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Abstract

A test for a dynamic model's ability to reproduce behavior modes of

interest is developed and evaluated. The test consists of using the model

to make one observation ahead predictions, and performing spectral analysis

on the errors made in this prediction. This procedure is considered as a

means of evaluating the ability of a linear model to reproduce a oscilla-

tory behavior mode. Through the use of model generated data the test is

evaluated in terms of its performance under the circumstances of model

order failure, incorrect noise specification and incorrect model specific-

ation. The spectral analysis of residuals seems to be a useful test for

determining a model's ability to reproduce an observed oscillatory
behavior mode. Other tests for determining whether a model is useful in

describing an aspect of observed behavior are called for.

This paper has benefited from the comments and criticisms of Alan Graham,

Jim Hines, Ed Kuh, Jim Powell, George Richardson and Qifan Wang.
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Introduction

Models are designed to give insights into reality. Reality is complex

but models, if they are to be useful, cannot be. For this reason, the

comparison of models and reality is very difficult. The purpose of this

paper is to motivate and evaluate one simple technique for this comparison.

This technique is the spectral analysis of one step model prediction

residuals and is applicable to models designed to examine cyclic aspects of

observed time series.

The basic idea underlying the technique is very simple. Given a model

of a process, the model can be used to predict measured time series. The

use of information available until time t for prediction at time t+1

allows for the best prediction. The errors generated by this prediction

process can be recorded an5 their spectral characteristics evslu&tel

through the use of a Fourier transform. An oscillatory behavior mode

describes a frequency range of interest. Should the residuals exhibit

inordinately great power in tnis frequency range the ability of the model

to produce the behavior mode is called into question. This technique and

some of its properties will be considered in this paper.

There are many statistical tests available for the evaluation of

models. These tests are normally aimed at determining whether the model is

explaining a time series up to an error which is white and

contemporaneously uncorrelated with the model's explanatory variables. If

a model is intended only to deal with a limited number of aspects of

observed behavior such tests are not appropriate because to pass existing

statistical tests the model must be able to generate the observed time
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series up to a white noise process. Statistical tests which can be used to

evaluate model performance with respect to a small subset of the observed

behavior are called for. The technique considered in this paper is in this

class.

The models which will be considered in this paper are dynamic time

series models; that is, models which have dynamics determined by the model

structure as well as exogenous inputs (Hannan, 1976). Specific

consideration will be given only to linear models in this paper, though

extension to the nonlinear case will be discussed. The general state space

form (Harvey, 1981) of a dynamic time series model is

x^ ,
= Ax^ + Bu^ + Dw^—1 + 1 —t —t —

t

(1)

y = Cx + Eu + Fv
z t t t

In these equations £ represents a state vector of length k, which

summarizes the current position of the process. The vector y is of

length k < k and represents the observations actually made on the
y — X ^

process. u_ is a vector of length k of exogenous inputs into the

process and is often referrei to as the control vector. It is assumed that

u is observed exactly. w and v , of length k and k respectively,

are vectors of noise entering into the model's dynamic and measurement

processes respectively. A (k by k ) is the state transition matrix, B— X X —

(k by k ) the input matrix, D (k by k ) the model noise matrix, C^ (k

by k ) the measurement matrix, E (k by k ) the feed through matrix and
X — y u

F (k by k ) the measurement noise matrix.

Throughout the paper lower case underlined boldfaced letters will refer to

vectors and uppercase underlined boldfaced letters will refer to

matrices.





-4-

Model Purpose and Performance

The usual assumptions made in dealing with the above model are that w

and _v are independent white noise processes and that the matrices _A, B

and _C satisfy certain rank conditions which makes the problem well

specified (Mehra, 1974). Under these circumstances there are statistical

techniques for estimating and evaluating the above models. The properties

of system estimators are not, however, well documented (Schweppe, 1972).

If, in addition to the above assumptions, all states are observed

(C_ = !_) the statistical theory is quite well developed. This is the case

considered by Hannan (1976). Under these circumstances the test for model

validity tests the null hypothesis that the errors are contemporaneously

uncorrelated with the state variables (x_) and themselves uncorrelatei

over time.

