salesman Problem

solution under the same matrix.

Eastman's Method

Begin with the original m x m cost matrix, with all diagonal elements

set to ''^
. Mark it "open." Set its lower bound to 0. Set 'Taogey" to

,^-Ci

El. Choice: Choose the open problem with lowest lower bound.

Mark it "closed."

E2. Attempt to solve: Submit the chosen problem to the Assignment

Problem Procedure described in Section II with B = "bogey."

Set the lower bound of this problem to W. If W B, there

23 -

can be no Travelling Salesman Problem solution value <' "bogey"

so we go to step E7. If W -^ B, we examine the Assignment

Problem solution. If the x^^j's form a tour, we go to step E6.

E3. Branching: If the x^^'s do not form a tour, they form two or

more subtours (connected sequences of cities shorter than m)

.

Choose the shortest subtour. It contains, say, q(2 q m/2)

non-zero x .

. 's. Create q new open problems each of which differs

from the parent problem by having a (different) c^^ correspond-

ing to a non-zero x^s on the subtour set to "*'
. If c^^ = -^

,

x^:. is said to be "barred." Note that in none of these new

problems can the same subtour recur (one of the c^^'s is now ^^'
)

but any tour (which must contain no more than q - 1 of these

Xj^s's) can occur in at least one of the new problems.

E4. Bounding: Set the lower bound of each of the new problems to

the lower bound of the parent problem. Go to step E7.

E5. Bogey test: This step has been absorbed into step 2.

E6. ilecord new bogey: Set "bogey" = W. Set "tour" = T. Discard

all problems whose lower bound equals or exceeds bogey.

E7. Test for con^iletion: If there are still one or more open

problems, go to step El. Otherwise, terminate.

This procedure requires relatively little space in a computer. One

obviously needs to store the matrix C. But for each problem to be stored,

one needs only space to store the lower bound, the position of the parent

problems, the position of the x^j^- to be barred, and the original value

of the c-. replaced by <^'^
.

- 24 -

Changing C from problem x, say^ to problem y, requires finding their

lowest level common ancestor^ call it z. We can then move up from problem

X to z, parent by parent, restoring c^j's on the way. Then we move up

from y to z, parent by parent, barring x^^'s.

Use of the procedure for changing c 's described in Section II, we
ij

maintain dual feasibility, so that at no time after the first is a com-

plete solution of the Assignment Problem required.

Shapiro found a method essentially identical to Eastman's very effect-

ive for Travelling Salesman Problems of the type here called RECT. Never-

theless, there are two relatively sin5)le extensions to Eastman's Method

which are worth considering. We proceed to describe them.

Example of a Solution by Eastman's Method

x=

Step El — We choose the only open problem ("ALL TOURS") and mark it

closed.

Step E2 -- We use the Assignment Problem procedure and obtain:

W = 7, T = (4,5.2,1,3), F = (4.3,5,1,2)

U = (2,2,3,0,3), V = (0,-1,0,-2,0)

This corresponds to two subtours, (1,4)(4,1) and (2,5) (5,3) (3,2) . We

go to:

Step E3 — We create 2 new open problems, in the first, called A, we

bar X]^/^; in the second, called B, we bar xa]^.

Step E4 — Set the lower bounds on both A and B to W which is 7. Our

tree is now
,

/

f All Tours I , ,

i
j

closed

_ / _
4,iy \i,4

Bogey = (?o

/

This is a tour (1 ,3)(3, 2) (2,5) (;5,4) (4, 1)

We go to:

Step E6 — Set bogey to 9, set tour to (3,5,2,1,4).

Step E7 -- There is one open problem, B.

Step El — Choose problem B and mark it closed. This requires two steps.

First set the value of c-^^ to (its original value). Then set the value

of c^j^ to ^ . This yields:

W = 5, T = (0,5,2,0,4), F = (0,3,0,5,2)

U = (0,2,2,0,1), V = (0,0,0,0,0)

Step E2 — Start Assignment Problem procedure at step 6. It returns early

with W = bogey = 9. -

Step E7 — There are no more open problems. Tour is (3,5,2,1,4). The

cost is 9.

