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Abstract

The role and application of correlation functions in the statistical theory of com-

munication is described in terms of the important basic properties of autocorrelation

and crosscorrelation functions.

An electronic correlator constructed on the basis of (a) utilizing pulse-sampling

techniques and (b) multiplication in time-amplitude coordinates is described in detail.

General criticisms and suggestions for improvements, based on experience gained

from the application of the correlator to several problems, are given to aid future

developmental work. Some additional methods of computing correlation functions are

outlined and discussed.

The experimental application of the electronic correlator is illustrated by several

studies that are, in general terms, concerned with the detection, analysis, or filtering

of a desired signal in noise.
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AN ELECTRONIC CORRELATOR

I. Introduction

The statistical approach to communication theory is relatively new. However, the

mathematical tools which inherently express its concepts are not relatively new. With

the advantage of these familiar tools, the theoretical pioneering in the new field of com-

munication at first far outstripped the experimental and practical investigation that

modern science requires as an inseparable complement to theory.

One of the most basic and fundamental tools inherent in the new theoretical approach

is the mathematical theory of probability. Because of its centrality of concept, a his-

tory of the development and applications of the theory of probability carries one through

many of the thought processes which have led to the present broadening concept of a

unifying communication theory. For a concise summary and evaluation of the history,

philosophy, and principles of the theory of probability, the reader is referred to a

recent essay on the subject by Ernest Nagel (1).

II. Statistical Theory of Communication

2. 1 Measure of Information

One of the most basic and essential building blocks of the statistical approach to

communication is the notion of a measure for information. The necessity for such a

measure is intuitively apparent when we consider that no communication engineer today

would object to the statement that his task is directly or indirectly concerned with the

recording, preservation, transmission, and use of information. He would not object to

general statements concerning his job in terms of improving the technique of these

operations on information, but he would, in general, be at a loss to discuss quantita-

tively an optimum design of his equipment in terms of a maximum transmission of the

information the equipment was to handle.

Wiener (3) and Shannon (4) and later, but independently, Tuller (5) have arrived at a

simple definition and measure of information in terms of a basic binary decision made

between two equally probable simple alternatives, one or the other of which is bound to

happen. This definition has been given a weighted justification by Shannon (4) and be-

cause of its simple and unitary form is found to be capable, in its transformations and

extensions, of consistent quantitative interpretation as well as orientation to fit those

intuitive feelings generally held regarding the vague notion of information.

The fundamental nature and usefulness of the concept of a measure of information is

best illustrated in terms of the following specific examples given by Wiener (3) and in-

cluded here with clarifying details. As a first example, the amount of information con-

tained in the perfectly precise measurement of a quantity known to lie between A and B,

geometrically two end points on a line segment, is determined.

A B
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If we have made the measurement sometime previously or if we have a strong feeling

based on some previous knowledge as to the probable range of the measurement within

the limits A, B, then it is consistent with our notions of information that our net gain in

information is something less than if the measurement is made with a uniform a priori

probability of being anywhere in the range A, B. There are two important notions im-

plicit in our example to this point:

1. Information is a net or gained quantity with respect to an a priori level.

2. Information is a function of every link of the communication system including

the final destination.

To obtain a quantitative measure of the information gained by a precise measure-

ment in terms of the defined unit of information, let the a priori probability of measure-

ment have a uniform distribution over the range A, B. " By setting A = 0 and B = 1, the

measurement can be represented in the binary scale by an infinite binary number

.a a.. a ... where al, .... each has the value 0 or 1.

1 12 .
ala2a3 a n ... = a + a + -a + n (1)2 2

The number of choices made and the consequent amount of information is infinite."

It is helpful at this point to mention briefly the relationship that exists between the

theorems of Lebesgue, the theory of probability, and the notion of a measure of informa-

tion. Wiener (6) has pointed out that the notion of probability applies to a class of contin-

gent situations and has the essential properties of a measure. For example, consider a

sequence of independent tosses of a coin such as, " heads, tails, heads, heads, tails" .

For such a finite sequence the probability on a basis of the classical " games-of-chance"

origin of probability theory (1) is 2 n, where n is the number of tosses. It is interesting

to note, as pointed out by Wiener (6), that this probability of 2- n is the same as the

measure of the set of all points on the line segment 0, 1 with coordinates whose binary ex-

pansion begins 0. 10110. The following is quoted directly from Wiener (6, p. 210):

" This mapping immediately suggests a definition of probability for infinite se-
quences of tosses. The probability of any set of sequences of tosses is defined
as the Lebesgue measure of the set of points whose binary representations
correspond to sequences of tosses in the set, in such a manner that 1 corre-
sponds to 'heads' and 0 to 'tails'. We can even represent sequences infinite
in both directions by binary numbers in such a way as to define the probability
of a set of sequences, by having recourse to some definite enumerative rear-
rangement of such a sequence.

" If we have made ' probability' a mere translation of ' measure', ' average' be-
comes the equivalent of ' integral' . We are accordingly able to use the entire
body of theorems concerning the Lebesgue integral in the service of the cal-
culus of probabilities. "

The precise measurement represented by Eq. 1, therefore, corresponds to a

Lebesgue measure of zero, a probability zero, and an infinite amount of information.

There exists, however, a limit to our ability to make an actual precise measure-

ment. The recognition that noise is the fundamental limitation on the rate of transmis-

sion of information is a significant contribution of Wiener' s. (This basic point was also
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recognized by Shannon (4) and Tuller (5). For the moment ignoring the source of the

error, we may evaluate its effect on the amount of information by assuming a uniformly

distributed error having a measure in the binary scale of .blb2 .... bn. .. If bk is de-

fined as the first digit not equal to 0, then all decisions of our measurement from al1 to

ak-1' and possibly to ak, are significant, since

L 1 1
2 2k-

k

while all later decisions are not. A detailed development and geometrical interpretation

of this point of the theory has beengivenbyR. M. Fano (7). Geometrically, n decisions

subdivide the line segment 0, 1 into 2 n equal subsegments, where n is the number of

significant decisions made in terms of the defined error.

Our original problem has now developed to a point of more specific designation.

The information reference level is determined by the a priori knowledge that the vari-

able to be measured lies between 0 and 1. A measurement is made as precisely as the

assumed error will permit and a posteriori the variable is known to lie on the interval

a, b inside 0, 1.

A priori zero decisions were made, and a posteriori n decisions have been made;

the net gain in information is then n decisions. A general expression for n can be

reached by many alternative but equivalent lines of reasoning. One method is to note

that the line segment 0, 1 is divided geometrically into 2 n equal parts by the n binary

decisions. Denoting the number of parts as M, then M = n and n = log2 M. Alterna-

tively, each of the 2 n parts of the line is equal to the measure of the error (a, b) and

hence

M = measure of (0, 1) (2)
measure of (a, b)

Therefore the gain in information resulting from our a posteriori knowledge is

log2 measure of (0, 1) (3)
og2 measure of (a, b)

Since the Lebesgue notion of measure is directly translatable to the theory of proba-

bility, we may also write for the amount of information gained as a result of our a pos-

teriori knowledge

measure of (0, 1) o 1log 2 measure of (a, b) = log2 b) - log2 p(a, b) (4)

where

p(a, b) = probability of a measurement falling within the interval a, b.

The above expression for information gained a posteriori holds for a single
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measurement. A succession of measurements has an average gain per measurement

which is given by the mean of the total measurements. If a Message is conceived as a

succession of independent measurements, which in the Wiener sense are stationary in

time, i.e. represent a time series, then the mean is the. expectation of our measure

of information, familiarly defined in probability theory as

E(- log 2 Pk) = -pk g 2 k (5)
k

For the concept of a measure of information to be of any real value two important

extensions are necessary. First, the definition must be extended to a more general

continuous case, and, second, to the important but somewhat special case of determin-

ing the information gained by fixing one or more variables in the problem.

2. 11 Continuous Case (Information associated with a knowledge of probability density

distributions)

a. A priori knowledge is the probability that the variable should lie between x and

x + dx = pl(x)dx.

b. A posteriori knowledge is the probability that the variable is between x and x

+ dx = p 2 (x)dx.

We wish to determine the gain in information resulting from our knowledge of P 2 (x).

The answer to this question can be obtained systematically by various means (e.g.

see Ref. 7). Physical reasoning on the basis of Wiener's translation of the Lebesgue

measure of probability allows us, however, to go directly to the answer. Our problem

here is closely related to our first, with the process reversed: i.e. our knowledge is

stated in terms of statistical parameters which are the probability density distribution

functions of the variable being measured. Each section of area p(x)dx of the functions

y = pl(x) and y = P 2 (x) is directly translatable to an equivalent Lebesgue measure de-

noting a corresponding amount of information. The mean information associated with a

specification of Pl(x) and p2 (x) can therefore be determined in terms of attaching a mean

width to the measures corresponding to the respective pl(x)dx and p2 (x)dx areas.

The mean or average amount of information associated with each curve is therefore

00

H 2 (x) = - P2 (X) log2 p2 (x)dx
-00

and

-00
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with the net gain given by the difference between these two measures.

2. 12 Information Gained by the Process of Fixing One or More Variables

Specifically, the case illustrated is that of fixing the sum w of two variables u and v.

a. A priori knowledge is

1. Two variables, u and v, are independent.

2. Probability that u lies between x and x + dx is

2
x

1 e 2adx

3. Probability that v lies between x and x + dx is

2
X

l~ e 6 dx

b. A posteriori knowledge is

1. Measurements, w = u + v

2. and pw(u).

We desire to determine the average gain in information concerning the variable u,
resulting from an a posteriori knowledge of the sum w of the desired variable u and the

additional variable v. An evaluation of the a posteriori knowledge of the probability of

u, knowing w, is obtained through the application'of Laplace's generalized form of

Baye's theorem.

p(u)pu(w)
Pw(u) = p(w) (7)

where

2
x

p(u) = - 2a

2w
p(w)* 1 e 2(a + b)

V 2rr(a + b)

and pu(w) = probability of w, knowing that u has occurred. This is simply

then the probability of v, where v = w - u = w - x

_ (w - x)2

V 22b

A well-known result gip(ven in many texts. See Fry (8).*A well-known result given in many texts. See Fry (8).
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By substitution in Eq. 7, the a posteriori distribution of u (knowing w and that w

= u + v) is

x2 (w - x)2

e2a Zb
21Vb _= p(u)p(w - u) =

pw(u)- p(w)

1 e
ab

1
- e

A2 ab
2a + 

1 e
V e

Vz~i(a + b)

w
2(a + b)

2 (w - x)2 +

2a 2b +2(a + b)

a+b aw
2ab LX -a+ bJ

(8)

The gain in information concerning u, resulting from a knowledge of w = u + v, is

then given by the difference between the mean information associated with the functions

p(u) and pw(u)-

00oo

ab p(w)dw

21w a + b.

00 a+b aw 2

-_ (x a +)
_oo

1 2 ab (x aw 2
7 log2 `a+-b - (x - a +- )

a + b1g2e] dx

(9)

00 x

e 2a [- log2 2wa - log2e dx

which after simplification is found to be equal to

1 a+b
2 log 2 -- 

The above example has the following significant interpretation given it by Wiener.

If the variables u and v are treated respectively as message and noise, then the infor-

mation carried by a precise message in the absence of noise is infinite (since Eq. 10

goes to infinity as b tends to zero). In the presence of noise the amount of information

-6-
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is finite and approaches zero very rapidly with increasing noise. It is important to

note that Eq. 10 is positive. It is also independent of w, as we should expect, since

our mean information, defined by the conditional probability density pw(x), implicitly

requires an equivalent integration over all of w, even though the differential of integra-

tion is dx. The parameters a and b represent the mean power of the assumed variables.

The fact that Eq. 10 is expressed solely in terms of these parameters should not be

generalized, since the result is unique for the type of distributions assumed.

2. 13 Information as Negative Entropy

The most important and potentially far-reaching of Wiener's contributions has been

his recognition that information is the negative of the quantity usually defined as en-

tropy. We are concerned at this point with the fact that Wiener has been able to show

that information is a quantity which on the average has the properties connected with

the concept of entropy, and in particular the property described by the second law of

thermodynamics.

If P(A1 ) and P(A2 ) are two probability densities, then P(A1 + A2 ) can also be deter-

mined. A generalization of the theorem of total probability (10) leads to the important

re sult

P(A 1 + A2 + An) .. P(A 1) (A) + P(A2 ) + . P(A (11)

from this it follows that

- P(A1 + A 2) log2 P(A1 +A 2 ) <- { |P(A 1 ) log2 P(A 1 ) +

-oo 00

- P(A 2 ) log2 P(A2). (12)
-00oo

The equal sign will hold only in the case where A1 and A 2 are independent. In a two-

dimensional interpretation of probability, Fig. 1, any overlap in the regions of P(A1 )

and P(A2 ) will reduce the maximum information belonging to P(A1 + A2 ). The follow-

ing relevant statement is quoted from Wiener

(3, p. 79): "It will be seen that the processes
UNIVERSE:P(A)=P(AI A2 An)=l which lose information are, as we should expect,
P(A,+A2) = P(A )+P(A2 )-P(A, A2 )

closely analogous to the processes which gain

entropy. They consist in the fusion of regions

= P(A. A) of probability which were originally distinct.