The best known test of the errors is the Durbin-Vatson test for first

order autocorrelation. This test is performed and the results reported fcr

most models based on time series data. The problem with the Durbin-Watson

test is that it only tests for a very limited type of dynamic error

structure. Testing for higher order autocorrelation ani correlation

between errors and explanatory variables was recommended b;,' Box and Jenkins

(1976), and this technique has more recently been extended to the vector

time series problem (for example Poskitt and Tremayne 1932, Deistler,

Dunsmuir and Hannan, 1978, Dunsmuir and Hannan 1976).

The statistical tests which have been developed for time series models

are designed to detect non-white noise or correlations between the

explanatory variables and the errors. For many models of interest it is

highly unlikely that such tests would fail to detect problems. Many models

are meant to be simple representations of complex processes. As a
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consequence it is unlikely that the model can generate the multitude of

behavior contained in a data series. If one or more modes present in the

data are not reproduced by the model, the modes will appear in the time

series of error terms. In this case the existing tests are not the

appropriate ones. Rather, what is needed is a test of the model's

explanation of certain aspects of the processes generating the data.

In contrast to using statistical techniques to evaluate model

performance, it is possible to evaluate models on the basis of their

dynamic characteristics. Recently improved computational techniques

(CCREi'^S 1933, Perez 1981) have made the rigorous evaluation of model

dynamics feasible for quite large models. This analysis can be applied to

both theoretically oriented models (Forrester 1932) and econometric models

(Kuh 1983). The analysis of models from this perspective can yield

insights into the elements of the system determining different behavior

nodes

.

One question which remains when performing such an analysis is whether

the model behavior modes correspond to something which is a part of the

system, and if so whether the model is accurately capturing the dynamics

associated with that behavior mode. This is the question addressed by

Laffargue (1979) and by Howrey and Klein (1972). These authors use two

methods to answer this question. The first is the comparison of the

dynamics implied by the linearizaton of the homogeneous model structure

with the dynamics apparent in time series. The second is the simulation

of the model with exogenous shocks to determine whether the output has the

same dynamic characteristics as the observed data. This second comparison

is normally done in the frequency domain.

The second of these techniques seems to get very close to the issues
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with which this paper is concerned. There are, however, problems with the

comparison of model output and observed time series. Translation to the

frequency domain overcomes some, but not all, of these problems. The power

spectrum of the output will depend on the product of the power spectrum of

the noise and the transfer function from the noise to the output. Distinct

noise inputs driving the same model can yield distinct outputs. Figure

2
1 shows the power spectrum for a second order linear model driven by white

noise and by autocorrelated noise. The two spectra are quite different,

and there is no indication that the output was generated by two

structurally identical models.

4

2 O

O

-e

.02 .04 .06 ,08 .10 .12 .14

Frequency (cycles per month)

Figure 1 The power spectra for a second order model excited by two

different types of noise.

"The complete description of how all the Figures were generated is
contained in Appendix B.
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Aspects of Behavior

The design of a model will depend on the issues which the model is

meant to address. Very simple models can be the source of great insights

into complex processes. The model, precisely because of its simplicity,

cannot be expected to generate all components of a measured time series.

Model purpose determines model boundary and the selection of a model

boundary may violate the conditions necessary for standard statistical

tests to be valid. The purpose of this section is to consider which

statistical assumptions might be violated without detracting from the

model's purpose.

The most obvious, and least troubling, way in which a model can fail

to capture a process is through the assumptions on noise implicit in any

statistical representation of a model. Tne noise entering a system may

display a wide variety of dynamic characteristics attributable to a number

of causes. For example the noise may display seasonal characteristics

outside tne model bounds. A case of this would be the attempt to explain

housing starts based on demographic variables, disposable income per

household, the stock of housing and the interest rate. Certainly such a

model would be incapable of generating the seasonality observed in housing

starts, and yet the model may be quite useful in other respects. The usual

procedure in this case is to use seasonally adjusted data in order to get

at the more fundamental characteristics of the problem.

The solution to the problem of separating dynamic modes is often not

this simple and in the context of a dynamic system an approach such as

seasonal adjustment may destroy a great deal of valuable information. This

is because when noise is passed through a system the output dynamics will

depend both on the dynamic characteristics of the noise going in and on the
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system. Thus, seasonal adjustment of output variable is not the same as

the correction of the system output for the seasonal characteristics of the

noise. The actual effect of seasonal adjustment is not clear. This issue

has, of course, been raised before (see for example Vallis I974).

