

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

CSVZY

The Two Sides of Time Sharin/?

Martin Greenberger

Sloan School of Management and Project MAC
Massachusetts Institute of Technology

127-65

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

C8V£Y

The Two Sides of Time Sharing

Martin Creenberger

Sloan School of Management and Project MAC
Massachusetts Institute of Technology

127-65

Based on material presented to the IFIP Congress 65.

Work reported herein was supported (in part) by Project MAC,
an M.I.T. research program sponsored by the Advanced
Research Projects Agency, Department of Defense, under
Office of Naval Research Contract Number Nonr-U 102(01)

.

Reproduction in whole or in part is permitted for any
purpose of the United States Covernment.

Development of the OPS system was a cooperative undertaking
with Anthony Horry , Malcolm Jones, James Morris, David Ness,
Mayer Wantman, and Stephen Whitelaw,

li.l-feS'

PACF 2

1. Introduction

There is more than one way to hlsect the new suhject of

time sharing into contrasting aspects. For example / we

could view the rood and the had of it, a dichotomy that is

guaranteed to provoke lively discussions. Rut these

discussions, although healthy, are premature. They sra a

little like the Harvard sweatshirts we see on some

three-year olds. They focus attention on important issues

and goals, hut come too early in the developmental process

to he very meaningful,

My hi sect ion is not going to he into the pood and the

had , hut rather into the system and the user , hoth of whom

we consider good for now. The distinction hetween system

and user is reflected in the douhle-edged acronym of

Mo I ,T,'s Project MAT: Mul t i -Access Computer refers to the

physical tool or systpm, whereas Machine-Aided Cognition

expresses the hopes of the uspr. The distinction is also

present In the phrase on- 1 i ne rp?* 1 - 1 ime . Real - 1 Ime depicts

the performance of the processor, while on-1 ? ne descrihes

the status of the user. The distinction may even he found

within the scheduling algorithm of an on-line operation,

which happens to he the suhject of a recent operations

research paper (11),

Speaking of operations research, there was a very fine

article hy Heorges Brigham puhlished ahout 10 years ago in

the Journal of the Operations Research Society of America

(2) „ It won the I.anchester Prize for the hest 0/R paper of

the year. It dealt with a congestion problem In an aircraft

factory, and It contained an interesting queueing analysis

of a tool counter. The analysis viewed the service

operation at the tool counter mathematically, first from the

side of the tool clerk or server, then from the siHe of the

mechanic or user. This approach gives two mathematical

problems that are completely equivalent. We might call them

duals. Unless we change the statement of service objectives

in passing from one side of the counter to the other, both

problems yield identical solutions.

The point is, of course, that the service objectives

normally are different on the two sides of the counter. The

server and the user look at the operation through different

pi asses

.

Behind the tool counter the clerk moves as quickly as

possible. He strives for efficiency and dispatch to prevent

conpestion on the other side. In his haste, he may fail to

notice which customer has been waiting the longest. This

oversight does not affect average customer wait, so long as

no one starts a brawl from impatience. The clerk may also

show a slight preference for customers v/ho wish the fewest

tools, a bias that actually reduces average wait. During

free periods, the clerk nibbles away at background tasks

which he tries to get done without neglecting the more

important service operation in the foreground ,

In front of the counter, the mechanic is eaper to get

back to his job. His foreman may he marking time, and a

costly machine may be sitting idle in need of repairs. Me

is miffed at havinp to wait lonper than the next fellow. He

is upset hy having to accept a Stillson instead of a

sinple-head wrench, or a bolt that turns out to be the wronr

size and requires him to return to the counter. If the

mechanic had his way, all the tools he needs would be

available from one counter, without waiting, error,

replacement, discussion, or red tape.

The sets of objectives of user and system are not

necessarily contradictory. On the contrary, the server's

objectives usually are fashioned so as to accommodate the

user, but typically the average user or the aggrepate of

users, rather than the ? nd ? yi dual user.