For example, if we replace the distribution of

Fig. 1 Two-dimensional proba- a certain variable by the distribution of a func-
bility plot illustrating a tion of that variable which takes the same value
gain of entropy due to
overlap of regions. for different arguments, or if in a function of

-7-
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several variables we allow some of them to range unimpeded over their natural range

of variability, we lose information. No operation on a message can gain information

on the average. Here we have a precise application of the second law of thermodynam-

ics in communication engineering. Conversely, the greater specification of an ambig-

uous situation, on the average, will, as we have seen, generally gain information, and

never lose it. "

2. 14 The Probability Density Distribution Corresponding to a Maximum Information

Equation 6 of Sec. 2. 12 specifies the information associated with a knowledge of

the probability density distribution pl(x) of the message variable. Here we ask the

question what distribution function p(x) will make the expectation (mean) of our measure

of information E( - log p(x)) a maximum. It can be shown that our measure is a maxi-

mum when the variable x is distributed at random, i.e. when p(x) = constant. This has

been stated by Wiener (3, p. 79) as an inherent property of the function and demon-

strated by Fry (8, p. 201) as a mathematical exercise. Fry's demonstration is in-

cluded in more detail in Appendix 1.

2.2 Synthesis of Optimum Systems

Some of the basic notions connected with the idea of a measure of information have

been covered briefly in Sec. 2. 1. Many of the details which turn these basic notions

into strong tools in the analysis, evaluation, and synthesis of communication systems

have not been discussed, due to the number of cases involved. Although the details

may have a large degree of variability, the basic notions will be found invariant.

Among the general fundamental notions are those of order and measure, and loss due

to a mixing or overlap of regions. The first notion is central to our definition of infor-

mation and the second is central to the synthesis of optimum systems.

The evaluation of information in Sec. 2. 1 was restricted in the sense that only prob-

ability density distributions, commonly known as wl functions, were considered. Such

functions are independent of the frequency and phase of the time functions they statisti-

cally characterize. They do not allow for an evaluation of a priori knowledge of fre-

quency and phase, and are therefore inadequate by themselves for the specification of

an optimum filter which may be looked upon as a device to remove ambiguity in the

desired time wave through an optimum operation performed in the frequency domain or

its equivalent. It is suggestive of the process to be described to consider first the case

of a message and corrupting noise occupying relatively different positions in the fre-

quency spectrum, as shown by Fig. 2.

The information we shall have of the message by a measurement in an all-pass

system of the message plus the noise will certainly be less than the information we

shall have from a measurement made after passing the sum through a low-pass filter,

as indicated in Fig. 2. In this case of negligible overlap, the type of filter required in

the optimum sense of maximizing information is relatively simple and certainly not of

-8-



critical specification. However, if the
MESSAGE NOISE

4,(wI \ lspectrum of the message and the noise
LOW PASS l

FILTER overlap, as indicated in Fig. 3, the speci-

fication of the optimum filter becomes

more difficult and decidedly more subtle.

The basic approach is clear, neverthe-

less, in that the optimum filter is deter-

mined through a compromise between re-

jection of the noise and a decrease in the
Fig. 2 Power density spectra of aig2een pcti oie negative entropy of the message itself.message and corrupting noise

occupying different portions Wiener (2) has outlined a general
of the spectrum. statistical approach to the synthesis of

optimum systems. As a special case

within the formulation of the problem, he

has given a complete solution under the

restrictions of linearity and an optimum

separation or performance within the

dimension of frequency.
't~lX~~~rri4 4r-U- -1 -1! -or\al am
VV ICt.LC 1 lJLJJ-UdaCll Lu L1LC jUJJ.V u J.1L

starts from a demonstration (to be as-Fig. 3 Power density spectra of a
message and corrupting noise sumed here) that communication is a
occupying overlapping regions Considered as suchstatistical process. Considered as suchof the spectrum.

a process, a message or an ensemble of

messages is described as a stationary time series, and in the general communication

problem it is desired to convey the stationary time series (or its transformation: inte-

gral, derivative) to a specified destination in the presence of external interference in an

optimum fashion, i.e. with minimum error. It is clear from our discussions that the

stationary time series which the communication channel should handle is a function of

the destination. To be efficient, the time series should contain only such information

as can be comprehended by the destination. This portion of Wiener's theory is con-

cerned in general terms with the elimination of correlated data from the message and

its optimum coding or transformation. (The performance of such operations reduces

the necessary statistical parameters to W1 functions.) Many of the relevant details

have been described independently by C. E. Shannon (4) and W. G. Tuller (5). A help-

ful and elucidating development has later been given by R. M. Fano (7). For further

details the reader is referred to these three papers.

2.21 Error Criterion

If one assumes or neglects the optimum coding of the stationary time series as a

function of the destination, and restricts the scope of the problem to conveying a given

stationary time series, fl(t), (or some function of it, such as the derivative, integral,

-9-
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etc. ) to the destination in the presence of interference but with a minimum of error,

the transmission-link problem can be formulated.

In Fig. 4: f(t) = actual ensemble of messages

fn(t) = actual interference

fd(t) = desired time function, which may be fm(t) [ filter problem ] or
some function of f(t) such as its derivative, integral, etc. or

it may be fm(t) predicted in time a seconds [predictor problem]

fo(t) = actual output time function.

For purposes of more specific discussion let

~f W tifft us consider the filter problem only, where fd(t)
H(W) = fm(t). Then we shall want the instantaneous dif-

fn(t) I ference or error, fo(t) - fm(t - a) , to be a
minimum in a statistical sense. This means that

Fig. 4 The general filter we define a mean error
problem. H(o) is a
linear system function. T

8lim I X (t) -m(t ( dt (13)

-T

where n is subject to our choice.

The next step in the general procedure is to realize the system function H(w) so as

to minimize [. This is accomplished principally through the use of the known branches

of mathematics of (a) Functions of a Complex Variable and (b) Calculus of Variations.

We may summarize Wiener's general approach to the filter problem in the follow-

ing three steps:

1. Recognition that communications is a statistical process.

2. Defining the error of the system in terms of the exact time series involved, and

the requirements of the destination.

3. Optimum minimization of the error by means of a physically realizable system

function.

2.22 Linear Case

As an example of the application of this approach to the problem, Wiener has solved

the case where the error is defined as the least mean square error (n = 2, Eq. 13) and

the synthesized system function is restricted to being linear.

The mathematical solution relevant to the synthesis of the optimum linear system

function subject to a least mean square error criterion is given by Wiener (2). This

material has been simplified and extended by Y. W. Lee (11) in a graduate course at

M.I.T. The writer's understanding of the relevant theory and its practical engineering

details is directly due to a close association with Dr. Lee both in the classroom and in

the Research Laboratory of Electronics, M.I.T. The details of this material will be

omitted here. It is sufficient to point out that Wiener has shown that the general system

-10-



function can be expressed in terms of autocorrelation and crosscorrelation functions

of the stationary time series at the input to the filter.

2. 3 Comments on Nonlinear Case

The general determination of an optimum nonlinear system function requires a

knowledge of an infinite number of statistical parameters as compared with the single

parameter required above for the linear, least mean-square case. It is obvious that a

practical engineering application on this basis is impossible, and the general problem

must first be reduced to subclasses of functions which have a finite basis for optimiza-

tion. It is fortunate that mathematically there exist special classes of time functions

for which a knowledge of a finite number of parameters is sufficient. It is not known

whether the time functions generally dealt with in communications are of these types.

It is clear that an experimental determination of the statistical characteristics of the

time series generally used in communications may do much toward the establishment of

a generalized nonlinear synthesis procedure. Certainly we have a basis for stating that

experimental research work must precede any further practical theoretical work on the

problem.

III. Correlation Functions: Properties and Interpretations

3. 1 The Statistical Origin of Correlation Functions

The theory of correlation is a familiar tool of the statisticians, and is closely re-

lated to the theory of autocorrelation and crosscorrelation as applied to stationary time

series. The use of the word correlation, whether used by the statistician to describe

a correlation coefficient or by the communication engineer to describe autocorrelation

or crosscorrelation functions, carries no special physical interpretation beyond the

normal dictionary notion of denoting dependence and relation.

In order to describe and measure the degree of dependence between two sets of

numbers, the statisticians have defined and formulated a quantitative measure known

as the coefficient of correlation. It is reached in the following manner.

Consider two ordered sets of numbers X and Y

X = x1 , x2 , x 3 , ... xn

Y = Y1 ' Y2 ' Y3 ' ''Yn ' (14)

If we plot corresponding pairs of points xjyj on an orthogonal coordinate system,

we will construct what is called a scatter diagram (Fig 5).

The center of gravity of the system defined by the points x.y. can be made to lie at

the origin by subtracting the means x and y of the two sets, and Y, from each number

*From a personal communication of Walter Pitts, Mathematics Department, M.I.T.
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in the respective sets, thus forming two new sets of deviations defined by

=x 1 - , x 2 -x, ...... X, ....... X - X
n

= Y - Y, Y2- Y ...... Yj - ...... Yn - Y -

Each of the sets a and ti have a dispersion

y

XX

x

x X

x

x

x

yj x

x X

x

x

2 and 2l defined bya i
n

i =-n (x - x)1

1

n

2 1 . (Y )21

1-- Xj -- L

X-i

Fig. 5 Scatter diagram.

x x
Ix x xx

IX X X 
X

x x x 

xx x x 

X X x x X

Fig. 6 Scatter diagram
showing circular
cluster having little
correlation.

x
x x

xx
x

xxx

C

(16)

If the deviations of Eq. 15 are now plotted on

a scatter diagram, the statistician will describe

the circular cluster of Fig. 6 as having little cor-

relation and the linear cluster of Fig. 7 as having

a strong correlation.

The degrees of correlation attached to Figs.

6 and 7 can be interpreted in terms of notions

associated with probability. The points in Fig.

6 are distributed (with reference to direction)

about the origin with equal probability, while the

points of Fig. 7 have a preferred location with

respect to the origin. A necessary condition for

zero correlation in this sense is for

n

1 E - x) (Yj ) 
y ) = 0Teq ntity

1

The quantity

n

1 (x - X) (y - )
1

Fig. 7 Scatter diagram show-
ing linear cluster
having strong cor-
relation.

is usually defined by the statisticians as ao, and

is the parameter, which when normalized gives a

quantitative measure of correlation between two
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ordered sets of numbers. This measure is called the correlation coefficient r, mathe-

matically defined as

n

(Xj - )(yj -)

r z= o n 1 (17)

where the denominator , normalizes r to have a maximum value of + 1. The maxi-

mum value of + 1 can be established by application of the Schwartz inequality, which

shows that

n 2 n n

(xj - (yj - y) < (xj - 2 ( _ Y)2(18)
1 1 1

where the equal sign holds only if

(xj - x) = X(yj - y), with k = a constant.

For r = + 1, linear dependence must hold. As a result, the correlation coefficient

is often interpreted as a measure of degree of linearity and frequently called the co-

efficient of linearity.

X1 ,7 The evaluation of r without plotting a

Ix x x scatter diagram can be misleading, as
Xx XX X

x, xx ·X x xx xxxindicated in Fig. 8, where two scatter

,xxxxx 'IxXxxx x X C- diagrams are drawn having a correlation

xXX XX coefficient r = 0, but which in our sense

of correlation have widely differing de-

grees of measure. The left figure has

Fig. 8 Scatter diagrams having a corre- little correlation, whereas the right
lation coefficient = 0.

figure has a definite preferred region of

probability and hence strong correlation.

The degree of linear dependence in both figures is zero and this interpretation of r is

still consistent. It is interesting to note that the right-hand figure could be generated

by two sets of numbers determined by either a random or periodic selection of values

from a sinusoid where the corresponding pairs of the sets differ by 90 ° . Scatter

diagrams determined in this fashion as a function of the phase angle between pairs

of points will trace out the familiar Lissajous figures, and the values of r for each

scatter diagram plotted as a function of the corresponding phase angle will determine a

sinusoid.
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It is, in fact, this process which determines the correlation functions used in sta-

tistical communication; that is, correlation functions are an extension of the statistical

concept of a correlation coefficient in that they represent a plot of r versus a relative

shift between two sets, ordering within the sets being maintained while new pairs are

generated for each shift.

In communication, the time series dealt with are considered statistically, i.e.

invariant with time, and of infinite extent in both directions. A mean, measured over

all time, of the correlation measure is therefore defined. (A normalized coefficient is

sometimes used for convenience.)

The autocorrelation of the sequence X = ... x1 , x, x 3, .. .xn ... is therefore de-

fined as

N

'XX () N-oo 2N + 1 ,xkj Xk (19)
-N

and the crosscorrelation coefficient of the sequence X with the sequence Y = ... yl, Y2,

'.'Yn .. as

N
y) = lia 1 - (20)

XY() N-o 2N+ 1 Lxk+j Yk(20)
-N

where both the autocorrelation and crosscorrelation coefficients are functions of the

lag j.

When dealing with continuous rather than discrete data, the sequences X = ... x,

x2 .xn ... and Y = .. .y 1, y 2 . .yYn ... haveasanalogsthefunctions fl(t) and f 2 (t)

respectively. Correspondingly, the autocorrelation function of fl(t) and the crosscor-

relation of f l (t) and f2 (t) are defined respectively as

T

ll (T ) li T f1 (t)f 1 (t + )dt (21)
-T

and

T

(= Tli I f l (t)(t + T)dt (22)'12 ( 7 ) T-oo 2T f 
-T

Correlation functions are simply a measure of the mean relationship existing be-

tween the product of all pairs of points of the involved time series, separated in time

by a delay T.

-14-
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3. 2 Some Important Properties of Correlation Functions in Communication

The autocorrelation (and similarly the crosscorrelation) function is equally well

defined for both periodic and nonperiodic time series. From Sec. 3.1, it is clear that

the autocorrelation of a periodic function will be again periodic, and in the case of a

sinusoid, the autocorrelation function will be a cosine function of the same frequency.

