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ABSTRACT

We present a new technique, called T-, scaling, for

determining scale estimates from paired comparisons data. We

present the new method in conjunction with a sensitivity

diagnostic that ascertains the extent to which intransitive

elements in the data influence the scale estimates from the

Thurstonian judgment scaling model. The T^ scale estimates,

based upon the minimization of absolute deviations rather than

least squares, are relatively insensitive to the presence of

limited inconsistency. We apply the new solution technique,

shown to be a straightforward minimum cost network, flow problem,

to several scaling problems in the literature. V/hen no single

limited source of inconsistency is indicated, the scale estimates

thus obtained are consistent with the least squares estimates.

When isolated departures from the scaling model or possible data

errors are present, the T, procedure remains largely insensitive

to their presence, preserving the interval scale properties of

the estimates.
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I ntroduct ion

This papar presents a new solution technique, called T
i

scaling, for determining scale estimates from paired comparisons

data. The development of the T, procedure v,'a3 motivated by a

concern for the substantial influence of intransitive elements in

the data on the final solution produced by the least squares

approach of the Thurstonian judgment scaling model (Thurstone,

1927a). The new technique utilizes a discrete L linear

approximation based upon the minimization of absolute deviations

(see Barrodale, 1968, and Barrodale and Roberts, 1973), where the

special structure of the scaling problem allows it to be solved

quite efficiently as a minimum cost network flow problem, using

standard techniques presented in such sources as Bradley, Hax,

and Magnanti (1977) or Shapiro (1979). The scale estimates thus

provided are in some sense more "robust" than in the traditional

approach in that they discount the influence of limited

inconsistency in the data.

The balance of the paper follows in several sections.

The first section reviews the least squares solution technique

for the Thurstonian judgment scaling model. The second section

reviews Mosteller's goodness-of- f i t measure for the least squares

estimates (hosteller, 1951), and demonstrates how seriously this

fit deteriorates in the presence of limited inconsistency. In

order to do this, we develop a sensitivity diagnostic to assess

the relative influence of each pair of items on the determination



of the least squares estimates. The third section presents the

robust T scaling technique and shows that obtaining these scale

estimates is equivalent to solving a minimum cost network flow

problem. Finally, we apply the T approach to several problems

from the literature, and compare the results to the least squares

scale estimates.



I . The Law ot Comparative Judgment and the Thurstonian Judgment

Scaling Mode l

In the typical judgment scaling problem, v/e are presented

with k different objects, each exhibiting some degree of a

certain common characteristic. If this characteristic, such as

"height", "weight", or "age", is a directly measureable quality

of singular dimensionality, chen we can order these k objects by

placing them along a continuum at the measured value of their

common characteristic. The positions of these objects, or scale

values, have the properties of the measurement scale. For

example, objects ordered on the basis of height or weight have

scale values v/ith ratio properties, while objects ordered on the

basis of heat in degrees Farenheit have interval properties.

V/hen the objects share a common characteristic that is

not directly measurable, such as "beauty" or "softness", the

ordering of the objects must depend upon some subjective estimate

of the common characteristic exhibited by each object. In order

to facilitate the process of ordering the objects along a

continuum without an apparent scale, the method of paired

comparisons is used to exact a set of relative judgments from an

observer. Thus, for any given pair of objects the observer is

required only to judge v;hich of the two exceeds the other with

respect to the underlying characteristic. This set of pairwise

judgments is used to determine scale values with interval

properties.

The law of comparative judgment established the



theoretical foundations for Thurstone's judgment scaling model.

Each object, when presented to the observer, acts as a stimulus

which excites a certain discriminal process within the observer.

Due to changing conditions in the experimental situation or

fluctuations within the observer, the same stimulus might trigger

a slightly different process, such that the position of the

stimulus on the specific psychological continuum is not always

the same. For example, an observer's subjective estimate of the

"beauty" of an object might be different when presented with the

object a second time, on account of the observer's mood, the time

of day, or the temperature of his surroundings.

In the Thurstonian model, the distribution of these

subjective estimates along the continuum is postulated to be

normal. The standard deviation of this distribution is called

the disciminal dispersion of the stimulus, and the mean is taken

to be the true scale value . The distributions of two stimuli, i

and J, might thus be represented as in Figure I.l. The scale

values are s and s , and the discriminal dispersions are the
1 J

standard deviations, o^ and cf^
. The discriminal processed within

the observer are random variables denoted i. and d •.

It is now possible to talk about a discriminal

difference , (d .
- d .) , for any pair of stimuli i and j. If i and

j are presented to an observer a large number of times, the

discriminal differences will also form a normal distribution,

2 2 1/2
with standard deviation 0j=Ca. +a- ~ 2r . . a-o.) where r. .a 1 J 1] 1 J IT

is the correlation between the discriminal processes associated

wi th i and j .



FIGURE I.l

The discriminal distributions for stimuli 1 and j ,

centered about the true scale values s. and s..
1 J

The observer, of course, is unable to assign a value to

the position of the stimulus aloiig the appropriace psychological

continuum, but when presented wi tn two stimuli, he is able to

judge which of the two is greater. In some cases, because the

distributions overlap, the observer may judge stimulus i to be

greater than j even though s. is actually greater than s. . Over

a large number of comparisons, it is possible to determine the

approximate proportions of times stimulus j is judged greater

than i. These proportions are then used to determine the

relative positions of s. and s. on the continuum measuring their
1 D -

common quality.