Now let's talk about computers. We really did not need

the tonl-counter example, since the same two-sided

phenomenon is familiar in the computer fiel^. In a

conventional computer center the operations manaper strives

for greater equipment efficiency throuph batch processing

and a closed shop, while the programmer lonps for faster

response time and closer touch wi th his run. This state of

affairs has lead to conflict, and this conflict has been the

sinple most important motive for the development of time

sharing. Time sharing is definitely a concession to the

user and a recognition of his point of view.

PAGF 5

2. Time-shar i ng Supervisors

The first order of business in making time sharing work

on a meaningful scale was to solve the technical problems

occasioned by this new mode of operation. Supervisors were

bui 1 t to:

a. Accept input continuously from the remote
terminals of a number of simultaneous users,

b. Parcel out successive pieces of the computer's f

time to users equitably,

c. Schedule this time so that the computer seemed
immediately responsive to most requests,

d. Protect the programs of each user from damage
by an errant neighbor,

e. Manage input-output and queues of interrupts.

f. Transfer programs flexibly between primary and
secondary storage,

g. Maintain data files,

h. Provide error detection and security from
unauthorized use, and

I. Allow batch processing to continue in the
background, concurrently with operation of the
remote terminals in the foreground.

Programming the supervisors to solve these techniral

problems were major undertakings, partly because the jor had

not been done before, and partly because the computers

available at the time were not designed to do the joh.

PAGF 6

Emphasis was p]aced on the server side of the operation

getting the processor to time share.

A few time sharing supervisors with limited horizons

did cross over to the user's side (15,18), while the bip-ger

and broader supervisors (3,17) provided e framework an*-' the

means for others to do so, PTSS, the time sharinr

supervisor at Project MAP, is structured as a modular set of

subroutines that encourages further evolution (U). Users

may add to CTSS by writing and compiling programs in a

variety of languages, including FORTRAN, MAD, ALGOL, and

FAP. There are flexible facilities for editing. From this

base, systems can be hand tailored for particular

applications, such as engineering design (16), stress

analysis (1), and symbol manipulation (21). Fach of these

systems is in a sense a fulfillment of CTSS in a special

user ' s domai n.

3. User Systems

The development of time sharing supervisors has been an

approach to man-machine operation from the server's side of

the counter. In contrast, certain systems have approached

from the user's side (5,13,20). These systems were

designed to facilitate man-machine interaction in a specific

problem context. Sharing time among users was not a

prerequisite or Initial concern, although it makes good

sense as an afterthought, and some of these systems have

PAPF 7

since moved in that direction. Sketchpad, for example/

which is one of the earliest and most vivid of the

interactive user systems, is heinp implemented in an

extended 3-dimens ional form on the Project MAC computer.

The full power of an on-line system is attained when the

user is able to shift flexibly anH easily between a wMe

variety of different activities without incurring h i rh

set-up costs or requiring awkward adjustments. The raw

computer can do many wondrous things, as we all know, but

this versatility does not benefit most users unless it is

placed at their fingertips. The average user should not

have to carry his water to the faucet. The system should

take care of this for him.

Specifically, it should be convenient for the on-line

uspt to regulate echo checking, make calculations, display

intermediate results, obtain helpful puidelines, and view

key variables. He shoulH have the ability to move easily

between program modification and execution without the need

for recompi lat i on , He should he abl^ to execute a

subroutine by simply referring to it symbolically, alter its

arguments without fuss, compound it with other subroutines,

and treat the compound as he treats the parts. These

features are important to him whether he is solving a

mathematical problem, building a simulation model, designing

a man-machine decision procedure, constructing a real-time

operation, or simply doing some data analysis. And if he is

pi ng-ponp:i ng among several such activities, the value of

PAHF 8

these features, when provided hy a single system, is

mu 1 1 ? pi i ed.

The OPS system at Project MAC was developed to prnv'de

these features (8,9,10). It is an on-line system that is

multi-purpose to the individual user, just as CTSS is

multi-purpose to the community of users. The OPS system

uses CTSS and is a natural extension of it.

k . An 111 ustration

Suppose we have the followinr prohlem to solve: our

single processor time shares N terminals, using a

round-rohin scheduling procedure with a Quantum of one

second; we want to know how long a one-second request has

to wait, on the average, for values of N ranging from 1 to

50; we also want to know how much hatch processing can be

accomplished in the background during periods when none of

the N terminals is requesting service.