Eliminating Redundant Problems

Unfortunately, the branching procedure in Step E3 produces a set of

new problems which are not mutually exclusive. In particular, any tour

containing no more than q - 2 of the non-zero x. .'s making up the

subtour, is legal in all the new problems. We will describe Little's

solution to this problem later; here we describe a method which fits

within Eastman's framework.

Observe that if there be two open problems y and z such that the

barred x-.'s in y are a subset of the barred x^:j's in z, then any tour

- 27 -

possible in z is also possible in y; there is no need for storing or con-

sidering z. In practice, it is difficult to find all such subset rela-

tionships, but the following procedure finds a great many of them:

As each new problem is created^ we ask if any open "uncle" of the

problem has the same barred x^^^. If so, the new problem differs from its

uncle only by having one more barred y^^i, namely, that of its immediate

parent. It is therefore redundant. If not, we try great-uncles, great-

great-uncles, and so on. The diagram below shows the relationships in-

volved. Circles represent problems, while the numbers in them represent

barred x^^:: 's.

Redundant problem

Barring Multiple ^-cs's

Eastman makes the following elegant argument:

Consider a subtour of length q where q > 2, In order

- 28

for the tour constraint to be met, at least one city on that

subtour must eventually be assigned to some city not on that

subtour. Therefore, when creating a new problem corresponding

to an Xij on the subtour, it is permissible to bar also other

xij's corresponding to assignments of city i to other cities on

the subtour. For example, consider the subtour (1,2)(2,3) (3, 5) (5, 1)

.

The first new problem would normally bar x-[^2- ^^ ^^ also per-

missible to bar x-]^3 and x-j^^ in this new problem.

Barring a variable number of x..'s poses some problem in computation.

But barring two x. . 's is easy. In the above example, barring x-|^2 ^"^"^ ^15

assures that not only the present subtour, but also the reverse subtour,

is eliminated from the new problem. This is of some help in problems of

type ELECT, but it is vital in problems of type EUCL.

Computational Results with Eastman's Method

A series of computer runs were made on an IBM 1620 Model II with a

con^Juter program embodying Eastman's method with elimination of redundant

problems. Source language was FORTRAN except for the Assignment Problem

subroutine and the redundant problem finder, both of which were hand-coded

in (assembly level) SPS. All of the problems were of type RECT. The

Assignment Problem routine had neither unwinding or reorganization. The

program had room to store 400 problems, both open and closed. In Table

III below, the symbol OF indicates a problem which overflowed core and

could not be solved.

- 29

Table III

Run No.

Time in Seconds for Travelling Salesman Problem
of size

20x20 40x40 60x60 80x80

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
17

18

Runs
Solved
Mean Time
Median Time
Standard Deviation

110
30

10
35
15

380
35
10

115
10

10
10
75

33

108

135

Alternative Bounding Scheme — Little Bounds

In step E4, we set the lower bound of each new problem to the lower

bound (Assignment Problem solution value) of its parent. It is possible

to develop a more powerful bound by a scheme due to Little. If, say, x
kn

is barred, it may be possible to find new, higher values of u and v :

Thus, after c, is set to "^
:

kn

/ /

u, = minCc. .
- v.) v = min(c. - u.)

k . kj J n . in 1
J 1

These new values u, and v maintain dual feasibility, and add (u, + v
k n •' k n

u, - u) to the value of W. This new value, W + u, 4- v - u, - v , is a
k n k u k u

lower bound on the value of all solutions contained in the new problem.

And, of course, if this bound equals or exceeds "bogey", the new problem

need not be stored at all.

Alternative Branching Scheme — Link Inclusions

Eastman's method involves the elimination of sub tours by excluding

links (barring x..'s). It is possible to include links instead. (Link

inclusion is central to Little's method; Eastman also suggested it).

Here two new problems are created rom the parent. One of these new prob-

lems differs from its parent by barring an x..; the other is created by

forcing that same x.. to be non-zero ("including" a link). The latter

problem must also bar another link—specifically, that x which, should

it appear in a later Assignment Problem solution, would form a subtour

including the x just included.