Figure 1.2 shows the distribution of the discriminal

difference between i and j, where the shaded portion of the curve
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FIGURE 1.2

The discriminal difference between stimuli i and j

.

indicates the proportion of times stimulus j appears greater than

stimulus i to the observer. The value x. . is the difference
ID

between s. and s measured in o units. Hence, s. - s. = x. . a t,
X ] d ' 3 1 13 d'

or in its final form:

(1) s - s = X (of + of - 2r..o.a.)-/^

In this form, without limiting assumptions, the law of

comparative judgment is not solvable, as there are many more

unknowns than equations. Thurstone presented five cases of the

law, introducing certain assumptions into the model to make it

tractable. His case V is the most restrictive, assuming constant

standard deviations for all of the discriminal dispersions, and



no correlation between any of the discrimlnal processes (implying

zero covariance between stimuli) . Mosteller (1951) later showed

that the assanption of equal correlations between processes leads

to a formulation equivalent to Thurstone's case V, In either

case, the unit of measurement for the psychological scale may be

determined arbitrarily; hence, the constant modifying the x^

term in (1) may be taken to be unity, leaving

ID

(2) s .

ID

The law of comparative judgment, limited by assumptions

of equal dispersions and equal covariances, is most frequently

estimated using paired comparisons data. In this procedure, we

present each pair of stimuli to the observer a large number of

times, as described above. If we wish to examine the collective

discriminal process of an entire population, we present each

stimulus pair i,j to each individual in the population only onca.

Thurstone, in his case II of the law of comparative judgment,

shov/ed that the same formulation holds true for either approach,

under certain assumptions of homogeneity.

The observed proportion of times stimulus j exceeds i,

p*,.f forms the matrix P'. Matrix P' has the property that

symmetric cells must sum to one; hence, d' . . + p' . . = 1. Matrix

P' determines matrix X', where each element x'.. is the unit

normal de,/iate corresponding to the observed proportion p' . . . If

the range of stimuli along the psychological continuum is large

relative to the discriminal dispersion, there may in fact be

3



cases where one stimulus is never judged greater than another.

If stimulus i is judged less than j every time the pair is

presented, the value p'ij will equal one and the value x'-j_j will

approach infinity. This problem of an incomplete X' matrix is

usually solved by establishing upper and lower bounds on p'ij of

.01 and .99, thus insuring stability of the resulting scale

estimates

.

From (2) above, we see that the difference between the

estimates of any two scale values, s'. and s'., gives us x".. an

estimate of the observed value x'.
.

, as shown:
ID

(3: s'.

3 1 ID

With errorless data, we can choose scale estimates s'j and s'- sc

that the estimates x".. will equal the observed x'j_-:. Typically,

differences between the observed proportions and the true values

lead to a difference between x" . . and x'.., no matter how we
ID ID

choose s'. and s'.. Thurstone chose his scale estimates to
1 D

minimize Q, the sum of the squared deviations between x"- and

X' . .:
ID

(4) Q = ZI (x! . - x" )

ID
ID

ID

Substituting (3) into the equation above:



(5) Q = IT. (x! .

ij
''

2
\ + s :

)

1 1

Equation (5) is equivalent to minimizing either row sum.s or

column sums, so Thurstone limited his analysis to the columns of

X' .

Differentiating Q with respect to s'. gives:

(6)
dQ
ds'.

D

-2 I (xl .
- s'. + sM

Setting the partial derivative to zero and solving

(7) s'. = 1 Xx: . + 1 Is!
=• k i ^^J k i ^

where k is the number of objects in the scaling problem. The

rightmost term in (7) is simply the mean of the estimated scale

values. Because the origin of the psychological continuum is

arbitrary, we can take it to be the mean of the s'., giving:

(8) s'. = 1 Ix' .

J k i ^3

Thus, the least squares estimates of the true scale values are

the coluran means of the matrix X'. Torgerson (1958) presents a

more detailed discussion of this derivation.

10



II . The Effects of Inconsistency in the Observed Data on the

Determination of the Thurstonian Scale Estimates

The method of paired comparisons does not always produce a

set of data appropriate for use in a scaling model such as

Thurstone's. If there is perfect agreement among the judges on

the ordering of the k objects being compared, then it is not

possible to determine scale estimates with interval

characteristics. Another problem occurs when an observer or some

observers are particulary bad judges, or are poorly motivated to

take the care required to produce consistent comparisons. A

third problem occurs if the experimenter asks too much of his

observers; the objects may be so close together with respect to

their common quality that distinguishing them becomes almost a

guessing game. Finally, it is possible that the quality common

to the objects under examination is not representabl e as a linear

variate. When any one or several of these difficulties is

present, the reported preferences may contain intransi tiv i ties

called circular triads, where object i is judged greater than

object j , j is judged greater than k, yet k is ultimately judged

greater than i. Such an ordering is impossible to represent on a

single dimensional scale, and thus interferes with the process of

determining scale estimates.