For N equal to the number of terminals currently

connected, we can answer these questions by making the

time-sharing operation introspective; that is, by having it

gather statistics about itself. But we cannot use this

device in general, unless we are willing to subject the

operation to a stream of perturbations in N, The public

relations side of such an approach to the prohlem gives even

the most callous administrator substantial reason to pause.

Simulation is a more feasible tack, as any pood student

of the art will hasten to tell us, rhanrinp N in a

simulation does not disturb the clientele, and can be

accomplished with great dispatch,

A still more elepant solution to the problem is to

develop a queueinp model with N as parameter. Ry virtue of

suitable simplifying assumptions, tbp mo^pl heromps a set of

difference equations. A compact algorithm can be propremmp^

to solve the equations recursively.

The benefits and drawbacks of empirical data patberinp

vs. simulation vs. mathematical analysis arr> well

documented, What we would really likp to be able to do is a

little of all three, back and forth, until our gradually

increasing comprehension of the problem becomes the desired

sol ut ion,

This iterative process can expand into a series of runs

over several weeks or even months in a traditional

production-oriented natch setting- Consider the debugging

sequence required to propram the algorithm; add to this the

statistical analyses necessary for estimating reiat ionsbips

and reducing data to classical probability distributions;

combine all that with rp.ppptpr': complications of the

simulation and contemplation of i t'> results; ^nd you see

how this process can be very costly in time. In addition,

the process requires a flexible simulation system, like

Simscript, pood statistical subroutines, like Thl-square an^'

multiple repression, debuppinp aids, like traces and dumps,

PACF 10

a desk calculator, graphical displays, and so on.

In a t ime-shar i ng environment/ we can hope for a better

match of computer with the creative or prohl pn-sol vi ng

process. Indeed, this has been one of the main motivations

in the development of time sharing. We can hope for an

on-line system that provides us with the variety of

facilities v/e need, and allows us to switch hack and forth

between debugging, calculating, modeling, simulating,

modifying, displays, and analysis, with minimal effort and

expense.

The OPS system has these features, and brings us closer

to the day when the total process that we have been

describing might occupy an able researcher no lonper than

one interesting afternoon at his terminal.

JL, The OPS System

The OPS system is a multi-purpose modular apparatus

with on-line facilities for: symbolic matrix and vector

calculations; statistical analyses such as multiple

regressions; FORTRAN and MAO type programming with instant

execution without need for compilation; incremental

modeling of computer simulations; and graduated levels of

user interaction. Switching among facilities is simple and

entails minimal set-up costs, giving great flexibility of

use. Subroutines arc added or subtracted with ease,

allowing the user to adapt the system to his own

PA^F 11

speci f! cat ions . Information about the system Is available

on 1 I ne.

The OPS system has recently been made a publicly

available command at Project MAO. In giving the command,

the user can specify operators stored In his personal file,

and these will be loaded with the standard operators of the

OPS system. Operators arc. simply precompiled RSS

subroutines. They can be loaded at load time, or

dynamically any time thereafter.

By means of the OPS system, the user can:

1. Pall operators by name from the console;

2. Compound operators into MAn or FORTRAN
type programs that may themselves be called like
operators

;

3. Fxecute (or test) while compounding;

k. Compound (or remember) while executing;

5. Fdit compound operators and their
parameters either from the console or from a

compound operator;

6. Refer symbolically to common storage by
cell or array name-

7. Dynamically modify the mapping and
contents of common storage at execution time;

8. Add operators without limit and bring
them Into core as needed;

9. Intensify or reduce the level of user
interaction by means of switch settings.

PAPF 12

6. Standard Operators

Among the standard operators that cone with the system

are:

1. SFT, which is like the general assignment (=)

statement of FORTRAN and MAD, except that its symhols can

denote complete matrices and vectors/ as well as elements.