The determination of the autocorrelation of the periodic portion of a time function is

seen to be equivalent to the early periodogram of Sir Arthur Schuster. Wiener (6) has

extended the periodogram theory to show that the autocorrelation function not only

determines the line portion of the spectrum of the time function, but also defines the

random or continuous portion of the spectrum occupied by the time function. This im-

portant point is contained in his demonstration that the autocorrelation function, 11(T ),

and the exact power density spectrum, ll(w), of the time function are uniquely related

by their Fourier transforms, that is

o00

{ 1(w) = P 1 Jl ( T )e - j dT (23)

-00

and conversely

o00

q1 ,(T) 5 1 1 (w)e JWdw . (24)
-00

These relationships equip the communication engineer with a powerful tool, not

only in the synthesis problem mentioned in Sec. 2. 22, but also in the problem of analy-

sis and evaluation of existing modulation systems. Until the application of the concept

of correlation to time series by Wiener (or more correctly, by G. I. Taylor (12), whom

Wiener basically credits with its introduction in the study of irregular phenomena),

analysis of the spectrum of existing systems was accomplished on an approximate basis,

using in general a single frequency (periodic function) for modulation. In addition to the

possibility of determining the exact spectral distribution of a message through trans-

formation of the autocorrelation function, there exists the opportunity of measuring and

interpreting results completely in the time domain, since the relation is one-one and

no information is contained in one that is not contained in the other. In this respect,

for instance, the power measurements of a time series are directly readable from the

autocorrelation function. Wiener has shown (2) from the Schwartz inequality that the

autocorrelation J1 1 ( T) is a maximum at T= 0, being equal to the mean of f(t) (i.e. the

2ndmoment of the amplitude density distribution of fl(t)). As T approaches infinity,

11 ( T ) approaches the square of the mean of fl(t) (i.e. the square of the first moment

of the amplitude density distribution of fl(t)). These general properties allow us to

sketch a rough picture of the bounds or envelope of autocorrelation functions for ran-

dom (nonperiodic) time functions and to indicate directly measurements of d-c, random,

and mean Dower. (See Fig. 9.)

-15-
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3.21 Preservation of Measure of Phase Differ-

ence (Periodic Time Series) or Time of

,, ( T

M [X] =MEAN POWER

Lead (Nonperiodic Time Series) by Cross-

correlation Functions

POWER OF RANDOM
PORTION OFf(t) That this measure is not preserved in auto-

xf -c POWER correlation functions is apparent from our above
-M( md-c POWER correlation functions is apparent from our above

f T discussion of the Schwartz inequality. A simple

Fig. 9 Sketch of a possible investigation of Eq. 22 will quickly establish the

autocorrelation func- converse for crosscorrelation. It is a simple but
tion. important property which allows one to investigate

complex communication systems such as the

human body in terms of classifying the origins, the centers of distribution, and the

regions of flow of various degrees of correlated data or information. The measurement

of time delay or lead in a communication system having paralleled paths of flow is an

important analog measurement in the time domain which determines the equivalent fre-

quency characteristics of the system.

3. 22 Decomposition of Correlation Functions of Composite Time Series into Linear Sum

of Component Correlation Terms

As an example of this useful property, let us consider a time series fl(t) consisting

of the sum of a signal Sl(t) and noise Nl(t). The autocorrelation of

fl(t) = Sl(t) + Nl(t)

is then

T

( T) = lim [Sl(t) (t 1 T) + N l(t + Tdt
-T

T

lim 1 (t)S(t +T) + (t)N(t + T)
T-+o0 2 J LltN

-T

+ Nl(t)Sl(t + T) + Nl(t)Nl(t + T)]dt

= S (T) + S1N1(T) + NS ir) + N (T) (25)11 11 11 1N1

We see, therefore, that the autocorrelation +11(T) is decomposable into two com-

ponent autocorrelation terms of the signal and noise respectively and two component

crosscorrelation terms involving the signal and noise, If the signal and noise are in-

coherent (i. e. not correlated) then the cross terms will be zero and the difference

-16-



between the autocorrelation of the signal and the noise can be used as a means of de-

tecting the presence of the signal. Only for the case of a sinusoidal signal will the re-

lationship between signal and autocorrelation be one-one in any sense and hence the

information obtained from this detecting property is limited. However, if Sl(t) = E cos

(wt + d) and N. (t) is normally distributed

noise, then 4 1 1 (T) will appear roughly

as shown in Fig. 10.

For large values of T, a near

infinite signal-to-noise ratio is pos-

sible. It is well to remember that an

infinite time is also theoretically re-

quired. TIhe ntormation gaine trough

a measurement of autocorrelations or
Fig. 10 Autocorrelation of fl(t) = sinusoid

+ normally distributed noise. crosscorrelations as a function of the

time of correlation is covered in detail

in Sec. 5.1.

It is pointed out that Eq. 25 allows one to compute the crosscorrelation between two

time series by computation of autocorrelations only.

3. 3 Fields of Application

There exists an extensive array of important problems within the broad scope of the

statistical theory of communication in which the concept of correlation plays a vital if

not a center role. A few of the more important and general applications of correlation

functions can be listed in summary:

1. They are the most important single class of statistical parameters required in

the synthesis of the optimum linear system.

2. They determine the bounds, or are at least a measure, of the compressibility

of a time function in terms of its optimum coding.

3. They represent a powerful tool for the determination of actual power density

spectra, and constitute an exact method for evaluating and comparing modulating

systems on a spectra basis. Their important application in the study of complex

communication channels, such as the human body, can, in principle, be extended

to community and social groups.

4. They provide a possible strong initial method of attack on the general problem of

nonlinear systems.

3.4 Illustrative Analytical Example

The process of determining correlation functions for discrete time series such as

are found in the various pulse-modulation systems is greatly simplified by an assump-

tion of independence between adjacent pulses. This assumption is made in the following

-17-
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simplified example of single edge pulse-width modulation, illustrated in Fig. 11.

If we assume that the position of the trailing edge with respect to its unmodulated

position has a flat distribution p(x) = constant, we may use this simple example to in-

vestigate the change in autocorrelation as a function of the degree of modulation, defined

for our purpose as

d -dmax minm = Zd (26)
0

where

d = maximum width of pulsesmax
dmin = minimum width of pulses

do = unmodulated width of pulses

The assumption of independence between pulses allows us to compute the autocorre-

lation function from a statistical knowledge of p(x) only. In this case

Pdk(dk+ 1) = p(x)

and the autocorrelation function is determined by (1) the shape of the unmodulated

pulses, (2) the distribution of the trailing edge, p(x), (3) duty factor = (do)/T, and (4)

the degree of modulation, m.

In order to systematize the calculation of 1 1(T), the time function illustrated in

Fig. 11 is conveniently broken up into the sum of two time series, fA(t) + fB(t), such

that each series is composed of alternate pulses (Fig. 12). This procedure eliminates

the necessity of computing simultaneous overlap with two pulses, and allows for the

separation of this effect, in addition to allowing one consistent method of calculation for

all values of m and n.

Therefore the autocorrelation function of f(t) is equal to

T

+11(T) = alim 1 5f [(t)+ fB(t) f(t + T) + fB(t + T)dt11 () T- o ZT A (t) B B
-T

(27)

= AA(T) + AB(T) + BA(T) + BB(T)

The computation of each of the component correlation terms can be performed sep-

arately. The use of the terms "self-correlation and intercorrelation", introduced by

*For further details of correlation analysis of pulse-time modulation systems including
a detailed physical interpretation of methods and results, the reader is referred toE. R.
Kretzmer: Interference Characteristics of Pulse-Time Modulation, Technical Report
No. 92, Research Laboratory of Electronics, M.I.T. May, 1949.
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T 2T 3T 4T

Fig. 11 Schematic representation
of a pulse-width-modula-
tion system.

Fig. 12 Decomposition of f(t).

L 4 1 - T =:: - t

I I I . .

2T -2 t

i- aT t

ITOTAL REGION I
f i( F OVERLAP

!I ', I I fili
d.(I-m) d.(I

fit) IlI

I ~~~~~~~~~~~II

Fig. 13 Symbolic represen-
tation of Fig. 12.

Fig. 14 Schematic repre-
sentation of com-
putation of self-
correlation.

E. R. Kretzmer (13), to denote the autocorrelation and crosscorrelation of component

terms of a composite time function will be adopted here.

It is helpful to the logic of the computation to reduce our picture of an infinite series

of random-width pulses to one which both symbolically and physically characterizes our

statistical knowledge of the time series. In Fig. 13, the trailing edges of the pulses are

shaded to fit their distribution density, and periodicity and relative phasing are indicated

on the time axis.

A further simplification in terms of organization of computation is to subdivide into

regions of delay (T), as follows

1. tAA(T), for O< < TT

The computation of the self-correlation term 4AA(T) is essentially the determination

of the mean of the region of overlap (Fig. 14). The region of overlap of any pair of
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pulses can be expressed in three general subclasses of lengths

1. unmodulated vs. unmodulated, defined by

do(1 - m) - T, for T do( - m)

2. unmodulated vs. modulated, defined by

T, for 0< T,< d(1 - m)

do(l - m), for do(1 - m) < T < 2md and

do(1 + m) - T, for 2mdo < T do( + m)

3. modulated vs. modulated, defined by

2mdO - T, for 0 T < do( + m).

The mean of the contribution of each of these three subclasses of overlapping length

will determine the self-correlation function we desire. The split into three regions is

necessary, since the probability of any length of overlap of a pulse-pair, do(1 - m)

+ x - , is equal to unity over part of the overlap and by a constant less than one over

the remainder. A recourse to a Stieltjes integral form of expression of the problem is

avoided by recognizing the three regions and performing the evaluation in terms of three

component regions of integration.

It is one of the purposes of this illustrative problem, however, to point out that this

degree of complexity can be avoided by recourse to a more physical interpretation of

the process of correlation which reduces the computation to a physical picture and an

operation on a single function.

We may construct a three-dimensional picture on the basis of the following reason-

ing. Consider a portion of fA(t)fA(t + T) as indicated in Fig. 15. A pulse of length s1

contributes to the product fA(t)fA(t + T) an
? .

amount E"/(2T) (s - T), and its average con-

tribution to the self-correlation function is

defined by E /(2T) (s - )p(Sl). The sum of

all contributions from pulses defined over the

range s = (1 - m)do to s = (1 + m)do will
E4+A,,~i the . . P A .._ T_ ; - o1 i - -

UeCLtIllIlIt LILe lIcaLUrI Vui WAA'TI. IL lb Weii LU

Fig. 15 Portion of fA(t)fA(t + ) note that although p(s 1 ) = p(sz) = p(S3) = ... = 0,
for determiningp (Tr). their sum is finite, due to our notion of order-

AA
ing and its equivalent Lebesgue measure. We

may therefore conceive the three dimensional plot of Fig. 16, where

PAA(T) 

the self-correlation contribution of a pulse of width sj, is plotted as a function of T on

two coordinates and the probability density function p(s)ds is plotted on the third. Only

a few lines, ordered as a function of pulse length, have been indicated for

~AA(T) |
3j
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it being understood that these lines are everywhere dense within the region defined by

do(l - m) and do(l + m). Pulses oflength s < T make no contribution to the measure of

%AA(T) and this is indicated by the construction of p(s)ds on Fig. 16 for a value of
- > do(1 - m). Figure 16 therefore corresponds to our physical notion that the self-
correlation should decrease linearly as a function of T until T = do(1 - m). It will then
decrease less rapidly since the contribution of some pulse lengths will be reduced to

zero and can decrease no further. At T = do(1 + m), the contribution of all pulses has
been reduced to zero and the measure will be correspondingly zero.

The value of AA(T) for any T is the mean of our ordered sum of contributions and
by means of Wiener's translation of probability theory to the theorems of Lebesgue

(Sec. II), we may write directly

d(l1 + m)

PAA(Tk) = 
d (1 - m) 4,AA(S) p(s)ds .Tk

We have simply to plot the contributions to LAA(Tk) as a function of s, multiply by
p(s)ds and measure the area. Figure 17 illustrates this procedure for three different

values of T.

It is clear that this process corresponds to plotting

*AA(S) T= 0

normalized with respect to pAA(O) on its side and then scanning through it

function of amplitude AA(O) u(t - T), as indicated in Fig. 18. Therefore

with a step

A d (1 - m) dt( + m)

dt +m)

d0(l - m)

do(1 + m) - t
2md dt

0

for 0 < < do(1l - m)

d o(l + m)

T

do (1 + m) - t

2md - dt, for
0

do(1 - m)<T < do(l + m)

AA(o)[d o - ]. for 0O< T _ do(1 - m)

( do ( + ) -
4AA(o) I 4·d 'for do0 (1 - m)< T < d(l + m)~u~()~Ol + )-0
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2. qBB(T): A shift in the origin of t does not change an autocorrelation or self-
correlation function. Therefore

since fA(t) = fB(t + 2T)

then, ,AA(T ) = BB(T) . (31)

3. YAB(T): An inspection of Fig. 13 will show that =AB(T) = BA(T). Due to the as-
sumption of independence between adjacent pulses, it should also be clear that ~AB(T)
will be a periodic function and in addition that AA(T) and LBB(1T) will be of the same

'AA (r)(Sj

*AA (S)l p(s)ds

AREA-A0

dl-m) drnm) 

FOR r 0

Fig. 16 Three dimensional plot
for determination of
AA(T).

I AA () U ( -T)

TOTAL AREA I

AREA)IIAA(O) *IA (T)

d(I-m) d. + m)

Fig. 18 Geometrically equiv-
alent process for
computing ~AA(T).

AA (s)lrp(s) ds

AREA= *A (d.)

d d+m) s
FOR r=T do(I-m) FOR r = de

Fig. 17 Geometrical interpretation of
Eq. 28 for three different
values of T.