The second reason that a model may fail to match the processes of

interest is that the model is often of lower dimension. In building a

model it is desirable to keep the model snail, for a dynamic model this

corresponds to keeping the dimension of the model low. Keeping model

dimension low while maintaining the model's applicability is difficult.

For deterministic models Perez (1932) has given some indication of how to

generate lower dimension counterparts to large models which already exist

and have been verified. Unfortunately the task which most often faces the

researcher is not the reduction of an existing model, but rather the

verification of the already reduced model. In the case of economic models

the only numerical data available for such verification are normally

historical time series.

There are two types of model failure which are very serious and whicn

a good series of performance tests should make clear. The first is simpl-r

and just involves diagnosing the inability of a model to reproduce the

behavior modes of interest in tbe data. The second is somewhat more subtle

and involves the correctness of the explanation that the model is giving.

It is the first type of failure at which the test considered in this paper

will be aimed. The second type of failure is more difficult to discern ani

the reasons for this are worth considering.

A model can be chosen to match as closely as possible an observed time

series without giving any understanding into the processes driving the

observed series. This is the case with many of the time series models used
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in forecasting. The purpose of a forecasting model is prediction,

therefore such a model cannot be criticized on the basis of its inability

to inform us about reality. The predictive time series model does, however

point out a potential problem. There are an infinite number of state space

representations of a given input output process (Chen 1970). There may

exist more than one physically meaningful model which will generate a given

output series. As an example of this consider two explanations of business

cycles, the workforce-inventory model (Metzler 1956, Mass 1976) and the

multiplier-accelerator model (Samuelson 1936, Low 1930). The two models

can, by appropriate choice of parameters, be made dynamically equivalent in

terms of the output paths generated (aggregate production in this case).

However, conceptually the two models are distinct. The results of an

analysis of policies intended to ameliorate the business cycle will be

sensitive to the choice of model.

There is a need to be able to test aspects of model performance.

Model failure attributable to undesirable noise characteristics, or

incorrect model order may not be a significant criticism of a model

designed to represent only one of several behavior modes. Model failure

due to the inabilityy of the model to generate the desired behavior modes

should be diagnosed. The rest of the paper will consider a simple teat

which is applicable when oscillatory behavior modes are of interest. Tne

ability of the test to discern important model failures, while remaining

insensitive to unimportant model failures, will be considered.
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The Frequency Domain

In order to analyze historical time series it is useful to transform

them from the time domain to the frequency domain. This approach allows

the easy comparison of the phase and gain relationships of different time

series at different frequencies (see for example Sargent 1979)' Such an

approach is useful because the noise entering the time series can obscure

these relationships. In addition, the fourier decomposition of a series

separates behavior modes associated with different complex roots of the

homogeneous dynamic system matrix A . It is very difficult to do this in

the time domain.

The easiest way to evaluate model output in the frequency domain is to

generate output by simulating the model with noise entering. The output

can then be compared to the observed time series in terms of the phase gain

and power relationships at each frequency. This is the approach Laffar^ue

(1979) uses. However this approach can be misleading for a number of

reasons. The two most obvious problems are the inability of the power

spectrum to distinguish the nature of the noise entering the system or the

degree of damping of the mode.

Figure 1 showed how one system with two different noise input series

could generate distinct spectra. The output spectra contain a combinatio;:

of the characteristics of the noise exciting the system an3 the inherent

system dynamics. The dynamics of the system are normally the things of

interest. Consideration of the power spectra alone could quite easily lead

one to reject an essentially correct model.

Consideration of the power spectrum can also lead one to accept a

flawed model. Two systems with different dynamics can generate very

similar spectra. Again this is most clearly shown by an example. It is
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easy to design two second order linear systems to display oscillations with

the same frequency but different degrees of damping. The power spectra for

output from the models with the two sets of parameters is shown in Figure

2. The noise entering the models was white. The two spectra are very

similar and certainly would not lead one to reject one model in favor of

the other.

A i/

£ O

C

-2

.02 .04 ,06 .08 .10 .12 .14

Frequency (cycles per month)

Figure 2 Power spectra for a second order model with two distinct sets of
parameters.