Kendall and Babington Smith (1940) observed that

"[Thurstone's] method is appropriate where one is entitled to

assume a priori or by reason of precautions taken in the

11



selection of material that a linear variable is involved and that

there exist perceptible differences between the items presented

for compar ison, " (
p. 342) They proposed a coefficient of

consistence, ;; , where

f

\

1 - 24d/(k - k) k odd

1 - 24d/Ck^ - 4k) k even.

where k is the number of objects and where d is the number of

circular triads reported. The coefficient equals one when the

comparisons data contain no inconsistencies and equals zero when

the maximum number of circular triads is present. Thus, a value

of ^ near zero indicates potentially troublesome departures from

the scaling model.

For paired comparisons with fewer than eight objects,

Kendall and Smith also calculated the probabilities that a number

of circular triads d or greater would occur under a completely

random ranking scheme. If a single observer reports a number of

circular triads d that is likely to have come from a process of

unsystematic (random) judgment, his ability to discriminate

between objects should be questioned; if a number of observers

do the same, then a problem may lie in the difficulty of the task

or in the dimensionality of the quality under judgment.

Even vv'hen paired comparisons data are free of complete

intransi tivi ty , there is usually some form of inconsistency

present. In Figure II. 1 below, three stimuli a, b, and c are

shown equally spaced along the appropriate psychological

12



continuum. By assumption, their discriminal dispersions are all

equal (Thurstone's case V), and because the origin for the scale

is arbitrary it has been placed at the middle scale value. If we

presented an observer with stimulus pair a,b and stimulus pair

b,c a total of n times each, it is unlikely (due to statistical

fluctuation) that the observer would report a>b exactly the same

number of times he reported b>c. Even so, while an observer may

judge a>b and b>c approximately the same number of times each, he

might judge a>c only a slightly higher number of times, not

necessarily consistent with placing c twice as far from a as from

b.

FIGURE II.

1

True underlying model for the three stimulus example demon-

strating that inconsistency need not take the form of

intransitivity.

.
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with Thurstonian scale estimates, stimulus c is

positioned on zhe scale somewhat closer to b than suggested by

the proportion of times b>c, yet not so close to a as suggested

by the proportion of times a>c. This "compromise" leads to

discrepancies between the observed values x', . and the values
ID

x" derived from the scale estimates, leaving a question as to

the fit of the final result.

With fallible data, it is helpful to have a measure of

the gcodnes3-of- f i t of the least squares estimates. Mosteller

(1951) presented a chi-square significance test for the fit

between the observed proportions p'.. and the fitted proportions

p" . . These fitted proportions are derived from the scale

estimates; they represent the proportion cf the time stimulus i

would be judged greater than stimulus j if the true scale values

were actually s' . and s' .. We can use the unit norm.al table co

find the proportion p" corresponding to each x" . ., and form the

matrix of fitted proportions P".

Mosteller suggested the arcsin transformation developed

by R. A. Fisher to establish a chi-square testing criterion-

Given proportions p' . . and p" . . from a binomial sample of size n,
ID ID

e' = arcsin yp' and arcsin^

are distributed with variance

821
n

14



when g' ij and e "ij are expressed in degrees. Thus, f-lostell er

suggests the following test of the goodness-of-f i t of the

estimates

:

/
. (GV. -0! .)

i>i
-' S21/n

where n is the total number of times each stimulus pair is

presented. The test covers the elements in the lower triangular

matrix; thus, for a scaling problem involving k stimuli, the

distribution is 'v x^ ( ( k-1 ) ( k-2 ) /2 ) .

It is possible to assess the nature of the effect of

inconsistency on the fit of the scale estimates by constructing a

situation in which a single circular triad is exhibited in

otherwise errorless comparisons data. Figure II. 2 shows the

placement of four stimuli, a, b, d, and e, along the

psychological continuum. The differences between these actual

scale values are shown in the matrix X' in Table II. 1. The fifth

stimulus, c, is represented at two positions on the scale. With

respect to all stimuli but a, c is positioned at -.10 on the

scale (the true value, c, ) . With respect to a, however, c is
bde

positioned at +.15 on the continuum (c ). The result is a single
a

inaccurate observation for stimulus pair a,c, forming the single

circular triad (a>b, b>c, c>a)

.

If the observed proportion of times that c was judged

greater than a were overlooked, perhaps discounted as a

transcription error, the remaining data in X' would be consistent

15
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.15

"bide

I

-^
-.05

i
.05 15

^^

FIGURE I I.

2

Contrived five-stimulus example, where inaccuracy is introduced
into the observation between stimuli a and c.



with the determination of scale estimates leading to a perfect

fit between P" and P'. Including the inconsistency produces the

distorted scale estimates shown in Figure II. 3. Only the scale

estimates for stimuli a and c are different from the true

underlying values; stimuli b, d, and have the same relative

positions as in the actual configuration. Because X' is a skew

symmetric matrix fx' = -•/.'
) and the only columns affected by

ac ca

the presence of mtransi tiv i ty are those for a and c; the

estimated scale values differ from the actual values by the same

amount in opposite direcitons. As shown in Figure II. 3, the

scale estimate for stimulus c is .05 units greater than its

actual value; for a, it is .05 units less.

i
"T^

bjc' 9

M^ JL

true c true a

FIGURE II.