Thus, executing the operator

SFT n = A + R * LOn. (C)

may cause a 20 x 20 matrix A to he added to the product of a

20 x 20 scalar matrix (whose elements ara all equal to the

lop of the constant T)„ The scalar matrix need not be

stored explicitly. SFT also provides general matrix

multiplication and transposition of matrices, Flements of

matrices rire referred to by the customarv parenthesis

notation. Pimensions may he symbolic, as in the following

example:

SFT n(l,J) = A(I,C)/SQRT.(B(C,J))

2. IF and I FR (pronounced IF-R), which are> similar to

the MAD conditional statement, and cause a branch depending

upon the truth value of a Roolean proposition.

3. REPFAT and GOTO, which allow for looping, indexing,

and unconditional transfers.

k* TYPF, which permits symbolic entry or print out of

unformated information to or from common storage.

PAT 13

5. SAVFC and LOADT, (pronounced SAVF-C and LOAD-C),

which save and retrieve Information hetween common storape

and disc,

6. SAVFS, LOADS, ENTERS, FRASFS, RFSFTS, and PRINTS

(prounouncd SAVF-S etc), which save, retrieve, modify, and

print the symhol tahle.

7. SAVFK, LOADK, FO I TK , PRINTK, FNTFRK, FRASFK, NAMEK,

CALLK, RFTRNK, and TAKFP, which save, retrieve, edit, print,

delete, initiate, name, rename, execute, and terminate

compound operators, and distribute their parameters.

8. TFXT, which prints out prespec'fie^ textual

information durinp execution.

9. FIT, which performs a multiple linear repression of

a dependent variable on a set of independent variables. For

exampl

e

FIT Y TO XI X2 X3

fits the observations stored in the vector Y to those stored

in vectors XI, X2, and X3. A vector of weights may be

specified, and a vector containing the residuals of fit may

be created,

10. SCHFO, RSPHFO, DFLAY, PANTFL, LOCAL, OALL^K,

OALLRK, and RFTPNA, which form a packapp of simulation

operators for on-line model inp us'np en apen^a that

schedules actions and events.

11. FORMAT, INPUT, and OUTPUT, which make possible

arbitrarily formated readinp and printinp in the sense of

FORTRAN.

PAHF 1U

12. VIEW, which pives a snapshot of key system

variables for error checkinp.

13. FRROR, which provides diagnostic information on

common user mistakes,

lit. CTSS, which allows execution of any HTSS command

from within the OPS system.

15. nuiDF, which provides descriptive information on

the OPS system.

16. DRAW, which furnishes a random draw from thp

exponential, normal, or rectangular probability

d i str i but ion

.

7. The Fut u re

Future time sharing supprvisors will run on computer

systems havinp many processors and many active memory

modules, flexibly i nterconnectpd . These systpms will

correct a number of current technical deficiencies in time

sharing operation. They will provide for thp Hynamic

allocation of storape throuph pape turninp, so that a uspr

will not have to specify or load all his propramminr en rl

data requirements when he bepins to interact with the

ComputerLand they will permit the sharinp by different

users, not only of processors and storape, but also propram

packapes assembled as pure procedures in symbolically

identified sepments of memory.

PARF 15

These advances are on the server's side of the

operation. There is still much work to he done there, and

it will henefit the user directly. Progress will also come

on the user's side in the form of more natural languages, a

much wider range of terminal equipment/ improvements in

graphical and audio input-output facilities, sn^ bigger an^

better OPS-type systems.

The situation today in computation is ahout what it was

after the turn of the century in the distribution of

electricity (12). The first electric service in New York

City illuminated the early Fdison light bulbs, an^' did

little else, except run an occasional elevator, toaster, or

iron. There was plenty of skepticism about the benefits of

distributing electricity in those days- Fach electric light

installation was required by law to be accompanied by a gas

light alongside to cover what was at first considered to be

the very substantia^ likelihood of failure. As it turned

out, very few of the gas lights ever had to be used.

Much progress has been maHe in the design of

distribution lines and turbines since then, but the system

developments are dwarfed by what has happened on the user's

s i rie=-househol d appliances, radio, television, hi-fi,

communications, heating systems, air cond i t i op ? nr, ... ,

computers

.