There is an approach to the evaluation of model system correspondence

which gets around this. This approach involves the evaluation of model

prediction residuals. In Figure 2 the power spectra for two different

models were plotted. If the second model was designed to generate the

output of the first model, then it would make sense to use the second model

to predict the output of the first model. The results of doing this are
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shown in Figure 3. The power spectra for both the residuals from this

prediction and for the output of the first model are plotted. The

residuals show a peak at the frequency at which the output spectrum peaks,

indicating that the model is not accurately representing the behavior mode

of interest. The residuals distinguish between the two models.

1 6
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made. If there is measurement noise, or some of the endogenous variables

(for example expectations) are not observed the problem is somewhat more

difficult. Kalman (1961) determined the best way to make this prediction

given measurement errors and unobserved states. Kalman 's solution will be

described briefly below.

For the rest of this paper the properties of single time series will

be considered. Phase and gain relationships between variables can be dealt

with in a manner similar to that in which single output time series will be

treated. However, this area is one in which more research needs to be

done.

Spectral Analysis of Residuals (SAR)

The proposed "test" of model performance with respect to oscillatory

behavior modes is quite simple. Given the model prediction errors, does

their spectrum indicate that the behavior mode of interest is still present

after using the model to "explain" the data? An indication of this would

be a peak in the spectr-um of the residuals near the point where the

original time series's spectrum peaked. This test is not presentei as a

statistic with associated significance levels, though such an approach is

possible in special cases. This method for evaluating model performance

considered in this paper is somewhat more qualitative. Quantitative tests

with general applicability are called for but have not yet been formulated.

It is possible to consider at a theoretical level the dynamic

properties of the residuals when all the dynamic elements of the system are

observed. This corresponds to perfect knowledge of x^ in equation 1 or

equivalently in the notation of equation 1 £ = I. ^^^ I.
^ 9. ' ^°"

notational convenience the matrix C will be taken to represent the
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transformation to the scaler time series of interest, rather than the

transformation to all the observed time series. Under these conditions the

prediction error y - y is given by

e^+l = (CA - CA)x^ + (CB - CB)u^ + (E - E)u^^^ - CDw^ - Fv^^^ . (2)

In equation 2 the matrices C_, B^, _B and E^ are from the model while A_, B^,

_C, _D, E and F^ are from the system.

For colored noise entering the system with other elements of the model

specification correct equation 2 takes the form

e = - CDw - Ev . . (3)

The dynamic characteristics of the prediction errors will precisely match

those of a linear combination of the noise entering the system. If tne

noise entering displays dynamics distinct from the time series of interest

then the spectral analysis of the residuals will support the model's

ability to reproduce the behavior mode. If, on the other hand, the

entering noise possess precisely the dynamics of interest there will be

something of a problem. Such a situation might be considered a rather

degenerate one^, but if it occurs it becomes very difficult to disentangle

the process and the noise. ¥hen such an identification problem exists.

3There are reasons why such a situation might arise. If, for example,
there are two firms with one taking orders from the other then the

orders from the first firm may have a random component similar to the

output of the second firm. If only orders given to the first firm and

the output of the second are observed, then the modeling of the two

firms as one will leave residuals with dynamic characteristics similar

to the orders made by the first firm. But it is not clear that the

model is wrong.
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there is no method which can successfully determine the model performance

at the specified frequency.

The other and more serious way in which a model can diverge from

reality is in lacking the actual fine structure of the system, or

misrepresenting the structure. In the framework of equation 1 both of

these are equivalent to errors in the A matrix. A model of lower order

then the system corresponds to having zero entries in various places in the

_A matrix as well as the C_ matrix. In this case equation 2 gives an

error which can take on almost any dynamic characteristics.

In particular, as long as there is error in the A matrix, the errors

will be correlated with the values of x_ . It follows that the errors may

take on some of the dynamic characteristics of the observed time series.

Vf'hether these dynamic characteristics will be relevant to the behavior mode

of interest is the important question. If they are the test proposei for

model evaluation will give evidence against the model.

The above analysis was based on the assumption that the observation

matrix C was the identity. There are two reasons why this is quite

unlikely to be the case. The first is that when a model is put into a

state space form, the observation of all states requires that the

measurement noise be zero. The second is that the model may have in it

certain states which cannot, by their nature, be measured.