Er _d----.oE/fp(x)dx

Fig. 19 Schematic re-
presentation of
equivalent non-
random pulse.

character for T > T. Since these portions of the autocorrelation curve are periodic in
character (even though the time shift of the trailing edges is distributed at random), it
is natural to expect that an equivalent nonrandom pulse shape can be determined from
which these portions of the correlation function could be computed in a simple fashion.

That portion of the pulse which is unmodulated, i.e. its minimum width = do(1 - m),
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f(t)

fl(t)

E
f

T ; 2T t

E

Fig 20 Schematic for com-
putation of intercor-
relation and self-
correlation of inde-
pendent pulses.

f2(t)

I T 2T
i- PERIOD- T ?

I I T

11"d() d(m) T
d*(I-M) d*(0+m) T

Fig. 21 Equivalent method for
computing the self-cor-
relation or intercorre-
lation of independent
pulses.

will be unchanged. We have only to derive an equivalent shape for the shaded area, in-

dicating random time shifts, of Fig. 13. The requirement placed on this portion of the

equivalent nonrandom pulse is such that the area of pulse from do( - m) to x is the

same as the average area, measured over the same range of pulse lengths, of the time

series. The region of the pulse from do(l - n) to do(l + m) is therefore defined by

E 5 p(x)dx, as indicated for our specific case in Fig. 19. Therefore, to determine

bAB(T ) , we have only to analyze the situation of Fig. 20.

The computation of 4AB(T) can be further simplified by recognizing that it is peri-

odically symmetrical about the points T = T, 2T, . . nT, and hence the shape of the

curve between T and 2T is the same as the self-correlation of a single equivalent non-

random pulse. We may therefore analyze the equivalent situation of Fig. 22.

Where

f(t) = fl(t) + f2 (t)

and

+(T) = fl(t)fl(t + T) + 2fl(t)f 2 (t + T) + f2 (t)f 2 (t + T )

E2
fl(t)fl(t + T) = Tr Fo(1 - m)- T] for 0 < T < do( 1- m)

(32)

(33)

f 1(t)f 2 (t + T)

2T+ do( - m) do ( l + m) - t

=T S 2md
do(l - m) 0

0

dt, for 0 <T < do(l - m)
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E2 + do(l - m)do(1+ m) - t
T-S 2md0 dt, for do(l - m)< T< 2d0 m

17

+ m)
d o (l + m) - t

2md - dt, for 2dom <- < do(l + m)

d(1
E °

T

f2 (t)f 2 (t + T )

d (l + m)

E (1 - m) +

d0( - m)+T

(do(l + m) - t) (do(l + m)+ - t)
dt

ma Zma 0

A plot of 2AB(T), based on the above method of computation is shown in Fig. 22 for

E = 1, T = 1, do = 1/2 and m = 1/2. A composition of the various self-correlation and

intercorrelation terms to form the desired autocorrelation function is shown in Fig. 23.

V

T

f(t)
= f(t)+f2(t)

(r)= fl(t)fl(t *+ r) + :tt)fit + * f(t)f(t+r)

I f f.l r*
, I. ,I ,, -.

2-4 f,(t)f2(t+r)

3 2 f(t ) t(t + r)

I I
fl1t)' I
I

I
\ 2A (r) 2 *(r)

d. f 1

/

I
0.2 0.4 0.6 0.8

I l 
_D-Dltn e Or

1.0
2T

1.2 1.4 I.b 1.5 cv Z.Z I3T

Fig. 22 Intercorrelation and self-correlation function of independ-
ent pulses.

IV. Experimental Measurement of Correlation Functions

4. 1 Graphical Representation of Process

A graphical representation of the mathematical expression for the autocorrelation

function

1 ( T ) lim 1
+1 (T) =T-0o -21

T

S fl(t)fl(t + T)dt
-T
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is shown in Fig. 24, where the entire function f(t) is first delayed by an interval T,

giving fl(t + T). This time function is then multiplied point by point (continuously) by

the undelayed function fl(t).

The mean of the area under the product function fl(t)fl(t + T)isthen determined as

the measure of the correlation function for the specific value of T1. The value of T is

changed and the process continued.

/OVERLAP OF INDEPENDENT
;4$5 PULSES, 2A(r), FIG.22

," r i , ;

\
L__

-OVERLAP OF INDEPENDENT/r PULSES, 2A(r),FIG.
2 2

0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 0 -

T 2T

Fig. 23 Autocorrelation function for pulse -width-modulation

Fig. 23 Autocorrelation function for pulse-width-modulation
system of Fig. 11.

4. 11 Disadvantages of Graphical Procedure and its Analogs

The obvious disadvantage to

f(t)
/I 11 I Ct) (t

' , .?\f(t) )

T -

Fig. 24 Graphical method
of obtaining an
autocorrelation
function.

this method of computation is the tremendous amount

of time-consuming labor involved. In terms of build-

ing an analog machine. the method carries with it an

additional serious handicap in terms of the concept of

having to delay the entire time function. Closely

coupled to this requirement is the consequent neces-

sity of also storing the entire time function. If elec-

tronic techniques are used in order to attain a high

speed of computation, an a priori knowledge of the

bandwidth requirements of the time function is then

necessary. This is a general disadvantage, since in

most cases the correlation function is of interest to

*A practical computation of Eq. 38 must be within finite limits of integration - "entire
time function" is used here in the sense of its being a finite portion (an ergodic subset)
of the infinite time series.
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determine the spectral distribution of the time function.

Earlier methods which were under consideration involved complicated storage tubes

and scanning processes, magnetic tapes, rotating drums, etc. All these methods could

be visualized as possible techniques for restricted and specific ranges of time functions.

When the features of general flexibility and operation over a wide range with reasonable

accuracy were added, the above methods rapidly appeared to become cumbersome or

inaccurate, or they were considered overly complicated in mechanical and electronic

structure for what was intuitively hoped and believed should be a simpler process.

4. 12 An Alternate Approach

This simpler process was suggested through a reinterpretation of the mathematical

expression of the correlation function, where emphasis is placed on the fact that it

represents the mean relationship of the product of all pairs of points of the involved time

series separated by an interval T. That is, an arbitrary or random selection of a large

number of pairs of points separated in time T1 seconds, multiplied together, summed,

and their mean taken, determines one point on the correlation curve. The important

point is that the correlation function can be represented by a summation and averaging

of a large number of discrete multiplications, where sampled values of f(t), rather than

the entire time function are delayed and stored. This means that the mathematical defi-

nition of Eq. 38 becomes approximated by

N

p11(Tk) = N+1 abnTk (39)
O Tk

Equation 39 is recognized as an approximated correlation coefficient, defined in Sec.

3. 1, for a discrete time series. The graphical process of Eq. 39 is represented in

Fig. 25 by the arbitrary sets of points on the graph.

This simple procedure made it possible to

design an electronic correlator in terms of well-

known pulse-sampling techniques where the

delay T is placed on a single frequency.

4. 2 Electronic Correlator

Having decided on a basically electronic
s~~trilset+I,- _-iiiath rnPnl fnlc

Fig. 25 Portion of a random time sampling, it was necessary to decide on a suit-
function, f(t), showing able coordinate system for multiplication.
graphical representation
of Eq. 39.

*The return to a discrete approximation as a practical means of computation of the cor-
relation function for a continuous time series was suggested independently to the writer
by Dr. G. Duvall, formerly of Research Laboratory of Electronics, and by Dr. Y. W.
Lee, M.I.T., who, also visualized a possible electronic solution to the problem.
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Various known schemes were considered, but rapidly discarded in favor of what was

originally thought to be a new technique of multiplying in time-amplitude coordinates.

Such a notion was not completely new, however and had already been demonstrated for

its adequacy and simplicity (14).

4. 21 Early History (First Model)

On the basis of (a) utilizing pulse-sampling techniques and (b) multiplication in time-

amplitude coordinates, a first model of the electronic correlator was designed jointly

with Dr. E. R. Kretzmer, whose knowledge of pulse circuit techniques was invaluable.

Unfortunately, the first correlator was found to be generally inadequate in the sense of

performing a time invariant measurement, due to a basic mistake in naively hoping that

the correlation functions in which we were interested could be measured over only one

channel in approximately one second. This hope was based on a lack of experience with

the statistical character of general time functions and was prompted by the desire to

present a plot of correlation functions on an oscillograph.*

Fig. 26 Block diagram of electronic correlator.

The mistakes of the first correlator were easily corrected, and a second design was

made incorporating various circuit changes but leaving the basic method of pulse-

sampling and time-amplitude multiplication unchanged.

4. 22 Second Model

The general scope of the second correlator and the techniques involved in its

*The use of this first model as a short time correlator (discussed in Sec. 5.23) how-
ever, would be appropriate and represents a practical technique.
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construction are outlined in the block diagram and waveform descriptions of Figs. 26
and 27.

Waveform 1 of Fig. 28 shows a section of a random time function f(t). A sine-wave
master oscillator is used to derive the timing and sampling pulses of waveforms 2a and
2b. In addition to wave-shaping networks, the sine wave is passed through an RC
phase-shift network to give an initial coarse adjustment of T. The timing pulses are

WAVEFORMS

f(t

DESCRIPTION

/---I', r----..
I / 

I i I 

- IlI1 4 1
. -.L

Jit
I b -

INPUT TIME FUNCTION, (t),
(STATIONARY TIME SERIES) WHICH
IS TO BE CORRELATED.

TIMING PULSES FOR SAMPLING BOTH SERIES OF
THE an POINTS OF (t) . PULSES DERIVED FROMA MASTER OSCILLATOR

r IS OBTAINED BY
TIMING PULSES FOR SAMPLING LINEAR PHASE DELAY
THE bn POINTS OF (tit L NETWORK FOR ONEFREQUENCY.

"BOXCARWAVEFORM' tfto) DETERMINED BY
SAMPLED VALUES, On , IS THUS REPRESENTED
AS AN AMPLITUDE PARAMETER.

-;f SAWTOOTH SAMPLING WAVEFORM TO CONVERT
BOXCAR WAVEFORM FOR POINTS bn OF f t)
INTO WIDTH MODULATED PULSES.

- BOXCAR WAVEFORM," '(t) DETERMINED BY(4b] SAMPLED VALUES, b
n OF (t).

WIDTH MODULATED PULSES, TRAILING EDGES ARE
COINCIDENT WITH 

t
b POINTS OF f(t), AND WIDTHS

ARE PROPORTIONAL O AMPLITUDES OF 1(t) AT
EACH bn RESPECTIVELY. THE CLASS OF POINTS,
bn, IS THUS REPRESENTED AS A TIME PARAMETER.

OUTPUT WAVEFORM OF GATING CIRCUIT
WHICH MULTIPLIES [3] AND [5). AREA
OF n PULSES IS PROPORTIONAL TO
f an bn.

I[61 dt THIS IS A MEASURE OF il(r),

ROVIDING 5 IS TAKEN SUFFICIENTLY LONG
0 APPROACH THE STATISTICAL EQUILIBRIUM
F t(t).

Fig. 27 Characteristic waveforms of electronic correlator.

then time-modulated in discrete steps, the time modulation being accomplished by
means of a stepping relay mounted with precision resistors and connected to a well-
regulated supply. There are 90 discrete voltage levels available from the relay. These
voltage levels are linearly converted to corresponding time delays by voltage inter-
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section with a linear sawtooth in a cathode-coupled slicing circuit. Schematically this

process is illustrated in Fig. 28, and corresponding oscillograms for various voltage

levels are shown in Fig. 29.

V

V

PHASE.K DELAY

I

I I FIXED VOLTAGE LE\
i

i A
I

LINEAR
SAWTOOTH

I /

/ VOLTAGE LEVEL FROM
tv RELAY LEVEL SELECTOR

D
U

CANNEL"b"

IEL

t

CHANNEL "a"

t

Fig. 28 Schematic of linear
transformation of dis-
crete voltage levels
into time delay Tk

Fig. 29 Oscillograms of transformation of dis-
crete voltage levels into time delays.

Since both the slope of the sawtooth and the. voltage increment per step from the

relay can be varied, a wide range of variation of Tk can be selected to fit the time

functions being investigated.

It would appear from Fig. 28 that either of the waveforms 2a or 2b could be time-

modulated; however, it was found (for circuitry reasons) that time modulation of 2b

results in a decrease in the allowable range of T to something less than one half the

sampling period T. By time modulation of 2a, the allowable range of r is approximately

given by T - (bn) max, where (bn) max is the maximum width of the derived gating

pulses of waveform 5. Figure 30 shows oscillograms of waveforms 2a and 2b for two

Fig. 30 Oscillograms of timing pulses (waveforms 2a
and 2b, Fig. 27).
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values of Tk .

The sampling pulses are used to measure the amplitude of f(t) at the a and b points.

These amplitudes are stored over a sampling period T, as indicatedbywaveforms 3 and

4b, Fig. 27 (shown also in oscillographic form in Fig. 31). In this operation the ampli-

tude of the a n and bn points are stored on a capacitor in a so-called "boxcar" generating

circuit.

Fig. 31 Oscillograms of "boxcar" waveforms (3 and 4b,
Fig. 27).

The amplitude of waveform 3, Fig. 27, is a function of the amplitude of f(t) at an,

giving the desired amplitude coordinate. A linear sawtooth is used to transform the

stored amplitudes of waveform 4b, Fig. 27, to an equivalent time parameter repre-

sented by the width-modulated pulses of waveform 5, Fig. 27. (Figure 32 is an oscil-

logram of these pulses.)

Waveforms 3 and 5, Fig. 27, are then placed

in coincidence in a gating circuit, the output being

a series of pulses of varying amplitude and width,

as indicated by waveform 6, Fig. 27, and by the

corresponding oscillograms shown in Fig. 33.