- 31 -

When branching by barring/inclusion, new problems created are mutually

exclusive. Therefore, there are no redundant problems to be eliminated.

Also, when solving the Assignment Problem or taking a Little bound, columns

and rows corresponding to included links must be ignored. (This corresponds

to Little's scheme of "crossing out" rows and columns.)

Choosing a Link for Inclusion

When branching by barring/inclusion, there is a question as to which

link to bar and include. Probably one should always choose an x.. which

is non-zero after the Assignment Problem Solution; any other choice will

simply lead to the same solution appearing again in the new problem where

X.. is barred. One scheme, requiring very little computation, is to fol-

low the chain of inclusions starting at, say City 1, choosing the x which

would extend that chain one more city. We shall call this scheme "commit

to chain".

Another scheme is to take Little bounds corresponding to barring each

non-zero x.. not already included. We then choose the x.. producing the

largest Little bound. We shall call this scheme "commit to best".

Alternative Choice Scheme — Move to the Right

In Step El, we choose the open problem with lowest lower bound (called

"broad-front") . There are computational advantages to choosing an open

problem very closely related to the one just solved, since the Assignment

Problem procedure can be entered with as few changes as possible from the

previous solution. The easy way to do this is to choose the problem most

recently opened. We call this scheme "move to the right".

- 3:

Normally, when branching by link inclusion, one chooses the new prob-

lem with the included link, since it is "smaller" in the sense that more

rows and columns can be ignored. However, in either type of branching, one

can draw a Little bound for each new problem, then choose the "best" new

problem among those just opened. We call this scheme "move to best of

parent". It is obviously applicable only in conjunction with "move to the

right", and implies taking Little Bounds.

There are 30 meaningful combinations of all these alternatives, sum-

marized below:

Choice and Bounding: 5 choices marked by *

0. Choose by Broad-Front

*0.0 Use Parent Bound (BFPB)

*0.1 Take Little Bound (BFLB)

1. Move to the Right

*1.0 Use Parent Bound (MRPB)

*1.1 Take Little Bound iMKLB)

*1.2 Move to Best of Parent (MRSB)

Branching, Barring, and Redundancy: 6 choices marked by *

0. Branch by Barring Only

Bar One Link

Store All New Problems (BlNR)

Eliminate Redundant Problems (BlER)

Bar Two Links if Possible

Store All New Problems

0.0

*0.0.0

*0.0.1

0.1

*0.1.G

*0.1.1

CB2NR)

Eliminate Redundant Problems (B2ER)

33

1. Branch by Inclusion

*1.0 Commit to Chain (CMCH)

*1.1 Commit to Best (CMPR)

Testing Alternative Schemes

In an attempt to find out which, if any, of these alternative branch-

ing, bounding, and choice schemes could favorably affect performance, six

problems were chosen to be run all 30 ways. Timings for these runs, made

on an IBM 1130 at the Sloan School, are displayed in Table IV. These tim-

ings are not, unfortunately, comparable to those shown in Tables I and II,

because the Assignment Problem subroutine used here is a hand-coded assem-

bly-level version which is approximately three or four times as fast as

the program timed in Tables I and II. Similarly, these timings are not

comparable to those of Table III because of differences between machines.

These results indicate a strong effect of problem type, problem size,

and problem itself. Beyond this, "commit to chain" is so bad as to be

dismissed out of hand.

Taking Little Bounds (BFLB, MRLB) almost always decreased solution

time as compared to using the parent bound tBFPB, MRPB) . "Move to best of

parent" (MRSB) was responsible for a dramatic decrease for one problem

(No. 4), but otherwise neither helped nor hurt very much. In general,

"Move to the right" was faster than "broad-front", but for one problem

(again No. 4), "broad-front" was superior to all but "move to best of

parent".