3

Thurstonian scale estimates for the five-stimulus example
compared to the true values for stimuli a and c.

The distortion introduced into the scale due to the

inaccurate comparison of a and c degrades the fit of the least

squares estimates noticeably. In this example, where a single

17



circular triad is incroduced into otherwise errorless data, the

fitted proportions differ from the observed in seven out of 10

cases, as shown in Table II. 2. Because the least squares

procedure operates to minimize the sum of squared deviations, a

solution resulting in several small discrepancies is preferred to

a solution v/ith a single large one. Thus, the least squares

procedure distorts the interval properties of several scale

estimates in order to compensate for a single potentially

problematic observation.

.5A



This small ad hoc analysis of limited intr aasi tivi ty

motivates the design of a more general procedure. It would be

advantageous to have a diagnostic to determine the influence of

any one observation on the overall fit of the model. By

replacing the value in each cell of the lower diagonal of the

matrix X' by a value determined from the other relative

comparisons, and then assessing the fit for these modified

values, it is possible to determine the improvement in fit

associated with the "discounting" of one observation. If this

improvement is substantial, it indicates that the internal

properties of the initial scale may have been degraded by

inconsistency. If the inconsistency can be traced to data

transcription error, or to some other uncontrolled influence

operating on a limited portion of the data, we might want to turn

to a more robust scaling procedure where outlying observations

have less influence and the discrepancy in fit is limited to as

few stimulus pairs as possible.

Consider the contrived five-stimulus example shov/n in

Table II. 1. In this case, we introduced an intransi tivi ty by

perturbing the observed value x' If we could somehow discount

this observation, so that scale estimates s' and s' depended
a c

only on the relative comparison with stimuli b, d, and e, the

resulting value would reflect the proportion of times stimulus a

was reported greater than c, with c positioned accurately. V/e

can thus use the concept of adjusting a stimulus pair to design a

diagnostic technique for determining the sensitivity of paired

comparisons data to inconsistency. This notion of sensitivity is

19



1978) , basedsimilar to the one introduced by Hoaglin and Welsch

loosely on the influence of a single observation on the fit of

the entire model rather than simply its own fitted value.

If stimulus pair i,j is discounted, only one value in

each of column i and column j of matrix X' changes; therefore,

all ocher scale estimates s' , m 9^ i or 3, remain unaltered. We
m

can use thesa k-2 unaffected scale estimates to adjust the values

s' and s' . The adjusted estimate 's. ' will reflect the best
i J

1

position for stimulus i relative to all other stimuli by j.

Similarly, s.' will reflect the best position for stimulus j

without considering direct comparison to stimulus i.

The following sets of equations determine the adjusted

scale estimates s ' and 's '
:

1 3

s' - s' = V
i 1 "li

^'. - s! = x!
^ .

1 1-1 1-1,1

^i ^i+l" ^i+l,i

5»

'i

1

J-1 J-1,1

^j+r '^j+i.i

b\ - s' = X,' .

1 k. k.,1

s! - s! = x'

e! - s: = x' .

J 1-1 1-1,

J

's' - s' - x'^j ^i+1 ^i+l,j

t -
3

s! ,= x! , .

J-1 :-i,j

j J+1 j+l,j

^« » t

'2 - ^k = \,i

k-2
equations

20



With infallible data, such as that found in the five-stimulus

example in Table il.i above, all k-2 equations render exactly the

same value for the adjusted scale estimate. However, since

paired comparisons data rarely offer perfect observations, we

again choose to use a least squares approach to oDtain values for

Si ' and Sj '
.

Our results above show that the mean of the k-2

equations gives the least squares solution:

1

^'

= 1
Z-J (x' . + s')

k-2 m^l ^'^ "^

k

-^ ZZr (X' . + S')
k-2 ^ ^'3

Rearranging terms for s •
' gives:

si
1

= 1 71 X •
. + ^H1^-2 ~: m,i 1^^ —. mm-i m=i

niT^i, j m?fi, j

Because the scale origin has been arbitrarily centered at the

mean of the scale estimates, the equation above becomes:

21



i v^ X ,
X' .

" -^ (-s! - s'. )k-2 •

rriT^i, j

Similarly, because s' is equal to the mean of column i of X',
i

the equation aboye becomes:

^: = 1 (ks! - X'. .) + 1 (-s:-G'

)

^ F--2 ^ ^^ ^^2 ^ 3

with some rearrangement of terms, the adjusted scale estimates

s ' and s ' can be written:

(9) ^i = ^s' . <-ji " -]^

k-2 k-2

(10) A, ^ ^_^ ^^, _ ^^. ^ ^,^
k-2 ^3

:-2

Examination of (9) and (10) reveals that (s.' - s'.) = -(s,

s* ). Thus, the adjusted estimates satisfy the symmetry
J

exhibited in the contrived five-stimulus example, i/^here the scale

estimates for stimuli a and c moved the same distance in the

opposite directions from their true scale value.