The area of each of these pulses is proportional to

the product of a pair of points, an, bn, separated

in time Tk seconds.

As the final step, the integral or summation of

the output pulses of the multiplying circuit over a
Fig. 32 Oscillogram of width-mig.'32 O loated pules widtperiod , which approximates the statistics of themodulated pulses,

waveform 5, Fig. 27. random time function, then gives a measure of

1 l(Tk) The final value of the integral is re-

corded, T shifted, and the process is repeated.

The integrator used in the correlator is of the basic Miller type shown in Fig. 34.

It was designed and tested to have less than 2 percent error for integrating times up to

seven minutes. Since an ordinary mica or oil capacitor will retain too much charge in

the polarization of the dielectric to permit complete discharging in the time allowed
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between integrations, a special polystyrene capacitor had to be used for the integrating

capacitor. The assistance and advice of Mr. Keith Boyer, of the Nuclear Research

Laboratory, on the general problem of building an adequate integrator is gratefully

acknowledged.

Fig. 33 Oscillograms of output of multiplying circuit
(waveform 6, Fig. 27).

Because of the method of multiplication used, a product of anb n is always positive

with respect to ground, and is positive and negative only with respect to the average

direct current of the unmodulated pulse train from the multiplier. Initially it was found

that the standard deviation of many random time functions
c iindrir linpnr nnprnftinn w; nnlv nf theP rdlpr nf I ()-2f

percent of the d-c component of the unmodulated pulses.

This, at first, put a seemingly heavy restriction on the

accuracy with which measurements of the random por-

tion of the correlation function could be measured. By
Fig. 34 Basic inte- providing means for an adjustable step function at the

grator cir-
cuit. input to the integrator (accomplished by returning the

clamper circuit to an adjustable positive voltage), as

much of the d-c component of waveform 5, Fig. 27, could be cancelled as desired.

This feature, together with an integrator sensitivity control, makes it possible to vary

and control the final presentation of the correlation function not only in time but in

amplitude as well.

The operation of the electronic correlator is completely automatic. An adjustable

timing-circuit (Flexo-pulser) is used to operate the T-stepping relay and integrator

relay of the circuits. Figure 37 is a wiring diagram of the timing circuits.

Figure 35 is a photograph of the correlator showing its size and general structure.

Reading from top to bottom, the chassis in the eight-foot rack are (1) stepping relay and
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Fig. 35 Electronic correlator.
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timing circuits, (2) channel a, (3) multiplying, control, and integrating networks, (4)

channel b, (5) voltage and current meters, and (6) power supplies. The graphic re-

corder is on the left shelf and the input-time-function generator may be placed on the

right shelf. A wiring diagram of the main electronic components is given in Fig. 36.

4. 3 Illustrative Experimental Correlation Curves

A few experimentally measured correlation functions are included here as qualitative

examples of the use and flexibility of the correlator. In Sec. V, quantitative experimen-

tal applications and measurements are discussed for a number of cases.

4. 31 Periodic Functions

Since the behavior in time of a periodic function is known, its autocorrelation can be

determined analytically by simple calculations. In general, the determination of corre-

lation functions of periodic time waves is not sufficiently complicated to warrant elec-

tronic computation, but they do serve as an extremely useful method of checking the

operation of the correlator. The correlator has been tested with several periodic wave-

forms of varying shape and harmonic frequency content. Figures 38 and 39 are examples

rn -

Fig. 38 Autocorrelation function of a sine wave (f = 2 kc)
with theoretical curve.

showing comparison

of results as recorded by the correlator for a sine wave and square wave respectively.

The recorded data are shown replotted on linear rectangular coordinates for comparison

of the experimentally determined points and the theoretical curves. Figure 40 shows

the pulses at the output of the multiplier for three different values of T for the sine-wave

input of Fig. 38. It is interesting to note the Lissajous figure traced by the lower right-

hand corner of the pulses and to recognize that our method of multiplication corresponds
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Fig. 39 Autocorrelation function
theoretical curve.

Z= 

= 120

of a square wave (f = 2 kc) showing comparison with

= 45'

= 180

Fig. 40 Output pulses of multiplier for a sine-wave input showing plotting of
scatter diagrams and generation of Lissajous figures as a function
of T expressed in degrees.
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to an electronic plot of a scatter diagram, as discussed in Sec. 3. 1.

4. 32 Nonperiodic Functions

Figures 42, 43, and 44 show some illustrative examples of correlation functions for

random-input time functions - specifically noise from an 884 gas tube at the output of

linear filters. The transfer characteristic of the noise-source amplifier is shown in

Fig. 41.

o

-:_,P

Kc/sec

Fig. 41 Over-all transfer
characteristic
IE /E 1

2 vs.
kcsec of noise-
source panel meas-
ured with signal
generator.

The autocorrelation function of the noise signal

at output of the transfer characteristic of Fig. 41 is

shown in Fig. 42.

The autocorrelation function of Fig. 43 is ob-

tained by inserting a single tuned circuit (Q 14,

center frequency = 20 kc) within the transfer charac-

teristic of Fig. 41.

Figure 44 illustrates the flexibility of the corre-

lator by showing the first part of the autocorrelation

function of Fig. 43 in greater detail, i.e. the delay

per step of T is reduced to approximately one-tenth

its value for Fig. 43, and the correlation function in

the vicinity of T = 0 is shown with the greater detail

of approximately ten times as many points.

4. 4 Desirable Improvements in Electronic Correlator

A study of correlation functions and the construction of an electronic correlator to

measure these functions experimentally was, as pointed out in Sec. I, part of a longer-

range research program to investigate the statistical theory of communication. In

agreement with the general philosophy of the program, the electronic correlator

described here was not constructed with a goal of producing a near-perfect finished

product, but rather from the viewpoint of building an adequate computer which could be

quickly put to use to open up and suggest more branches of research inthe general field

under investigation. The acceleration of a program of research with emphasis on group

effort from many specific fields and directed toward the exploitation of Wiener's basic

theory was considered more desirable than a complete engineering development of a

single problem or technique. It was decided that rather than continuously correct each

small detail or mistake in order to obtain an optimum design, the correlator described

*The curves shown here are presented in a qualitative rather than quantitative sense.
They were measured jointly with Mr. N. Knudtzon (15), who has since made a detailed
quantitative statistical study of various noise sources. Some of his results on correla-
tion functions measured with the electronic correlator are included in Sec. V.
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above would be used in as many situations as possible in order to point out its limita-

tions, so that concurrently with these studies, and lagging some months in construc-

tion time, a new correlator* could be developed which incorporated all the im-

provements indicated by the present model. The following features are listed as

desirable improvements in the present correlator and should be taken into consideration

Fig. 42 Autocorrelation of noise from 884 gas tube
after passing through transfer characteristic
of Fig. 41.

*This correlator is of digital construction, and has been designed and engineered by
H. E. Singleton, Research Laboratory of Electronics, M.I.T.
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in future development of similar-type computers.

4.41 Jitter of Timing Pulses

Any hum or instability in the sawtooth or voltage levels indicated in Fig. 28 will

cause a jitter or inaccuracy in the Tk time delays. The amount of jitter introduced re-

presents a high-frequency limitation, since it is somewhat analogous in its effect to

transit time. For a given amount of hum, the jitter will be proportional to the slope

of the sawtooth (Fig. 28); however, this effect is somewhat compensated by the fact

that as measurements are made of higher- and higher-frequency time functions, the

slope of the sawtooth is generally increased. When faced with the alternative of de-

creasing the range of voltage from the stepping relay or increasing the slope of the

sawtooth in order to decrease Tn per step, the slope of the sawtooth should always be

,,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

t

REPLOT OF EXPERMNAL
_l____ DATA !iON LINEAR

COORDINATES

-14 1

Fig. 43 Autocorrelation function of noise from 884 gas tube
after passing through single tuned circuit (Q = 14).
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increased. The method, indicated by Fig. 28, of obtaining time modulation of the

sampling pulses is to be recommended for its simplicity and with care can certainly be

used up to delays per step of 0. 5 pusec as indicated by Figs. 42 and 44. However,

many communication time functions such as found in television will require a greater

accuracy; one method frequently used in radar circuits is to generate accurate timing

pulses from a crystal-controlled oscillator and then to select the sampling pulses

needed by means of a pedestal or sawtooth as indicated in Fig. 44. By this means a

jitter equal to a period of the timing pulses is permissible before any error is intro-

duced in the timing of the selected sampling pulses.

Fig. 44 Autocorrelation of noise from 884 gas tube after pass-
ing through single tuned circuit (Q = 14) showing in
detail first portion of curve of Fig. 43.
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4. 42 Sampling Procedure

The construction of the electronic correlator was greatly simplified by using a

periodic function for sampling. As long as the time functions being investigated are

random in character no additional error is introduced by this technique. However, if

a periodic component is present in the time series, a serious error may be introduced

if there is any harmonic, or near-harmonic,
TIMING PULSES FROM X-TAL GONTROLLED -' - -' -f . -, .,I' . ... .. . 4- ~..1 ,

It'iiLl.f U(LWetC1 L I1 1 pULIU.1C CUIlpUlll11ZL llU

the sampling frequency. The effect intro-

duced is a function of the correlating time P

and may be evaluated in terms of the cross-

SAMPLING correlation existing between the time series
PULSE

and the sampling voltage. This limitation

Fig. 45 A possible means of re- interposed by the use of a periodic sampling
ducing jitter. Intersec- frequency on the measurement of periodiction of selection voltage
level and first timing components in a time series is important but
pulse determine timing not serious. A quick glance at the pulses at
of a sampling pulse.

the output of the multiplier will generally

suffice to determine the presence of a harmonic relationship, which can be easily cor-

rected by a small change in the sampling frequency. In order to avoid all chances of

error from this effect, theoretically one should use narrow-band noise as a sampling

function. It would be a desirable feature, if this technique is used, to provide means

for changing the center frequency and bandwidth of the noise.

4. 43 Large Values of Delay T

The correlator has been operated with a maximum delay of 2. 5 msec. This value

of Tmax can with only minor circuit changes be easily extended to 10 msec. It is

pointed out that the storage requirement necessitated by large values of T falls actually

on only channel a. Although channel b stores the bn points for an entire period, only

that portion of the boxcar waveform defined by the maximum pulse width (bn)max is ever

used. The boxcar waveform from channel a is used to modulate the amplitude of the

multiplier pulses. Since it operates on the grid of the multiplier tube, it has the ad-

vantage of the gain in that stage. Consequently, the amplitude of the channel a boxcar

need not be as great as the channel b. For these reasons a longer time constant is

permissable in channel a, which should contribute to a substantial increase in allowable

Tmax . It is the belief of the writer that an extension in Tmax beyond 10 msec by elec-

tronic means similar to those used in the correlator is an unnecessary struggle. Be-

yond this value of delay other means rapidly become more feasible. As a single sug-

gestion in this direction, the time function under study could be stored on a twin-track

magnetic tape, with the magnetic head of the recorder constructed with a multiple

number of pickups spaced 10 msec apart in time as indicated in Fig. 46. The switching
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to appropriate pickups can be synchronized and controlled by the timing circuits of the

correlator, so that a computation through all or any portion of the available range of T

can be selected and performed automatically. In this respect it is a desirable feature

to modify the timing and control circuits of the correlator so that an appropriate num-

ber of T steps can be selected within the range of 10 msec as desired. Since the num-

ber of steps must be synchronized to the distance set between pickups, not all numbers

of T steps are permissible.

I 10 .I 0 10 10 t
imsec m sec msecmse,

I I 1E:Z :] [ = : C',
I I 1 1

Fig. 46 Construc-
tion of a
multiple
pickup head
to obtain
larger val-
ues of T.

Central to the suggestion presented here is the use of a

magnetic tape to store the time function. As in the case of

the correlator, it is not necessary for the entire time func-

tion to be stored. If the time function is continuous and

available for long lengths of time, it is only necessary to use

a sufficient length of tape in which to record, sample, and

erase, as indicated in Fig. 47.

In summary, it is certain that the extension of Tmax in

any general-purpose correlator is desirable. A preliminary

investigation of the time functions important in the human

body alone indicates the necessity for computation out to at

least 100 msec and in some cases to one second. It is re-

commended that the present correlator be extended electronically to 10 msec delay and

that larger delays be obtained with external delay systems controlled by appropriate

timing and control circuits built in and available in the correlator. The use of storage

tubes, when perfected, should not be overlooked as an external means of obtaining large

delays.

4.44 Time Constant of the Integrator and Sensitivity Control

The time constant of the integrator should be made variable in discrete steps to

correspond to various ranges of integration time. The time constants should be

selected so that the average integration error in the various ranges is kept approxi-

mately constant. This will avoid the necessity of having to make large compensating

changes in the sensitivity control. This modification will do much toward relieving

the error introduced by high-sensitivity settings

which reduce the cathode resistance of the

cathode follower at the output of the integrator

to a point of improper operation.

A A a:Ae 1AeA

CdANNFL tbh t*. '*D jLJSCrele DIele CLI(UI

Fig. 47 Storage of a time func-
tion over a period T
= time length between
recording and erasing
heads.

It is strongly recommended that most set-

tings of the correlator be on a selector-switch

basis. This will allow for the presetting of a

given set of conditions and a return to these
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same conditions with a minimum of error. The present correlator modified for dis-

crete selection of delays per step of 0. 5, 1. 0, 2.0, 5. 0, 10. 0, 20.0 and 30.0 Isec,

would be a distinct improvement in ease and accuracy of measurement.

4.46 Measurement of Asymmetrical Time Functions

The boxcar waveforms of channel a and channel b are capacitor-coupled to the multi-

plier and pulse-width-modulator circuit respectively. Although long time constants are

used, a small amount of error will be introduced by the averaging effect of the capaci-

tor on asymmetrical waveforms. A clamper placed after the coupling capacitor and

operating on the discharge pulse of the boxcar waveform would correct this error.