Eliminating redundant problems (BIER, B2ER) was no help, except in the

EUCL problems, probably because the detection of redundant problems is itself

34

time-consuming. "Bar two if possible" (B2NR, B2ER) was of great help in

the EUCL problems, because of the elimination of reverse subtours. But

the clear cliampion branching scheme was "commit to best", (CMPR) . It should

be noted that this scheme differs from Little's only in that it chooses from

among those x..'s set non-zero by the Assignment Problem procedure, rather

than from among all ..'s where c.. = u. + v..
ij ij 1 J

In summary, the best procedure (for these six problems) was a toss-up

between CMPR/MRLB and CMPR/MRSB, with B2ER a good alternative to CMPR for

the EUCL problems.

More Extensive Tests of CMPR/MRSB for RECT Problems

Forty RECT problems (ten each 20, 40, 60 and 80 cities) were timed

using "commit to best" and "move to best of parent". These timings are

displayed in Table V. Runs were made under conditions identical with

those for Table IV. (Timings for 60 and 80-city problems are to the near-

est 5 seconds.)

Table V

T.ime in Seconds for Travelling Salesman Problems (RECT) of size

Prob 20x20 40x40 60x60 80x80

1

IV. SOLUTION OF THE TRAVELLING GOURMET PROBLEM

BY EXTENSION OF EASTMAN'S METHOD

All of the discussion in the previous section can be straightforward

extended to the Travelling Gourmet Problem. All that is required is the

ability to recognize the violation of a cluster constraint and to define

new subproblems in which the same violation cannot occur. We then must

modify two steps of the general procedure:

EIG. Choice: choose an open problem (by BFPB , BFLB, MRPB , MRLB,

or MRSB) . Mark it closed. If the included links (applicable to

CMPR only) violate any cluster constraint, go directly to Step E7

;

otherwise go on to Step E2.

E3G. Branching: If the Assignment Problem Solution contains sub-

tours, split the problem (by BlNR, RIER, E2NR, or CMPR) and go on

to Step E7.

If the Assignment Problem solution has no subtours but does violate

any cluster constraint, treat the chain of links violating the constraint

almost exactly as a subtour. The last S, links in the chain tie together

S + 1 cities, thus violating the cluster constraint. Split the problem

Into S new problems, each of which has one of these S, offending links

barred. Do not bar any included link. Then go to step E7

.

It' neither the tour constraint nor any cluster constraint is violated,

go to Step E6 to record a new bogey.

- 37 -

The first problem chosen to be solved by this technique was an 11 -

"city" problem made up of distances between 11 3-star restaurants in

France. "Cities" 5,6,7, and 10 are located in Paris. "Cities" 2,8,9,

and 11 are restaurants boasting predominantly Lyonnaise cuisine.

The cost matrix is shown in Table VI. Two clusters were defined:

K = (5,6,7,10), S = 2; and K = (2,8,9,11) S = 2. The problem was

first solved as a Travelling Salesman Problem using CMPR/MRSB ("commit

to best", "move to best of parent"). Then the simple additions were

made to activate the cluster constraints as shown above. The increase

in processing time was very large, but a solution was obtained. Table VII

summarizes these two runs. Conditions were the same as for Tables IV and V.

Table VI

COST KAT'-' 1 X

(;<;t)9
1 2 3 A S 6 7 b 9 10 11

1 9q^-^ ,,3o uM bfi ^^e ^'*<i ^^6 ^05 ^33 'VAP S92

2 43h <i J'V) '30A ^^Z SAb 5A6 5A6 174 302 5A6 ?.bl

3 ^33 "bSA ^^>99 701 23A ?3A ?3^ 433 Aol 234 346

A ^M 4h2 i'Ul 9999 (25 725 72") 26b 240 72*? 3S5

<3 ^i,p <,.^(, , iA 72 5 9999 4-j9 490 3b9

(, ^^;, ',^M 234 725 9')99 459 490 3C9

7 i,t,y <>^(. / >,^ 725 »• 9'y r/ A59 490 3b9

H ^,o'' !/. 4)3 ?l<^ 4'^.9 ^5 y '-,59 9999 28 459 b7

9 '.) ^ 302 '.61 240 490 490 490 28 9999 490 115

10 4't8 5h6 /i4 725 459 490 9999 339

11 S92 /t I i46 355 389 3rt9 3m9 b/ 11^ 369 9999

^ 38 T

Table VII

11 - "City" Problem Solved as;