The adjusted scale estimates now uniquely determine new

values for x" and x" , To assess the change in fit associated
ij ij

with adjusting the scale estimates for stimuli i and j, we form

the adjusted matrices X" and P", denoted X"(i,j) and P"(i,j), and

22



use Hosteller's chi-square test with ( (k-1 ) (k-2 ) /2 - 1) degrees

of freedom.

We applied the diagnostic procedare to the contrived

five-stimulus example from Table II. 1. For each stimulus pair

i,j, we adjusted the values of s' and s' and calculated the
i J

change in fit. The results showed little or no improvement: in

fit for all but the stimulus pair a,c. For that pair, the

adjusted scale estimates for a and c equaled the true scale

values for these stimuli, eliminating the source of

intransi tivity in the otherwise errorless model and indicating a

complete improvement in fit.

In general, the diagnostic serves to identify sources

of limited inconsistency or intransi ti \/ity in the paired

comparisons data. If the data are widely inconsistent, then

several of the scale estimates are liable to depart significantly

from the true scale values. Using the diagnostic to adjust the

scale estimates for a single stimulus pair might eliminate the

inconsistency introduced by that particular observation, but the

adjusted estimates would still reflect the inconsistencies that

influenced the positioning of the other stimuli. Such widespread

inconsistency, while not readily detectable by the diagnostic,

usually shows up in a poor overall goodness-of-f i t , indicating a

departure from the assumptions made for the one dimensional

scaling model.

Kendall and Babington Smith's coefficient of

consistency is a valuable tool for identifying failure by a

single observer to adequately discriminate between stimuli.

23



However, in Thurstone's case II of the law of comparative

judgment, where the responses of several judges are used to

determine the observed proportioiis p'. . , all of the observers may

give completely consistent responses, and yat the composite

comparisons may contain inconsistency or even complete

intransi tivity , as shown in the example in Figure II. 4. Cur

diagnostic functions as a computationally inexpensive indicator

of limited inconsistency that is potentially damaging to the

interval properties of the scale.

Judges 1,4



III. The T -i Scaling Solution Procedure

Our concern for obtaining scale estimates that are

relatively insensitive to the presence of limited error or

intransi tivi ty in the observed data ir.otivates the development of

a more robust scaling prc^cedure. The weakness v/ith the

Thurstonian jugment scaling model in the presence of limited

inconsistency is that it is based on an L linear approximation

of the underlying true values. In this least squares approach,

outlying observations tend to have an inordinate amount of

influence in the determination of the scale estimates. Because

least squares "prefers" a solution with several small

discrepancies to one with a single large error, the Thurstonian

procedure propagates limited inconsistency throughout the scale

estimates, degrading the interval properties of the entire scale.

Barrodale and Roberts (1973) suggest that when the data

contain inaccuracies or inconsistencies, an L^ approximation,

minimizing the sum of the absolute deviations, is often superior

to the best L approximation for estimating the true parameters

of the model. Thus, the L approach to determining scale

estimates requires minimizing the quantity Q , where

(11)

i=l i=l

X : .
- (

s
• - si)

25



An example taken froirt simple regression, shov/.i below in Figure

III.l, illustrates their point. In the example, the true

underlying s/alues follow exactly a linear model. Only one of the

seven observations differs from its true value, but that

difference is quite substantial. The L2 approximation operates

to distribute this error across all seven points, and thus the

seventh observation has the effect of tilting down the slope of

the regression line to b' and raising the intercept to a'. The

L^ approximation is not so influenced by the seventh observation,

and reco>/ers the true model parameters, a and b.

y=a+bx; true model

^.-^ L, approximation

y-a'fb'x: L_, approx.

^'' observed values
r-

' true values

FIGURE III.l

Regression example demonstrating the relative
insensitivity of the L^ approximation to
outlying observations.""
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There are also weaknesses to the L^ approach that

should not be overlooked. The L procedure occasionally performs

very badly in the presence of an outlying observation, as shown

in Figure III. 2. In this example, the seventh observation

deviates so substantially from its true value that a better fit

is obtained by approximating the model using only the first and

seventh points rather than using the first six. A second

weakness of the L, technique with respect to the scaling problem

at hand is that it has far greater computational requirements

than simply using column means to estimate the scale values.

Therefore, it remains for us to show that the L approach applied

to Thurstonian scaling, henceforth denoted T]^ scaling, can be

solved in a manner that is computationally convenient, and that

under reasonable assumptions regarding the behavior of the data

the T scale estimates are superior to those determined bv least
1

squares.
_/K ^ y=a+bx: true model

O- observed values

•<.- true values

— - — —y=a'+b'x: L approx.

FIGURE II I.

2

Regression example demonstrating the weakness of
L^ approximation in the presence of a wildly
inaccurate observation.
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We now show that solving the T, scaling problem for k

scale estimates is equivalent to solving a capacitated network

flov^ problem for a complete network with k nodes (see Bradley,

9ax , and Magnanti for a description of this type of problem)

.