If there is measurement noise in the observation of dynamic time

series then such constructions as distributed lags will prevent us froir.

exact state measurement. This is so because in the state space

representation a formulation such as
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^t^l
= -5^ " -5^.1 * •2x,_2 (4)

becomes

z1^,^ = x^ (5a)

^^t.i
=

-^t
^5b)

If there is error in the measurement of x , then both z1 and z2 will

diverge fro:n the values which would be obtained by lagging x once anf

twice respectively. In such circumstances we would want to use information

about the behavior of y as well as x in getting the best estimates of

the z's .

The second obvious reason that the observation matrix might fail to be

the identity is the explicit inclusion of unobservable variables into the

model. If, for example, the model were to include an expectations variable

z determined by the observed variables y and x according to the

equation

"t-1
= -5^ " -^y.^ - w^ (6)

with w representing noise then the value of z will not be known, yet z

may determine the dynamic progression of the system.

When there are unobserved states, the use of a model to predict one

step ahead is somewhat more difficult. However, there is a general

solution to the problem for linear models known as Kalman filtering (Kalman

1962, Kalman and Bucy 1962) which can be extended to non-linear models
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(Sage and Melsa, 1976). The Kalman filter is a technique for answering the

following question. Given the best estimate we can get of the states at

time t and the available observations at time t+1 what is our best

estimate of the states at time t+1?

There are two ways to answer this question. The first is to simulate

the model from time t to time t+1 . The resulting x^ would then

represent our estimate of the states. The second is to compare the

relationships between the states and the observed variable. Observed

states could be set equal to their observed values. Unobserved states are

still related to observations in some manner and therefore some guess for

these is possible. The Kalman filter gives the optimal weights for

combining these estimates. (Optimal under the correct model specification

and white Guassian noise.)

Applying the SAR Test to Synthetic Data

The theoretical discussion has left it somewhat uncertain what the

merits of the spectral analysis of residuals (SAR) test are. '^'ne purpose

of this section is to simulate various types of model failures and to

consider the ability of the SAH test to yield information on model

performance. The simulations were done using second and fourth order

linear models. The models and the specifics of the tests done are

described in appendices A and B respectively.

For the purposes of the simulation it was assumed that there was only

one observed time series. A Kalman filter was used to evaluate the states

and generate the prediction error. The resulting prediction error was then

used as the basis for analyzing model performance. The second order model

was chosen to display oscillatory behavior. That is, the model was chosen
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to have complex eigenvalues. The test of performance is therefore the

amount of power which the residuals retain at the frequencies where model

output power is greatest.

The first simulations were done using a model which matched the

process up to the dynamic characteristics of the noise. Different types of

4
noise were used to excite the second order System. The model used to

generate residuals was correct except that its specification did not

include assumptions on the dynamic characteristics of the noise. The types

of noise considered were: white noise for which the model is exactly

correct, first order autocorrelated noise, noise with relatively high

frequency oscillatory characteristics and noise with oscillatory

characteristics near the frequency of the System output.

When white noise is used to excite the System the model is as correct

as it is possible for a model to be. The model can be used to match the

observed time series up to white noise. This can be clearly seen in Figure

4, which shows the power spectrum of the model output, the noise input an:

the calculated residuals. Other applicable model tests will not reject

this model either. Tne Durbin Watson statistic is near 2 and average! 1 . 9S

over ten different noise seeds. The Kolmogorov-Smirnof f statistics

(Jenkins and Watts 1963) testing for the whiteness of the spectra give a

2
statistic of 18.2 distributed X with 20 degrees of freedom which does no

-

allow the hypothesis of whiteness to be rejected.

The introduction of first order autocorrelated noise into the System

changes the power spectrum of the output. The power spectrum in this case

peaks at a slightly lower frequency, consistent with the introduction of

4
System with upper case S will refer to the model used in the simulations

to generate the data. Thus the model being correct means that the

model being used to generate the residuals is the same as the model

used to generate the data.
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Figure 4 Power spectra for the Base Model excited by white noise, the

white input noise and the residuals obtained when the Base Model is

used to explain the output.

the autocorrelatei noise which has a raonotonically decreasing power

spectrum. This can be seen in Figure 5. The power spectrum of the

residuals matches fairly closely that of the autocorrelated noise ani does

not show the peak associated with the model output.