This method of correction was suggested by L. G. Kraft, Research Laboratory of

Electronics, M.I.T., and avoids the necessity of d-c coupling.

4. 5 Other Possible Methods and Techniques of Measuring Correlation Functions

4. 51 Digital Correlator

A serious difficulty in the measurement of correlation functions by electronic means

is instability and temperature drift. For instance, if a time function requires an inte-

gration time (p) of two minutes to reach a reasonable statistical equilibrium, then the

measurement of 90 points to determine its autocorrelation function will require about

three hours. For accuracy, it is necessary that the conditions of the measurement

remain constant for this period. The ability of digital techniques to store, multiply

and integrate with great stability and reliability is one of the chief advantages of a

digital correlator. Its disadvantages are all in terms of its size, order of complexity,

and cost, which serve to classify it as a technique for use in the larger research

laboratories.

4. 52 Shorted Transmission Line

A shorted transmission line can be used as a central part of a device for computing

correlation functions. A probe placed in a shorted line will pick up the sum of the

direct wave and the reflected wave as indicated in Fig. 48. The mean of the square of

this sum is equal to two times the mean power of the time wave plus twice the autocor-

relation function.

Let x = fl(t)+ fl(t + T)

f(t) - f(t+r)

6r 1

Fig. 48 Use of a shorted
transmission line to
measure autocorre-
lation functions.

xZ = fz(t) + fl(t)fl(t + T) + f (t + T)

X = l1 1() + 21, 1(T) + 1 (0)

=:1 Z,,,1() + 2+,1 (T) . (40)
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Therefore, a succession of probes placed in the shorted line (or waveguide) and

connected to square-law devices and integrators will measure correlation functions of

time waves within the frequency characteristics of the line. Means should be provided

for removing the d-c component, 21 1(0). It is clear that the only function of the short

is to decrease the length of line required and an unshorted line used as a pure delay

would theoretically serve as well. The principal advantage of the above method is in

the measurement of correlation functions at extremely high frequencies where very

small time delays are necessary and difficult to obtain by usual techniques. An applica-

tion of this technique at lower frequencies has recently been made by P. E. A. Cowley

and R. M. Fano, Research Laboratory of Electronics, M.I.T., in the construction

of a short-time correlator for speech.

4. 53 Magnetic Tapes, Rotating Drums, etc.

Magnetic tapes, rotating drums and similar devices for storing time functions may

be modified into correlation computers by the addition of adjustable pickup heads (for

determining) and suitable multipliers and integrators. All these devices and tech-

niques have their value for specific applications but have a serious disadvantage in their

limited range and inflexibility.

V. Experimental Applications of Correlation Functions

5. 1 Evaluation of A Priori Information in the Detection of a Sinusoidal Signal in

Normally Distributed Noise

A sinusoidal signal E cos (wt + ) is completely described by a knowledge of the

three constants:

amplitude - E

angular frequency - w

phase angle - .

One knows intuitively from the concepts of information theory that if any a priori knowl-

edge, either exact or weighted, is available of these three constants of the signal, the

knowledge should be of some advantage in the detection of the sinusoid. Any detection

system which does not take full advantage of all a priori knowledge of the signal will

inherently operate below its maximum rate of transmission of information. In this

sense we may define an ideal detector as one which takes complete advantage of all a

priori information, i.e. it is a device which does not waste time remeasuring and com-

puting what is already known.

The relative and practical advantage of an a priori knowledge of the above three

*The material presented here was suggested as a result of early conversations with
Prof. J. B. Wiesner and Prof. Y. W. Lee, M.I.T., concerning possible applications
of correlation functions in radar detection problems.
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constants can be evaluated in terms of correlation and amplitude-density functions of

the signal and the noise. In passing it should be noted that the practical ideal detector

as defined above will inherently be nonlinear since

f(signal) = f(E, w, ) = implicit nonlinear function

An evaluation of an a priori knowledge of each of the three constants is considered

separately, and, for convenience of organization, the angular frequency constant w is

taken first, in order that the properties of autocorrelation and its transition to cross-

correlation may be used as an introduction to the notions involved.

5. 11 Autocorrelation

In order to arrive at a clearer picture of the basic concepts involved in the evalua-

tion of an a priori knowledge of frequency w, consider first the general case of two time

functions fl(t) and f2 (t), both consisting of a signal plus random noise as indicated by

Eq. 41.

f(t) = Sl(t) + Nl(t)

f 2 (t) = S2 (t) + Nl(t) . (41)

The crosscorrelation of these two time functions is made up of four component

crosscorrelation terms

T

+12 (T ) = T -T fl(t)f 2 (t + T)dt
-T

T

+1r2(T) = 1i. NI 1t [SlI(t)] LS2 t + T) + N2 (t + T) dt (42)
-T

1,12(T) S1S2(T) + S N (T) + N S (T) + 4 1N (T)
SS2( 1N2 1S2 ( ) N1N2(·

If the two time functions fl(t) and f2 (t) are independent, then each of the four com-

ponent terms of Eq. 42 will be identically zero as the period of correlation approaches

infinity. For a finite time of correlation, however, the standard deviation of the points

of the correlation curve will approach zero as a function of the number of discrete

independent samples taken by the correlator. *

Consider the properties of autocorrelation as applied to a practical problem of

detecting a periodic signal in random noise where the only a priori knowledge of the

signal is, perhaps, its probable location within a general broad bandwidth. In terms of

*It was early recognized by Prof. J. B. Wiesner that the inherent dispersion of points,
resulting from a finite correlation time, imposed the basic limitation on correlation
techniques for detection purposes.
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the previous general case, f 2 (t) is identically fl(t), both channels of the correlator

operating in parallel from the same input. Here again the correlation function will be

made up of four terms

'1 1(T) = SS(T ) + ISN(T) + PNS(T) + TNN(T) . (43)

The first term is the autocorrelation of the signal component: it will be nonzero. The

next two terms are the crosscorrelation of the signal and noise components; these,

theoretically, in the limit as T approaches infinity, will be identically zero. The

fourth term is the autocorrelation of the noise component; theoretically, this term will

be zero for large T and can be made zero for all T by compensation. The first term is

a measure of our desired signal, and the last three are essentially noise terms whose

dispersion approaches zero as a function of the number of samples computed by the

correlator. It is important to note that there are at least three effective noise terms

and actually a fourth if one includes an inherent amount of dispersion in the measure-

ment of the signal term in a finite length of time.

It is convenient to evaluate the use of autocorrelation in the detection of a signal in

noise in a finite time interval in terms of the rms signal-to-noise ratio improvement at

the output of the correlator. This improvement can be determined as a function of the

rms signal-to-noise ratio at the input and the length of correlation time.

It should be noted that the crosscorrelation terms of Eq. 43, as well as the autocor-

relation term for the noise component (for large T), are computed from the average

product of two independent variables. The contribution of the effective noise terms at

the output of the correlator can, therefore, be evaluated in terms of the dispersion of

the product of two independent variables, which is shown below to be equal to the prod-

uct of the individual dispersions, providing first moments are zero.

Let x and y be two independent variables and define z = xy. Then

E(x) = expectation of x = m

E(y) = expectation of y = m .
Y

Since x and y are independent

E(xy) = E(x)E(y) = m m
xy

By definition

dispersion of x = ax = E(x) - E(x)] 2 = E(x 2 ) mx

dispersion ofy = E(y 2 ) - [E(y)] 2 = E(y 2 ) - my

*A method of proof indicated to the writer by Dr. M. Loewenthal, formerly of Research
Laboratory of Electronics, M.I.T.
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and

dispersion of z= 2= E[(xy) 2] - [E(x + y]I = E(x 2 y 2 ) - [E(x)E(y)

= E(x)E(y2 ) - mmxy

Then from above

E(x ) =o+ m

E(y2 ) = y + m
y y

Substituting

2 2 2 2 2 22

ayaz =(ax + m )(y + m x y2 = x m + my + x ·

For our case, of a sinusoid signal and gaussian noise, both m = my = 0, and therefore

2 2 2
az =xy (45)

Equation 45 makes it possible to evaluate the dispersion of each component term of

Eq. 43 and hence the aggregate rms noise term at the output of the correlator for a

finite averaging time.

At input to the correlator: if the signal is E cos(wt + O), and the noise is normally

distributed with a standard deviation, then the input rms signal-to-noise ratio is given

by

Signal I _
Noise rms - - a

At output of the correlator: the measure of the desired signal is the self-correla-

tion signal component term of Eq. 43. Analytically, it is given by

T

iSS(T) = lim I S [E cos(wt + )] [E cos(w(t + T) + 4)]dt

E2
SS( r) = cos WT (46)

The above expression for PSS(T) is its theoretical value. The electronic correlator

practically measures a value which approaches close to

SS( T) = NE2 COS WT (47)
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where

N = number of samples computed

K = a variable normalizing factor

The desired output rms signal component as measured by the correlator is therefore

NE 2

2T 2K (48)

We need now to evaluate the rms contributions of the effective noise component terms

at the output of the correlator. Let us set minimum T sufficiently large so that the cor-

relation of the noise at the discrete sampling points is effectively zero. It has already

been pointed out that this is an unnecessary restriction since the correlation of the

noise, once measured and known a priori, can be compensated. However, in either

case, we can assume our a and b sampled points of the correlator to be two discrete

sets of independent variables X and Y.

X x= x 2 , x 3 , x4 , *..XN) standard deviation 

Y = 1 Y2 ' Y3' Y4 ' ... YNI standard deviation y .

Define Z = XY and assume, as appropriate to our case, that mx = m = 0. Then
Y

Z = xlY1 , XZy2'

Z1 , z2'

standard deviation

aOxy (see Eq. 45)

The repeated summation of N discrete products of our new variable Z, as performed by

the correlator, will give us a new set of points having a standard deviationVN o(xoy

N

Z = Z + z + z + z4''' + Z standard deviationK a

N

This can be simply shown as follows: the standard deviation of the defined , Z set of

points is by definition 1

z= E(z2)-E((Z) 2

but

E(ZZ) = E(zl) + E(z 2 ) + ... E(ZN) = 0

*The derivation of the probability density function for the product of two normally dis-
tributed and independent variables is given in Appendix 2, together with equations for
the evaluation of all moments. It has not been necessary here to deal with the exact
distribution function due to our simplified rms signal-to-noise criterion. The results
of Appendix 2 and, in addition, the distribution density function of the product of a sine
wave and noise would be necessary if a more searching criterion were adopted.
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and

/E(= F2) E(z + z2+ z+ 2+ 2z z +2zz
E( ) = E(z1 + z2 + z 3 +... N + 212 1 3

+ ... 2z2z3 + 2z3z4 + ... )

= E(z2)+ E(z 2 ) + E(z3)+ ... E(zN)

22N 2 2 (50)

Therefore

az = j< y= uxay (51)

In the correlator, a normalizing factor, K, defined in Eq. 47, is also present in Eq.

51, so that experimentally the correlator measures

a.Z = K

Considering now each of the component correlation terms of Eq. 43, we have

E z

1. SS(T) = desired signal = - cos WT
dispersion in this measurement will have a standard

deviation = N E2
2K

2. 0SN() 0
standard deviation from this value = K E a

3. NS(T) same as qSN(T)

4. ~NN(T) = 0 (for T large, or after compensation) 2

standard deviation from this value = a
K

Since the four effective noise terms are independent, their aggregate contribution can

be evaluated as the square root of the sum of the squares. Therefore, for autocorre-

lation

NE 2

signal = 2V2 K (52)output e(52)
noise

Na + 2NE a NE

K 2K 2 4KZ

E 1

o va + 2- E-
2(;2
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If we define

Z inputsignal rm 

signalW = output noise

Eq. 52 can be simplified symbolically to the following relation

W = 2 (53)

The derivation of Eq. 53 serves to illustrate the fundamental notions and equivalent

experimental techniques involved in the use of autocorrelation functions in the detection

of a small signal in noise. While the relation of Eq. 53 is explicit and useful, its

greatest importance lies in its role as an introduction to and part of the more general

concept already discussed concerning the evaluation and use of a priori knowledge in the

detection of a desired signal.

Figure 49 shows some examples of experimentally measured correlation curves

that check Eq. 53 fairly closely. The data from these curves have been plotted on Fig.

50, discussed in the next section.

5.12 A Priori Knowledge of Angular Frequency W

With an a priori knowledge of the exact frequency of the signal we wish to detect we

can locally generate as an input to the second channel of the correlator a sinusoid having

the same frequency, thus measuring crosscorrelation. In this case, we shall find that

the crosscorrelation t 1 2((T) is made up of the desired signal correlation component and

only one noise term.

fl(t) = S1 (t) + N1 (t)

f2 (t) = Sz(t)

T

(T = I urn J [Sl(t) + N(t ] [St T)dt
-T

kl12(T) (S 1 S + LPN S2(T) (54)

We see, therefore, that crosscorrelation has reduced the effective number of noise

terms from three to one or, if we include the effect of a certain dispersion in the meas-

urement of the signal component in a finite time interval, from four to two. The quanti-

tative advantage of this over autocorrelation is derived below in a manner similar to

Eq. 53, but with a parameter a introduced to show the transition from autocorrelation

to crosscorrelation, thus allowing for a possible corresponding physical method of
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utilizing any a priori knowledge of the probable signal location in frequency.

-The generalized problem of the detection of a signal in noise through autocorrela-

tion and crosscorrelation as outlined above can be presented in the following manner.