Because X' is skew symmetric, we may limit our analysis to the

lower diagonal matrix, writing (11) as follows:

(12) \=I2 X : . - ( s • - s :

)

13 3 -L

i>D

Using standard techniques, the minimization problem

described above may be written as a linear program:

k(_k-l)/2

Minimize ''>~'^
(u + v )

m=l
m m

(13)
subject to sl-sl+u -v =x

J 1 m m
! . for all (i,j) st i>i
^^ m = i, 2, ..., kcic-i)/:

u , V 5t 0, si unconstrainedmm J

Thus, for a scaling problem with k stimuli, there are k(k-L)/2

2constraints and k variables. To solve Thurstone's crime study

(Thurstone, i927b) , a relatively large scaling problem involving

19 stimuli, would require solving a linear program with 361

variables and 171 constraints, a significant computational task.

We rewrite the linear program below using matrix

notation

:
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C14)

Maximize - ( lu + Iv )

subject to As_' + lu - Iv = x' : iT

u, y^^O, s_' unconstrained

v/here 1_ indicates a row vector of ones, and the objective

function has been multiplied by -1 in order to cast the problem

as a maximization. Because the origin for the scale estimates is

arbitrarily set, it is appropriate to leave the s'. unconstrained

i n s i g n

.

We now take the dual of (14) , and find that we can

exploit the special structure of the constraint matrix. A:

(15)

Minimize it x '

subject to _7r_ A =

JL^ -1

-ttJJ. -1

s'

u

V

The linear program in (15) above is a capacitated network flow

problem, as A is the appropriate matrix for a complete network

with k nodes. The vector JL / constrained to the interval [-1,1],

is the vector of arc flows. The dual variables s_|_ associated

with the equality constraints in (15) are the scale estimates.

Thus, it is possible to reduce the T, scaling problem

for k objects to a capacitated minimum cost network flow problem

of k nodes. Thurstone's crime study, mentioned above, would

require only 171 variables and 19 constraints, which is not

considered a very large network problem. Using the widely
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accepted network packages, such as GNST (Bradley, Brown, and

Graves, 1975), which exploit the special structure of the network

basis, the problem can be solved quickly and efficiently.

In order to get some idea of how well T-, scaling does

in recovering the true scale values of a model, we can appeal to

this network conceptualization. Figure IIj:.3 below shows the

contrived five-stimulus example in network form. The sources and

sinks of network flow have been added so that we may refer to arc

flow as a non-negative quantity in the interval [0,2] instead of

[-1,1]. The costs on the arcs are the observed values ^'j_-\ , and

the reduced costs are denoted
ID

For a more detailed

discussion of network flow problems, associated terminology, and

solution procedures, the reader should refer to the relevant

chapters in Bradley, Hax , and Magnanti or Shapiro.

Using this conceptual framework, we can make several

statements about the performance of T-, scaling:

1 . With infallible data, the T
^

procedure estimates the true

scale values exactly for any basic feasible solution to the

network flow probl em.

This is seen easily by configuring the network in a straight

line (as shown in Figure III. 3 above) ,
positioning the nodes from

left to right in the order indicated by the true scale values for

the stimuli they represent. The result is a network with a cost

on the arc directed from node i to node j equal to the true

difference between the two scale values. Because the dual

variables (which are the scale estimates s_|_) are determined from.

the set of equations s'- - s'- = x'j_^ for all arcs (i,j) in the

30



c • c ' c ' c * c 'abode Dual variables (scale estimates)

^'ab'^'ac'-'^'ad'
Arc costs

ab ac ad ae
Arc flows

FIGURE III.

5

Network representation of the T scaling problem for the
contrived five-stimulus example of section II.
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basis, any spanning tree solution yields the same set of dual

variables: always the true scale values, with arbitrary origin.

2. With one inconsistent observation between stimuli i and j in

an otherwise infallible set of dat a ,___ the T procedure always

recovers th e true scale values.

We demonstrate this result by representing the

inconsistent observation as an arc cost between node i and node j

equal to the true value x'- • plus some perturbation factor a .

Without loss of generality, let us choose our initial basic

feasible solution so that the arc directed from node i to node j

is non-basic and at its lower bound. If A is equal to zero,

then our data is infallible, and by statement 1 above, any

spanning tree solution renders the exact scale estimates. If A

becomes positive on arc (i,j) , then we have no motivation to

change our present solution and the dual variables which are the

scale estimates remain unaltered. If A becomes negative, then

we can reduce the cost of our present solution by using the arc

at some positive flow capacity.

Once arc {i,j) enters the basis, it reaches full

capacity and subsequently leaves the basis. Otherwise, at least

one of the dual variables s' v/ill reflect the perturbation factor

;^ , and the reduced costs for the non-basic will indicated entry

into the basis. When arc (i,j) becomes non-basic at its upper

bound, the remaining spanning tree includes only the arcs with

perfectly accurate observations. Hence, the dual variables are

again the exact scale values, and all reduced costs are zero

except for ^'i-i > which is negative and at its upper bound.
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3. With a sniall number of inconsistent observations (<<k)

involving mutually independent stimulus pairs in an otherwise

infallible set of data, the T , procedure recovers the true scale

values so long as it finds a basic feasible solution where:

a

.

all the arcs representing the inaccurate observations

are non-basic .

b

.

all of the arcs representing the observations that are

higher than their true value are a t their lower bound .

c

.

all of the arcs representing the observations that are

lower than their true value are at their upper bound .