The introduction of noise which has a power spectrum with a distinct

peak, in this case at a higher frequency than for the System yields a

output spectrum as shown in Figure 6. The output spectrum in this case is

double peaked which clearly suggests that there is more than one

oscillatory behavior mode active. The relevant question in this case is

whether the model can explain one of the behavior modes. Using the model

to generate the residuals yields quite good results
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Figure 5 Power spectra for the Base Model excited by first order
autocorrlated noise, the autocorrelatei input noise and the resiiu^l=
obtained when the Base Model is usei to explain the output.
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Figure 6 Power spectra for the Base Model excited by second order colored
noise, the colored input noise and the residuals obtained when the
Base Model is used to explain the output.
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The introduction of noise with the same dynamic characteristics as the

model output makes model performance difficult to evaluate. The power

spectrum of the noise is very similar to that of the System driven by white

noise as can he seen in Figure 7. However, when the System is excited by

such noise the Power spectrum of the output indicates a much greater degree

of variability. The reason for this is that the System is being excited at

its natural frequency, and therefore tends to amplify the noise. The power

spectrum of the residuals shows a peak at the same frequency as the System.

Tne SAR test suggests that performance is poor. The SAR test, like any

other test, yields misleading information in this situation.

3

•4

-4

.08 .10 .12

Frequency (cycles per month)

Figure 7 Power spectra for the Base Model excited by colored noise, the

colored input noise and the residuals obtained when the Base Model is

used to explain the output. The input noise was chosen to have
dynamic characteristics similar to those of the base model.
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The second situation simulated was the case of incorrect parameters.

In this case parameters were given other than their actual value, though

the model was the same structurally as the System. (The case of a

structurally different system will be considered belcw.) There are two

cases of interest in considering a model with wrong parameters. The first

is that in which the model generates a spectrum quite similar to that of

the System. The second is that in which the model spectrum is distinct

from the system.

The model can be chosen to have a similar spectrum with distinctive

damping characteristics. Consideration of the spectra in these

circumstances does not yield any decisive information about the ability of

the model to reproduce the behavior mode. The use of the residuals, as we

saw above, does offer somewhat more information.

If the parameters of the model are chosen so that the power spectra of

the model and that of the System diverge then it would be expected that the

residuals would show a great deal of power at the frequencies of interest.

Indeed this is the case as can be seen in Figure 8. Tne power spectrur; of

the residuals shows a marked peak at the System frequency, and a marked

trough at the model frequency. In essence, the model is able to account

for an excessive amount of the variability at the higher frequencies.

It is quite common to have small models represent complicated

processes. This is something that a modeler often aims at in getting an

understanding of a system. The ability of a small model to capture a

behavior mode of interest will depend of the characteristics of the overall

system. If there is a high degree of decoupling (distinct behavior modes

associated with distinct state variables) a small model will do quite well

in capturing the behavior. The greater the degree of coupling the less
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Figure 3 Power spectra for the Base Model, a model with different
parameters froir. those of the base model ani residuals generated when
the model with different parameters is used to explain the Base Model
output. The noise exciting the models is white.

this will be true. In order to get at the usefulness of the SAK test in

identifying embedded behavior modes a fourth order system was considered.

The fourth order system was chosen to have the basic second order system

embedded in it, but to display two oscillatory behavior modes. The second

order model was then used to generate residuals.

The 3AR test was run on the residuals generated using a second order

model to explain a fourth order System. The resulting residuals have very

low power at the frequencies of interest as can be seen in Figure 9. The

residuals do show a pronounced peak at the frequency of the second

oscillatory mode of the System.
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^igure 9 The power spectra for a more complicated model of fourth order

and the residuals whic result when the Base Model is used to explain

the more complicated model output.

The final area of failure for a model is that of a model which is an

alternative state space representation of a process. Because there are an

infinite number of state space representations of the same process (see for

example Chen, 1972) it will be possible to fit many dynamic models equally

well to a process. This is, of course, the point of the debates on

observational equaivalence (see for example Sargent 1976). This normally

does not represent a problem because it is rare for two state space

representations with plausible physical or behavioral interpretations to

coincide. Should this be the case, however, the SAR test will not be

capable of distinguishing the two.

The example mentioned earlier of the workforce-inventory versus the
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multiplier-accelerator explanation of business cycles brings this point

out. The output generated by the two models under appropriate parameter

specifications is indistinguishable. However, the models posit different

state variables as being active in the process. The models can therefore

be used to make statements about the relationships between different

variables. These statements can then be checked empirically. One

technique for doing this would be the phase and gain analysis of variable,

or residuals, in the frequency domain. The SAR test cannot distinguish

between some types of models. However, natural extensions to tne SAR test

could be used on many cases that come to mind.