Today there is great intellectual challenge in

designing better computer system configurations, as well as

the programming concepts and software required to make the

PACF 16

systems work as Intended (and, h ! s tor I cal 1 y, even better

than intended). Many of the finest minds in the computer

field are dedicated to the task. At Project MAC, system

programming receives top priority, and the twofold MAC

objective is temporarily dominated by a concerted effort to

foster and implement the utility concept.

The broad system poal of Project MAT may he reparded as
the development and operation of a community utility
that is capable of supplying computer power to each
customer where, when, and in the amount needed, (7)

Work also is in progress at Project MAC on the user's

side of the counter, and OPS is only one of a larre numhpr

of examples. In cominp years we may expect facilities for

users to expand dramatically in magnitude ar\^ importance,

just as applications of electricity have expanded during the

past several decades. More and more scientific brainpower

and creative energy will shift in this direction.

The shift has just hep:un. Only after it has been

underway for some time will it really be meaningful to sit

down and talk about the good and the bad of time sharing.

PAGE 17

8. References

1. Biggs, J. M. and Logcher, R. D. Stress :

A Problem-oriented Language for Structural Engi neer i ng .

Technical Report MAC-TR-6, M.I.T., 1964.

2. 3righam, G. "On a Congestion Problem in an Aircraft
Factory", Operations Research , (November 1955).

3. Corbato, F. J. et. al. The Compat i bl e Time-Shar i ng
System . M.I.T. Press, Cambridge, 1963.

4. Corbato, F. J, and Glaser, E. "Introduction to Time
Sharing," Datamat ion , (November 1964),

5. Caller, G. J. and Fried, B. 0. The STL On-1 j ne
Computer . TRW/Space Technology Laboratories, Redondo Beach,
Cal iforni a, 1964.

6. Dennis, J, 3, "A Multiuser Computation Facility for
Education and Research", Comm . of the ACM 2/ (September
1964).

7. Fano, R. M. "The MAC System: A Progress Report", I EEE
Spectrum , (January 1965).

8. Greenberger, Martin. The 0PS-1 Manual

.

Report MAC-TR-8, M.I.T., 1964*
Techn i cal

9. Greenberger, Martin. A New Methodology for Computer
Simulation . Technical Report MAC-TR-13, M.I.T./ 1964.

10. Greenberger, M., Jones, M., Morris, J., and Ness, D.

"Trial Launching of the OPS-3 System", MAC-M-233, M.I.T.,
April 1965.

11. Greenberger, Martin. "Priority Scheduling of
Time-Shared Computer Systems", Bui leti n of ORSA , Vol. 13,
Supplement 1, Spring 1965 (Abstract).

12. Greenberger, Martin. "The Computers of Tomorrow", The
Atlantic Monthly , (May 1964).

PAGE 18

13. Hellerman, H. "Experimental Personalized Array
Translator System", Comm . of the ACM 7 (July 196*0.

14. McCarthy, J. "Time-Sharing Computer Systems"/
Management and the Computer of the Future . CM. Greenberger,
Ed.)/ M.I.T. Press, Cambridge, 1962.

15, Morrisey, J. J, "The Quicktran System", Datamat ion .

(November 1964)

.

16. Ross, T. 0. and Feldman, C. G. Verbal and Graphi cal
Language for the AED System : A Progress Report . Technical
Report MAC-TR-4, M.I.T., 1964.

17. Schwartz, J. "A General -Purpose Time-Sharing System",
AFIPS Proceedi nes 25, (1964) p. 397.

18. Shaw, J. D. "The JOSS System", Datamation . (November
1964).

19. Stotz, R. "Man-Machine Console Facilities for
Compu ter-Ai ded Design", AF I PS Conference Proceedi ngs 23 ,

(1963).

20. Sutherland, I. E. Sketchpad : A Man-Machi ne Graphi cal
Communi cat ion System . Technical Report 296, Lincoln
Laboratory, January 30, 1963.

21. Weizenbaum, J.
System within CTSS.
1964.

QPL-1 : An Open-En Jed Programmi ng
Technical Report MAC-TR-7, M.I.T.,

OPT 19SF
*