This result follows from the line of analysis pursued

in statement 2 above. Clearly, so long as the method finds such

a spanning tree solution, all reduced costs for the non-basic

arcs representing inaccurate observations higher than their true

values will be positive, and reduced costs for the non-basic arcs

at their upper bound will be negative. The dual variables for

this solution will be determined from the costs of the basic

arcs, which are all accurate observations; thus, the true scale

values will be recovered.

Once the inaccuracies in the observation begin to

affect stimulus pairs with common elements (such as i,j and i,k),

it is difficult to determine how the error is affecting the

resulting scale estimates. Our diagnostic is unable to isolate

these instances of "overlapping" error, as it functions to adjust

only two scale estimates at a time. Because scaling problems

typically involve a rather small number of items anyway, more

than one or two serious inaccuracies indicates the possibility of
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some violation of the assumptions of the scaling model.

It remains to be seen, through soma sort of empirical

validation, just how often the T procedure does find the

" uncontaminated" spanning tree solution, and further

investigation in this area is indicated.

We applied the T procedure to the contrived

five-stimulus example. As anticipated, it recovered the true

scale values of the errorless model, except for a translation in

scale origin. The solution procedure for the five node minimum

cost network flow problem is shown in four steps in Figure III. 4.

Initially, the arc representing the inconsistent observation

between stimuli a and c is non-basic. The associated cost is .15

+ A , where .15 is the coefficient for the errorless model, and

the perturbation factor A equals -.25. Step 1 indicates that

for A < 0, arc (a,c) should enter the basis. Once arc (a,c) has

entered the basis, still at its lower bound, several other arcs

become candidates to enter the basis, as shown in Step 2. Only

when (a,c} leaves the basis in Step 4 do we reach an optimal

(once again degenerate) solution. Mosteller's goodness-of- f i

t

test reveals a negligible difference between 6 ' and 9" for all

stimulus pairs except a,c; the T solution confines 100% of the

error to the single stimulus pair previously identified by the

diagnostic as suspicious, and does so regardless of the magnitude

of the error factor A .

In summary, the T scaling procedure appears to be a

highly desirable alternative to Thurstone's least squares

approach. Although computationally more time consuming, the T
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scaling methor] can us3 existing network packages to solve very

large scaling problems (around 20 objects) in seconds. When the

observed data reflect exactly the true form of the model, T
I

scaling and least squares estimate the scale values exactly.

When a serious inaccuracy is present in an otherwise accurate set

of data, the T procedure can still recover the true scale
1

values, whereas least squares cannot always. It is also

important to note that T scaling does not fall arey to the same
1

weakness that L regression does: no matter how inaccurate the
1

one bad observation is, T scaling still recovers the true scale
1

values of the model.
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IV. Results from Applying the T Procedure to Scaling Problems

from the Literature

We applied the sensitivity diagnostic and the T

procedure to certain Thurstonian scaling problems from the

literature, in order to determine their collective effectiveness

in identifying and resolving potential trouble with real paired

comparisons data. The first case involves a subset of the 1948

American League baseball data presented by Mosteller (1951).

Each one of five teams -- Cleveland, Boston, New York,

Washington, and Chicago — played 22 games against each of the

four others. The proportion of games each team won from the

other team, analogous to the proportion of times one team is

judged better than another, is shown in Chart IV. 1.

The least squares scale estimates from the Thurstonian

scaling model (shown in Chart IV. 1) reveal a rather disappointing

configuration. The scale is split by a wide, empty interval,

with Chicago and Washington lumped together at the low end of the

scale and Boston, Cleveland, and New York almost on top of one

another at the high end.

Kendall and Smith's coefficient of consistency for

these data is .80, indicating some element of intransi tiv ity in

this collective ordering. The one circular triad in the data

occurs with New York, Cleveland, and Boston: New York won over

50% of the games it played against Cleveland, Cleveland won over

50% of its games against Boston, and yet Boston won over 50% of

its games against New York. A coefficient value of .80, however,

does not conclusively demonstrate the failure of the comparisons
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method to systematically discriminate between teams; the

probability that one or fewer intransitive triads occur due to an

unsystematic (random) series of judgments is low, less than .24.

If it is not the entire method which is at fault, then the error

might be due to a problematic comparison between two teams that

is interfering with the process of determining scale estimates

for the "best" of the five teams.

The sensitivity diagnostic reveals that almost 30% of

the discrepancy in fit is eliminated if the scale estimates for

New York and Boston are adjusted. One possible reason for this

error is that some exogenous factor operated on the series of

games between these two teams to produce results inconsistent

with the other series. During the era of the Yankees' supremacy

in the American League, it was often said: "The New York Yankees

are the champions of the world, but the Red Sox are champions of

the Yankees," because the Red Sox seemed able to beat the Yankees

fairly consistently, even though the Yankees at that time had the

best all-around record in baseball. On the assumption that this

discrepancy might have been due to home field conditions,

"rivalry", or a variety of other exogenous conditions not common

to the series played between the other teams, we applied the T

scaling procedure and assessed the ultimate effect on the fit of

the model

.