Conclusions and Directions for Future Research

Tnis paper has identified an area of model building, analysis ani

diagnosis which warrants further research. Specifically, the question of

how to assess the ability of a model to deal with aspects of behavior has

been addressed. One simple and fairly obvious technique, the spectral

analysis of model prediction residuals, has been considered as a means of

assessing aspects of model performances. ¥hen the aspect of model

performance being considered is the ability to reproduce an oscillatory

behavior mode the SAR is a useful diagnostic tool. The SAR technique

breaks down if the noise dynamics are similar to the system dynamics. The

SAR technique cannot distinguish between two models capable of reproducing

the dynamics. In both these cases any univariate test is bound to fail.

The SAR test has the obvious extension to the spectral analysis of a

vector of residuals. In this case both power spectra and the phase ani

gain relationships of the residuals could be considered. The model, if it

is performing well, will remove the phase and gain relationships of
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interest from the data. If the phase and gain relationships are still

present in the residuals this would suggest that the model is failing, much

as a peak in the power spectrum at the frequency of interest suggests a

model failure.

The test has been considered only for linear models but there is

nothing which prevents its extension to the nonlinear case. Prediction

residuals and the fourier transform can be applied to nonlinear models.

The interpretation of the power spectrum is somewhat less clear for

nonlinear models. In order to deal with nonlinear models correctly it is

necessary to define what is meant by a behavior mode in each particular

case. Once this is done scrutinizing the residuals for evidence of tnis

behavior mode is the natural nonlinear extension of the SAR test.

Tne problem of evaluating a model's ability to match the gross

qualitative characteristics of observed behavior is very important, an:

very difficult. Techniques which are practical ani informative in this

task are doubtless called for. Tests such as the SAH test are one vehicle

toward this end. But what is probably more important than any technique

is a unified framework for approaching this problem.
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Appendix A: Data Generating Models

The basic data generating model used was the workforce inventory

oscillator (Forrester 1960, Mass 1976). The model was simplified to a

second order model and written in linear form. The interaction between

inventories and production are often considered to be the primary-

mechanisms producing business cycles and the model therefore seemed of some

interest.

The model equations are given by

P = WF*?ROD

WF = VF + GWF

CW? = (DW? - WF)/TAWF + NOIS

DWF = DP/PROD

DP = + IC

IC = (DI - 1)/TCI (7)

1 = 1^ P_,

P - Production (output units per month)

PHDD - Productivity (output units per month per worker)

WF - Workforce (workers)

CW? - Change in workforce (workers per month)

DWF - Desired workforce (workers)

TAWF - Time to adjust workforce (months)

NOIS - A random component in the hire fire rate (workers per month)

DP - Desired production (output units per month)

- Orders (output units per months)

IC - Inventory correction (output units per month)

DI - Desired inventory (output units)

1 - Inventory (output units)

TCI - Time to correct inventory (months)

Die - Desired inventory coverage (months)
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Put in the form of equations 1 the equations become

IWF' 1-1/TAWF -1/(PR0D*TAWF*TCI)

PROD 1

lWF-1

I

I I

1-1

(T1+DIC)/(PR0D*T1*T2)

-1
^-1

*

WF*PROD

NOIS

The introduction of the noise term corresponds to uncertainty in the

results of advertising that jobs are available, and uncertainty about how

many people will quit.

Tne base MODEL has an orders level of 100 units per month, a workforce

of 100 people, a productivity of 1 unit per month per man and a desired

inventory coverage of 1 unit per unit of output per month. The noise was

chosen to have a variance of one.

Tne above MODEL with the choice of parameters TAWF=12 and TCI=6.5 is

oscillatory with a period of approximately 55 months.

Higher Order Model

The higher order model is generated by adding some additional

structure to the above model. It is quite simple and somewhat unrealistic.

The desired speculative inventory change is a linear function of the

difference between price and normal price. ¥hen the price is above normal

price people want to buy and hold on to inventories. However, when

inventories are above their desired level the price is driven down. The

inventories are separated into two categories, distributors and producers.

The producers are modeled as in the paper. The distributors act only as

middle men and do not produce. The four levels in the model are the price,

the distributor's inventory, the producer's inventory and the workforce.