Time in Seconds (approx)

Solution Value
Subproblems Evoked
Discarded by Little Bounds
Discarded by Cluster Constraints
Discarded by New Bogeys
Submitted to Assignment Problem Solver
Discarded by Assignment Problem Solver
Completed by Assignment Problem Solver
Optimal Found in Step

Travell

V. COMMENTS ON RESULTS

First, Eastman's method, as modified and extended, is clearly very

powerful for the Travelling Salesman Problem with uniform random costs

(type RECT) . We know of no other exact solution of problems as large as

80 X 80, nor of times so low. Perhaps more important. Little found that

his technique suffered an increase in time of about lOX for every 10

extra cities. The results in Tables III and V suggest an increase of at

most 2X for every 10 extra cities using Eastman's scheme.

Second, we find (like Eastman, Little and Shapiro) that symmetric,

and especially Euclidean problems are very difficult: a 10-city Euclidean

problem is about as hard to solve as a 40-city RECT problem. This is

because of the large number of subtours of length 2 found in Assignment

Problem solutions under symmetric cost matrices. Eastman suggested an

extension to his method for the symmetric case. His scheme, among others,

is the subject of the next paper.

Third, Branch and Bound techniques and Network-Flow techniques are

both recognized and in constant use. Put together, they can be highly

S3mergistic. This class of algorithms is a case in point.

- 40 -

NOTES

1. See Ford, L.R. Jr. and D.R. Folkerson, Flows in Networks , Princeton,
N.J.: Princeton University Press (1962).

2. See Dantzig, G.B., Linear Programming and Extensions , Princeton,
N.J.: Princeton University Press (1963), Chapter 15.

3. See Bellmore, M. and G.L. Nemhauser, "The Travelling Salesman
Problem: A Survey", Operators Research 16, 538-558 (1968).

4. I am indebted to D.N. Ness for naming this problem.

5. See Dantzig

6. See Dantzig

7. See Pierce, J.F. and D. Hatfield, "Production Sequencing by Com-
binational Programming" in Operators Research and the Design of

Management Information Systems , New York, TAPPl (1967).

8. "3-Star" as defined by Guide Michelin .

10. See Hadley, G. , Linear Programming , Reading, Massachusetts:
Addison-Wesley C1962) Section 10-9.

11. Little coined the term.

12. Little, J.D.C., K.G. Murty, D.W. Sweeney, and C. Karle, "An

Algorithm for the Travelling Salesman Problem", Operation Research

11, 969-989 (1963).

13. Eastman, W.L. "Linear Programming with Pattern Constraints", Ph.D.

Dissertation, Harvard, 1958.

14. Shapiro, D. , "Algorithms for the Optimal Cost Travelling Salesman

Problem", Sc.D. Thesis, Washington University, St. Louis (1966).

- 41 -

iy/t"» Ir' I

l^^;^C!v%i.-"-,

Date Due

JW\. 6 '76

APR
iZ'tt

AGi O Ob

H'li
10

3 ^060 003 702 23?

V/^
70

3 ^060 003 702 211

l^^qu'lOA

3 TDfiO 003 b71 200

3 =^060 003 S^l^Jl

M.T.

Illllmi,,,

imhi -/vt

^ r°^o o'oVji""
-^^

iIT L1B««"\ES

I
-

'/77
ya

HIT LIBRARIES 3uPl

'c,060 003 b71 35a

3 TOfiO 003 7 02 3MM

3 TOaO 003 70 S 310

H^$'7^

i^i^tf^T^

MtT LIBR*«1ES DUPL

3 TOflO D 3 b71 30=1

7p<?
-70

,it LIB«A«1£S PU'L

iminilllllllllllllll I 11 II

TOfi'o 003 b71 325

i/fZ'7<5

3 TD60 003 b71 333