The T scale estimates shov/n in Chart IV. 1 reflect a
1

noticeably different configuration. The scale positions for New

York and Boston, which were almost identical in the least squares

solution, are now widely separated, clearly identifying Nev/ York
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1.

2.

3.

4.

S.

Cleveland
Boston
New York
Washington
Chicago

Identification of Scale S%inbols

J. .



1. X

2. 127.7 X Reniaining discrepancy in fit after
1

3. 116.9 I 29.2
I

X sensitivity diagnostic applied to each

4. 128.4 124.4 98.6 x given stiir.ulus nair

5. 128.9 88.4 ' 129.4 108.5

4(-.34) 5Q--5) 2(.13) 1( 18) 3(.32|

1. X

2. 0.0 X

3. 0.2

T^ Scale Estimates

U48.3 I
X Matrix of {B. . - B. . y fr^

I -^ •' ij ij

4. 2.7 0.0 5.^ X Mosteller's fit criterion.

5. 8.3 2.3 0.0 29.0

CHART IV. 1 (cont'd)



as the "best" tear, of the five. These results are quite similar

to the five-stimulus example of section II. The T procedure

produces scale estimates that largely ignore the single

substantial source of inconsistency in the model. In the

baseball data, where one series of games should not have

inordinate influence on the determination of the "best" team, the

T procedure provides a solution that is informative and
1

"

conceptually appealing.

The second example, a scaling of attitude statements on

the participation of the United States in the Korean War, is

taken from Hill (1953). Hill selected a subset of seven

prescaled attitude statements that he deliberately biased toward

the favorable side. His hypothesis was that where statements

were concepcually closer on the " favorabl e/unfavorabl e"

continuum, there would be more inconsistency reflected in the

observational data. Kendall and Smith's coefficient equals

unity, indicating the absence of any circular triad. Clearly,

however, there is some form of inconsistency affecting the data.

Mosteller's fit criterion for the least squares estimates is poor

for n = 94 comparisons for each stimulus pair.

The sensitivity diagnostic reveals that no single

stimulus pair reduces the discrepancy in fit by more than 25%;

using the diagnostic to adjust any one of 16 out of 21 pairs in

the lower diagonal of X' does not reduce the error by more than

10%. Thus, the sensitivity procedure does not identify any

source of limited intransi ti v ity in the data.

The T scale estimates are largely similar to those
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given by the least squares approach, indicating tnat when the

source of inconsistency in the data is not limited or well

defined, the T-i procedure does at least as well in estimating the

true scale values as the Thurstonian least squares. The results

are presented in Chart IV. 2 below.

In conclusion, we can use the sensitivity diagnostic

presented above to determine where problems with inconsistency

appear in the observed data, how much the occurrence of

inconsistency degrades the fit of the model, and the nature of

the distortion of the scale estimates. This sensitivity analysis

involves discounting a single stimulus pair at a cime, and the

method is straightforward and computationally simple. The

results provide a better idea of problems v/ithin the data and

indicate when there is a need for more robust scale estimates

that discount these data problems.

These more robust estimates may be obtained by solving

the minimum cost network flow problem outlined above as T
T
J.

scaling. The procedure provides scale estimates that are not

inordinately influenced by the presence of limited sources of

inaccuracy in the data.
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1. ] suppose the U.S. has no choice but to continue the Korean War.

2. Ke should he willing to give our allies in Korea Tnore money if they need it

3. Withdrawing out troops from Korea at this time would only make matters wor

4. The Korean War might not be the best war to stop communism, but it was the

only thing we could do.

5. Winning the Korean War is absolutely necessary whatever the cost.

6. We are protecting the United States by fighting in Korea.

7. The reason we are in Korea is to defend freedom.

Identification of Scale S>Tnbols

1. X

2. .309 X

3. .202 .457 X

4. .149 .426 .479 x Matrix of Observed Proportions

5. .202 .540 .572 .479 x

6. .085 .277 .562 .330 .457 x

7. .064 .138 .330 .287 .415 .594 x

se

4 (.03)

1(- 87) 2(-.27) 3f-.05) 5(.17) 6(.57) 7(.p)

O
Thurstonian Scale Estimates

1.



1. X

2. 120.6 X

^* 128.0 117.7 X Remaining discrepancy in fit after

^- 116.5 120.4 127.9 x sensitivity diagnostic applied to

5. 105.0 126.6 121.4 liS.4 x each given stimulus pair.

6. 119.6 127.6 126.5 120.5 125.

S

x

7- 125.2 94.6 109.1 127.9 105.0 125.1 x

4(.03)
U--85) 2(- 27) 5 (-0:2) 5[ 16) 6( 34) 7(.60)

^ L_i . , 1-« M ic-( ii-t •{—

^

o

T Scale Estimates
1 • X ^

2- 4.4 X

3- 0.0 8.7 X

^- S.7 5.6 0.0 X Matrix of (0.. - 9-.)^ from
ij !]•'

5. 11.5 0.0 11.9 2.4 X Mosteller's fit criterion

6. 9.6 0.0 0.0 9.7 2.6 x

7. 1.2 20.5 14.5 0.0 25.7 0.0 x

CHART IV. 2 (cont'd)
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