The equations are given by
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p
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PRC - price (dolloars per unit)

NPRC - normal price (dollars)

KPI - multiplier from price for inventory (units per month per

dollar)

CPRC - change in price (dollar per month)

MIPl - multiplier from inventory for price (dollars per month per

unit)

MIPl - multiplier from inventory for price (dollars per month per

unit)

The model run used MPI=5, NPHC = 1 , PR0D=1 , PDIC=.6, DDI': = .4, 0=100, 7001 = 15,

TNP=15, TAa'F=12, and TPCI = 6.5, KIP1 = -03 and K:P2=.001

Tne noise used in the model was generated by passing white noise

through a second order linear filter. The general equations for the filter

are given as

X = aX ^+tY_^ + ev;:;

Y = cX .+d' ,
+ frt'-^'

NOIS = gX+hY

Wnere the terra VN is a white noise term, the variance of W:« is adjusted so

that the variance of NOIS is one. The output NOIS has color

characteristics. Tne specifics of tne parameter values chosen for each

plot are described in appendix B.
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Appendix B: Description of the Simulations Done

The simulations described were all repeated with 10 different noise

seeds to try to get at general characteristics of the processes. The plots

shown in the paper are all the average spectra over all 10 runs. The

spectra were smoothed with a window width of J>. The runs were all done for

a length of 420 months. 512 was chosen as te basis for the Fourier

transform. The simulations were all carried out using FOHTHAIJ programs

which are available on request.

Figure 1

Figure one was produced by using white noise in the inventory-

workforce model and by using colored noise in the inventory -workforce

model. The colored noise was generated by setting a=.8, b = -.0';', c = 1.0,

d=.9, e=1.0, f=0.0, g=1.0 and h=1.0 . The model was run with TAWF=12.0 and

TCI=6.5.

Figure 2

Figure 2 was created by using two different sets of time constants in

the workforce-inventory model. The first were TAWF=12.0 and TCI=6.5 • The

second were TAWF=3.0 and TCI=3.4 • The noise seeds to the model with the

second constants were chosen to have twice the variance of the noise seeds

to the model with the first set of constants.

Figure 3

Figure three plots the spectrum from the workforce-inventory model

with TAWF=12.0 and TCI=6.5 being excited by white noise. Under the

assumption that TAWF=3.0 and TCI=8.4 the workforce-inventory model was use!

to generate residuals.

Figure 4

Figure 4 plots the model spectrum, the input noise spectrum and the

residual spectrum for white noise. The w-i model was run with TAWF=12.0

and TCI=6.5 .
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Figure 5

Figure 5 plots the model spectrum, the input noise spectrum and the

residual spectrum for autocorrelated noise. The noise was generated by

setting a=.8, b=0.0, c=0.0, d=0.0, e=1.0, f=0.0, g=1.0 and h=0.0 . The w-i

model was run with TAWF=12.0 and TCI=6.5 •

Figure 6

Figure 5 plots the model spectrum, the input noise spectrum and the

residual spectrum for second order colored noise. The noise was generated

by setting a=.85, b=-.2, c=1.0, d=.75, e=1.0, f=0.0, g=1.0 and h=0.0 .

The w-i model was run with TAWF=12.0 and TCI=6.5 •

Figure 7

Figure 7 plots the model spectrum, the input noise spectrum and the

residual spectrum for second order colored noise with the same

characteristics as the model output. The noise was generated by setting

a=.9, b=-.0135, c=1.0, d=1.0, e=1.0, f=0.0, g=1.0 and h=0.0 . The w-i

model was run with TAWF=''i2.0 and TCI = 6.5 •

Figure 8

Figure 3 plots the spectrum from the workforce-inventory model with

TAWF=12.0 and TGI=6.5 being excited by white noise and the spectrum of the

w-i model with TAWF=12 and TDI = 2. Under the assumption that TAWF=''i2.0 and

TC1=2.0 the w-i model was used to generate residuals from the TA'rt'F=12,

TCI=C.5 data.

Figure 9

Figure 9 plots the spectrum fot the more complicated model with

hoarding and the residuals from explaining this time series using the w-i

model. The hoarding model values ae as in appendix A. The w-i values

assumed for generating the residuals were TAWF=12.0 and TCI=6.5
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