Let

fl(t) = Sl(t) + Nl(t)

f2(t) = S(t) + NZ(t)

where Nl(t) is the noise from a bandwidth B, and N 2 (t) is the noise from a reduced

bandwidth aB, where a < 1. If the rms value of N 1 = , then N2 I = Va a. Also, if

S l (t) = E cos wt, let S 2 (t) = mE cos(wt + ) where m = S21/1S1 , and = phase angle

between Sl(t) and S2 (t). By substitution in Eq. 2, the crosscorrelation of fl(t) and f(t)

is found to be

(55)12 (T) = SS (T) + SN (T) + N 1S(T) + N1N2() 1 2 1N 2 1S2 12

In a fashion analogous in its reasoning to the specific case of autocorrelation con-

sidered above, the effective signal and noise component terms can be evaluated as

follows 2

S S (T) = desired signal =2K cos(wt + )

dispersion in this measurement will have a standard

*f mE2
deviation = m

2. S N ( )= 0

standard deviation from this value = E a

3. SN1S2(T) = 0
1 Ea

standard deviation from this value = m/ -

4. N N (T) = 0 (for large, or after compensation)
12 2

standard deviation from this value =a 

Therefore

mNE 2

output signal = 2K
noise I 4 2_2_ 2 2 2 4

mNE + aNE 2a 2 m 2 NE2 a2 Na4

4K2 2K 2 2K 2 2

1

1E2 /N 2 E ZamZZ
+ am 2 +- + E

2( Eg

(56)
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If we define as before

signal E
Z = input noise rms 

noise rms s °

and

W = output signalW output noise

we may write Eq. 56 symbolically as

z2

z 4 + Z(l + am .+ am

Equation 57 has several interesting interpretations. If we let a = m = 1, we see that

it reduces both physically and analytically to Eq. 53 for the case of autocorrelation.

For the case of crosscorrelation, a is equal to zero, and it is interesting to observe

that W is then independent of m. That is the advantage of knowing, a priori, that the

frequency of our desired signal is exact and complete and independent of the amplitude

parameter of the crosscorrelated signal; our advantage is solely determined by the

extent of our a priori knowledge. A physical interpretation can be given for values of

a other than 0 (crosscorrelation) and 1 (autocorrelation). For intermediate values of

a, the process is essentially autocorrelation, but a strong a priori probability of the

signal's location in a restricted bandwidth makes it possible to shape the bandwidth

characteristic of one channel of the correlator to fit this a priori knowledge and hence

take advantage of it by reducing a, and increasing the input rms signal-to-noise ratio.

It should be noted that physical reasoning restricts m to be equal to unity except when a

is equal to zero (crosscorrelation). This physical requirement is consistent with Eq.

57, since a and m are wedded together as a single parameter.
2

Equation 57 expressed in decibels has been plotted in Fig. 50 with am = 1 (autocor-

relation) and am2 = 0 (crosscorrelation) as a function of the input signal-to-noise ratio

in decibels for N (the number of independent samples) equal to 60, 000. From Fig. 50,

we see that if the input signal-to-noise ratio is -15 db, then the output signal-to-noise

ratio from autocorrelation is +14. 5 db. If the frequency of the signal under detection

is known, however, then crosscorrelation will increase the output signal-to-noise ratio,

for the same correlation time, to +30 db.

The difference between the autocorrelation and crosscorrelation curves of Fig. 50 is

the advantage to be gained as a result of an a priori knowledge of frequency. In Fig. 51,

this advantage is shown to be an approximately logarithmic function of the input signal-

to-noise ratio. It is significant to note that this curve is independent of N, the number

of samples, and hence the averaging time. For example, if a certain output signal-to-

noise ratio in decibels could have been obtained through autocorrelation for an input

signal-to-noise ratio of, say, -40 db, then a possibility of having switched to cross-

-53-
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correlation through a knowledge of the frequency constant (w) will give a +40 db im-

provement.

As a point of considerable importance, it should be noted that an attempt to use

crosscorrelation in the detection of a signal of unknown frequency, and hence with a

flat a priori probability of location within a broad bandwidth, by hunting will give no

advantage over autocorrelation. *

.0

Z

z

I-

Z0

SIGNALW-INPUT SoIEL RATIO IN db

Fig. 50 Improvement in signal-to-noise ratio through autocor-
relation and crosscorrelation.

5.13 Advantage of A Priori Knowledge of Phase Angle Constant, 4

In the case of crosscorrelation, it should be noted that since no knowledge is as-

sumed as to the phase angle constant 4, of the desired signal, the maximum of the

signal crosscorrelation component must be determined. This will require a measure-

ment of the correlation curve at a minimum of two different values of T. For example,

it would be convenient to take values of T such that WT 2 - wT1 equals 90°, in which case

the amplitude of the signal at the output of the correlator is measured by the square

root of the sum of the squares of the two measurements about the mean. This is illus-

trated in Fig. 52.

*This fact was pointed out to the writer by Prof. J. B. Wiesner, Research Laboratory
of Electronics, M.I.T.
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However, if it is assumed that both the frequency and phase angle constants of the

desired signal are known, 'there will be no ambiguity as to the position of the maximum

since, as already pointed out in Sec. 3.2, it must occur periodically at = 0, T, 2T,

etc. This gives us an advantage of a factor of 2 in time, representing a constant 3 db

improvement in output signal-to-noise ratio. This improvement is independent of the

input signal-to-noise ratio.

5. 14 Advantage of A Precise A Priori Knowledge of Amplitude E

If we know the amplitude constant E of a sinusoid (x), then statistically we know its

amplitude distribution density function p(x) precisely. It should be noted in this respect

that p(x) is independent of the frequency or phase angle constant of the sinusoid, and is

uniquely determined by E only.

If we define the signal as a variable X and the normally distributed noise as a vari-

able Y, we may, after the method and definitions of Wiener, outlined in Sec. II, ask

what is the gain in information made through a measurement W = X + Y. In terms of

our a priori distribution p(x) we ask what is pw(x) - the probability of x, knowing w -,

I SIOGNAL.
NO SE RATIO IN db AT INPUT TO GORRELATORi10 -214i I6 - i I i I- -38

-10 -12 -14 -168 - -OD -2 -24 -26 -2SB8-30 -32 -4 -36 -38 ·

Fig. 51 Improvement in signal-to-noise ratio through crosscorrelation for a
pure tone located in white noise.

-55-

_�II�



and what is the amount of information associated with each of the curves p(x) and Pw()?

The evaluation of this amount of information (or negative entropy) is given below with

the slight modification that the result is used as a measure of the improvement in signal-

to-noise ratio that should be possible through the use of our previously defined ideal

detector.

Let X = sinusoidal signal

Y = normally distributed noise.

Then

p(x)dx = dx where E = amplitude of the sinusoid (58)

E_ x2

2
Y

p(y)dy = e dy, where o = mean square value of the noise (59)

We desire to know the probability of x, knowing w, [pw(x)], where W = X + Y. This can

be evaluated through the use of Laplace's extension of Baye's theorem.

p(x)px(w)

pw(x)= - p(w) (60)

In the above

Px(W) = (p(y), where y = w - x) = p(y = w - x)

(w- x)

1 24o
p (w)= e . (61)

In order to evaluate p(w), we note that since x and y are independent, we may write

2
Y

p(x, y)dx dy= e dx dy . (62)

To transform the above distribution function into a function of the defined variable W, an

additional variable of integration, u, may be defined as follows

W =X+Y

u =X . (63)

The relation between the old and new variables of the distribution function is

p(w, u) = (x y) (64)

a (x, y)
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with the Jacobian of the transformation

a(w, U) s= 1 E1q.
a(x, y) - 1 1 

By substitution in Eq. 62

(w - )
2

p(w, u) = e 0qe

.~~ ZoEZ- uz

p(w) is obtained by integrating over all values of u.

p(w) =

.Jf-*

(w - u)2
E 2~o

Se du .

-E E - u2

Then by substitution in Eq. 60

(w - x)2
2qJn,

Pw(x) 
e

(w - u)

VE2 x2 S e_ du

-E E 2 u2

The gain in information as measured by pw(x) and p(x) is then

oo E

-E

(w - u)2

e du

E2 U2

log

(w - x)2

2e
e

2 E (w - u)2

2 4i
EgxZ 5e du

-E E~ - uz

(69)

E

_- 1 S log 2 1 dx .
-E fffE2- x2 VEZ - x 2

The evaluation of Eq. 69 is extremely difficult, due tothe form of Eq. 67, which, in an

alternate form, has been evaluated by S. O. Rice (16) in a series expansion over only a

restricted range of the variable; for the major range of values he has resorted to a

numerical integration.

The writer, after several fruitless analytical attempts, has resorted to a numerical
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evaluation, based on replacing the signal and

-2 -_: I+|2"r) /noise distribution functions by discrete functions

Al/ of!Ai / MEAN of sufficient partitioning to give a reasonable

E -r2 A// qualitative estimate of the behavior of p(w) over

an interesting range of rms signal-to-noise

m 2 ratios. Figure 53 shows the discrete models
AI: = COS(wT,+ ) IF, (T2-T) 90'

2 2 that were used to approximate the continuous
A2= cos(wTz+-) THEN,

= AT2- Az2
functions. The amplitude of the sinusoid has

been arbitrarily taken as equal to one and vari-Fig 52 Two-point determination
of maximum value of the ations in signal-to-noise ratios are obtained by
crosscorrelation func-

operation on Y.tion for a sinusoid of
known frequency. Graphically the computation of p(w) for the

continuous variables is indicated in Fig. 54.

The graphical picture serves as a guide for the efficient programing of the computations

and also to indicate the range over which our model is a reasonable approximation. By

holding E = 1 = constant, it is clear that evaluations will be more valid for small signal-

to-noise ratios than they will be for large ratios; this fact has influenced the choice and

method of computation, since we are in general more interested in the case where the

signal is buried in the noise.

Table 1 gives a sample page of computation and serves to indicate the procedure

used. Column 1 indicates the midpoint of our discrete levels. Column 2, p(x) x, is

equivalent to the discrete model of the signal, Fig. 53. It is evaluated from the relation

x + Ax x + A

-1 sin lx x

~x x x

Column 3 is taken from our discrete model* for the noise Y according to the relation-

ship of Eq. 61. Column 4 is the product of Columns 2 and 3, and p(w) is then the sum

of Column 4, since we have an exhaustive set of values of x.

p(w) = p(x)px(w) . (70)
x

Column 5 is evaluated by dividing Column 4 by p(wl), making direct use of Eq. 60

(Baye's theorem). Columns 6 and 7 facilitate the computation of Column 8.

Computations similar to Table 1 were carried out for values of W from 0 to5 at

0. 2 intervals for rms signal-to-noise ratios of 0. 500, 0. 707 and 1. 00. Figure 55 shows

graphically the variations and trend in the function pw(x) for changes in W over a range

0 to 1. 00 and for the three selected signal-to-noise ratios. Qualitatively, it is to be

observed that our most probable location of x as a result of a measurement W sharpens

with increasing W. That is, our knowledge of x as a result of a measurement W (and

*W.P.A. Tables.

- 58-

� __ __�



/

I

.04

035

.03

.025

.02

.015

.01

.001

-I.l -I-.I --. S -. i - 0 -5 - -.3 -Ill5 -J-.05

LP(Y)AY

GAIJSS1An OIS01E ( )
aY .I

1-N

.05 .15 .25 .3' .45 .55 .65 .75 .85 .9 5 1.05 L5

Y

.3
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P (X) X SIGNAL (X)

AX ,1

Fig. 53 Discrete functions used to approximate the probability density
functions of a sinusoidal signal (x) of amplitude E = 1, and
gaussian noise (Y).
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Table 1: Illustrative example of method of computation.

W 1 = 0.2,1 = 1
o

E=1

1 2 3 4 5 6 7 8

1
x (x) p (wI) P(x)Px(wl) P (X) -log1 P (X)[ -P(x)log (x)Pw Px (x) o0w I w1 1

0.95 0.14356 0.02060 0.0029573 0.094407 10.59 1.01490 0.09581

0.85 0.06127 0.02299 0.0014086 0.044967 22.24 1.34713 0.06058

0.75 0.04833 0.02540 0.0012276 0.039189 25.52 1.40688 0.05513

0.65 0.04202 0.02780 0.0011682 0.037292 26.82 1.42830 0.05326

0.55 0.03814 0.03010 0.0011481 0.036651 27.28 1.43584 0.05263

0.45 0.03565 0.03229 0.0011511 0.036747 27.21 1.43473 0.05272

0.35 0.03407 0.03429 0.0011683 0.037297 26.81 1.42830 0.05327

0.25 0.03287 0.03604 0.0011848 0.037822 26.44 1.42226 0.05379

0.15 0.03222 0.03751 0.0012085 0.038580 25.92 1.41363 0.05454

0.05 0.03185 0.03865 0.0012310 0.039299 25.45 1.40569 0.05524

0.05 0.03185 0.03943 0.0012559 0.040092 24.94 1.39690 0.05600

0.15 0.03222 0.03983 0.0012833 0.040967 24.41 1.38757 0.05684

0.25 0.03287 0.03983 0.0013094 0.041799 23.92 1.37876 0.05763

0.35 0.03407 0.03943 0.0013435 0.042888 23.32 1.36773 0.05866

0.45 0.03565 0.03865 0.0013779 0.043986 22.73 1.35660 0.05967

0.55 0.03814 0.03751 0.0014308 0.045674 21.89 1.34025 0.06122

0.65 0.04202 0.03604 0.0015145 0.048348 20.68 1.31555 0.06360

0.75 0.04833 0.03429 0.0016573 0.052907 18.90 1.27646 0.06753

0.85 0.06127 0.03229 0.0019785 0.063160 15.83 1.19948 0.07576

0.95 0.14356 0.03010 0.0043211 0.137944 7.25 0.86028 0.11867

p(w 1 ) ,p(x)px(w l)= 0.031325

x

7 Pw (x )
= 1.00001

x

Hw (x) = Pw(x)loglOw (x)= 1.26257

Hw (x), base 2 = 4.19416
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an a priori knowledge of E) increases for larger and larger W. It would appear even at

this stage that by selecting our measurements W we could increase our information on

x accordingly.

Figure 56 plots the functions p(w) for

various rms signal-to-noise ratios. The

curves are actually discrete with Aw = 0. 1,

but have been shown as continuous for ease of

presentation.

Figure 57 is of particular interest since

it plots the information associated with the

Pw(x) functions of Fig. 55 for the various
signal-to-noise ratios. Each of the conditional

entropy curves Hw(x) are monotonic and their

Fig. 54 Graphical representation behavior with respect to the two reference

of computation of p(w). lines H(x) and Max Hw(X) is important. H(x)

is the negative entropy associated with the

curve p(x), i.e. it is equal to - _p(x)logZp(x). Max Hw(x) represents the maximum

negative conditional entropy which any disturbance can cause. Its finite value is due to

the discrete and finite number of levels of our model. If p(x) could be treated as con-

tinuous, then Max Hw(x) would be infinite. Max Hw(x) serves as an upper-bound nor-

malizing factor. The curves H (x) are of course always less than Max Hw(x), but they

are for certain values of W greater than H(x). That is, whereas it is always true that

on the average, entropy always increases (or what is the same; that negative entropy

(information) always decreases), for some values of W our knowledge of x is less (more

vague) than our a priori measure. (That the entropy on the average increases for our

case is shown in Fig. 58.) Therefore, it would appear here that we have the possibility

of a macroscopic Maxwell demon (3), which physically might be quite practical to con-

struct. By constructing a clipping circuit which passed only those values of the sum W

which exceeded the point of intersection of H(x) and Hw(x), we would isolate those values

of W that contained some measure of positive or confirming information about x. A

reversed Maxwell demon is then constructed; it is actuated by energy level and stores

up on one side of the gate greater information as to the presence of our signal.

There does not appear to be any obvious inconsistency here, since the construction

of the Maxwell-demon clipper requires an a priori knowledge to be build into it. The

success of the demon will be directly related to the preciseness of this knowledge.

The improvement in signal-to-noise ratio that should be possible is related to twice

the area under the curves Hw(x) of Fig. 57 from 0 to the point of intersection with H(x).

These values normalized with respect to the mean of Hw(x) = p(w)Hw(x) are plotted

on Fig. 59. It should be noted that Fig. 59 represents a gross or theoretical improve-

ment. The clipping operation suggested here will change the character of the desired

signal, and an additional operation is required to restore its original character. This
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operation may lose information and the net gain will be the gross minus the loss occa-

sioned by the retransformation.

Figure 60 plots optimum Maxwell-demon-clipping levels as a function of rms signal-

to-noise ratio. It should be observed that with decreasing signal-to-noise ratios, the

clipping level normalized with respect to w - the rms value of the sum W, increases;

this means that p(w) for W > Wclip will be less, and hence a greater length of time will

be required to build up the same amount of information or degree of assurance as to the

presence of the sinusoid. This fact is again consistent with our notions of information

theory.

nA

I

W. X+Y

Fig. 56 Probability density functions p(w) for the sum (w) of a sinusoidal signal
(x) in gaussian noise (Y). Both x and Y are approximated by discrete

functions. z signalnoise rms
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Fig. 57 Conditional entropy curves H w(x) for a sinusoidal signal (x) in
gaussian noise (Y) where w = x + Y. Both x and Y are approxi-
mated by discrete functions.
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The above evaluation and the discussion of this section do not leave us with as con-

crete an evaluation of an a priori knowledge of amplitude E as did the previous sections

for frequency W and phase angle , but, qualitatively, it does indicate what should be

possible, and it has given a possible physical means of transforming our evaluated

negative entropy into an equivalent improvement in signal-to-noise ratio. Philosophi-

cally, the possibility of recognizing a Maxwell demon as being any device which has

built into it a priori information is important.

5.2 Autocorrelation Functions of General Speech

A study of the statistical characteristics of speech including probability density dis-

tributions, conditional probability distributions and correlation functions under various

conditions of voice, language and context is an important research problem in communi-

cation. A study of any one of these parameters, such as correlation functions, is

certainly no less than a very long-term research study. No such exhaustive study has

been attempted here, but a sufficient number of measurements have been made which,

coupled with an available general knowledge of speech, allow certain conclusions to be

drawn.

Fig. 60 Normalized Maxwell-demon clipping levels for the detection of a
sinusoidal signal (x) in gaussian noise (Y), plotted as a function of

noise rms stanard deviation of w x+ J.
=sga I . NV= standard deviation of w=x+Y=Z~ ,
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From observation we know that the human ear operates in some sense as a statisti-

cal filter. If a person's voice is well known (that is, its inflections, intonations, man-

nerisms, etc. ) one can pick it out of a high level of background interference with little

trouble. We may also, having a particular stranger pointed out in a crowd of people,

by concentrated listening gradually improve our ability to pick his conversation out from

all others. We may describe this last phenomenon as the ability of the human ear to

learn. An attempt to explain the mechanism by which the human ear accomplishes the

many wonderful things it does is a challenging research problem. It is too big a prob-

lem to be solved here, but it is important to show what possible role correlation func-

tions could play in the more complex picture. We may ask if it is possible for the ear

to differentiate or measure individual characteristics of speech on a spectra (or corre-

lation) basis. A necessary condition for this possibility is that the correlation functions

for a given selection of speech spoken by people of different voice characteristics

should present measurable differences. Figure 61 shows the autocorrelation functions

for an identical selection of speech spoken by a male and female voice in English and by

a female voice after translation of the selection to Spanish. The speech selection was

two minutes in length and the correlation function was computed out to 1.25 msec.

The evidence shown in Fig. 61 is by no means conclusive, but the differences in-

dicated by the curves are in agreement with our general feeling and knowledge of

500,ea m0oo06 

Fig. 61 Autocorrelation functions of typical speech.

*The human ear is not used here in the sense of it being a separate item by itself, but
includes its integrated role in the functions of the entire human body.
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speech characteristics (17). As the time of correlation is increased, the correlation

functions of Fig. 61 should tend toward a limit of less difference, since we go from a

one-one relation of correlation function to time series to a one-many relation. The

correlation time of two minutes was selected on a rough estimate basis as being greater

than the average significant learning time of the human ear.

It should be noted that correlation functions have been discussed here with consider-

able freedom as to the original mathematical definition of Eq. 21, which defines a meas-

ure invariant with time. We have discussed here a statistical parameter which changes

with time at a relatively slow rate with reference to the time function it measures. It

is appropriate in this sense to speak of short-time correlation functions.

It is a reasonable estimate that an optimum Wiener filter for average speech de-

signed on a basis of a time invariant approximation (long-time correlation) will offer

little toward bridging the gap that lies between our present filter design and the proper-

ties attributed to the human ear. A more flexible filter is needed: perhaps one which

is capable of adjusting itself to follow relatively slow changes in the statistical charac-

ter of the speech wave. By defining a correlation function as a mean from - to + oc,

advantage is not taken of the difference in rates at which a message and disturbance

approach statistical equilibrium. The possibility of a self-adjusting optimum filter

based on measurements of short-time correlations is considered in the next section.

5.21 A Thinking Filter

It is appropriate to consider at this point the construction of a "thinking" filter as

a possible analog to some portion of the human ear's complex operation. A feasible

construction is that indicated in Fig. 62, where a short-time correlator, after correc-

tion by sources of a priori information, is used to control the shape of a variable opti-

mum filter (constructed according to

Wiener's least mean-square-error criteri-

on). There are various techniques which

might be used to obtain short-time corre-

ARI lations. The nature or means for com-

pensation of the controlling function for a

priori information will be largely deter-
Fig 62 Block diagram of a thinkingfiFig 62 Block diagram of a thinkingter. mined by the nature of this information, butfilter.

presumably can be accomplished. A more

difficult engineering and theoretical problem is the construction of a filter whose shape

can be arbitrarily changed as a function of the controlling signal from the computer.

Analytical techniques for designing optimum filters are available directly from Wiener's

theory (2, 11), but an electronic mechanization of the equivalent techniques has not been

*Work on short-time correlation characteristics of speech is presently being undertaken
at the Research Laboratory of Electronics, M.I.T., Acoustics Laboratory, M.I.T.,
and at Northeastern University.
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accomplished to date. The computer and variable optimum filter taken together will

represent an electronic solution of the Wiener-Hopf equation (2, 11).

5. 22 Time-Domain Filters Using Arbitrary Delays

A possible engineering solution to the problem of constructing a variable filter lies

in the time-domain synthesis of networks for a prescribed transient.

Some possible techniques for accomplishing this have grown out of joint discussion

and experiment with G. D. Robertson of the Office of Naval Research, to determine the

detection properties of a feedback amplifier having a delay T in the feedback path, as

indicated in Fig. 63.

As a result of an erroneous initial analysis* based on

physical reasoning, it was at first thought that the cir-

cuit of Fig. 63 could be capable of a significant improve-

ment in signal-to-noise ratio for a periodic signal (of
f

frequency f = ) located in broad-band noise. The
nT I

Fig. 63 Feedback am- general reasoning was that if the input noise were of a

plifier with a sufficiently broad bandwidth (so that the autocorrelationdelay T in the
feedback path. function of the noise was essentially zero at 4ll(nT1)),

then the delay nT 1 would make the feedback noise signal

independent of the incoming signal. At the input, the noise component terms would

therefore add on a power basis, whereas the signal would be exactly in phase and hence

add on an amplitude basis. If the networks A and B are assumed to be all-pass, then

naive reasoning can lead to the conclusion that Fig. 63 represents a network which is

broad-band for noise and narrow-band for the signal. This conclusion leads to an im-

mediate inconsistency, in that properties are attached to a network of linear elements

which give it an optimum position in a cascade of linear-system functions. The error

of the reasoning is brought out in the following simple analysis of the circuit

e 2 (t) = Ael(t) + e 3 (t)] (71)

e 3 (t) = B e 2 (t + T) (72)

e 2 (t) = Ae(t) + B e 2 (t + T)] (73)

Taking the Laplace transform of Eq. 73, with s = a + jw, we have

E 2 (s) = A[Ei(s) + B E(s)e nT] (74)

Solving for E 2 (s)

A E1 (s)
E 2(s) 1- AB e

1 -AB e
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The system transfer function H(s) is therefore

E 2(s) AH(s) = : 1 - AB e- n s (76)

Substituting s = jw, we find

H(jw) = (77)
1 - ABe - j w n T

The absolute magnitude IH(jw) of Eq. 71 is given by

IH(jw)l = A (78)

- AB cos nwT + A2B 2

A plot of Eq. 78 is given in Fig. 64. The response of the network to a unit impulse,

h(t), obtained from the inverse Laplace transform of Eq. 76, is plotted in Fig. 65. It

should be clear from Figs. 64 and 65 that the circuit of Fig. 63 is a narrow-band circuit

for any and all input time functions and its detection properties are those prescribed by

Fig. 64.
To .l : 4_A- f se ... .1 lf o _

In veriLcakLL.V UI 11t,11CZ JVC..U1Lb, ULV-

correlation and crosscorrelation functions

were measured on a circuit corresponding

approximately to the block diagram of Fig.

63. The actual circuit, designed by G. D.

Robertson, is shown in Fig. 66. Two

cascaded Ballantine meters were used as a

Fig. 64 Amplitude response of the noise source. The autocorrelation function

network of Fig. 63. of the noise source, shown in Fig. 67, is

observed to be essentially zero at T = 34

p.sec, the value of delay inserted in the

feedback path. As a further check, the

77t) crosscorrelation between the input and the

output of the B network was measured with

-- _ __ the loop between A and B broken. The

crosscorrelation was zero for all values of

_ T With the loop closed, autocorrelation
o 2' 2 3 42r 5t o ?r r 6?or for t

curves were measured at the output of the

Fig. 65 Unit impulse response 20-40 kc band-pass filter (inserted to re-
of network. ject the harmonic passbands indicated in

Fig. 64) for various values of feedback

ratio AB. The curves measured were all very similar to Fig. 43 of Sec. 4. 32, showing

an essential single-tuned characteristic, as Fig. 64 would indicate.

The main importance of the above discussion lies, not in the circuit analysis of
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Fig. 63, but rather in the extension of its basic concept to other more flexible networks

which can be used as variable optimum filters. Two alternate but equivalent forms of

time-domain filters are shown in Fig. 68. Their amplitude response is given by Eq.

79 and their response to a unit impulse is shown in Fig. 69.

Fig. 66 Circuit diagram of feedback amplifier having a
delay T in the feedback path.

-71-

Fig. 67 Autocorrelation function of noise source (two cas-
caded Ballantine meters).
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IH(jw) = ( 1 + cosr co s2w +.... cs nw)
+ (sin WT + sin 2WT + .... sin nwT) 2

(79)

A more practical and flexible development of Fig. 68 is shown in Fig. 70 where each

T delay point drives a linear amplifier with a unit impulse response, F(t), whose time

constant and amplitude can be varied. In this fashion a prescribed transient response

can be approximated with the greater flexibility of controls n, T, an, and Fn(t).

The conception of time-domain

fiitering is not new; and one o tne

early investigations in this field was
1 DELAYLITNE 3 i made by Wiener and Lee (18). In

fiN (t)- r 2r 3r. nr Z

I V r r s general, however, synthesis proce-
t l T t I dures in the time domain have not made

f v..( t
,,_________ ~use of delays as a parameter. An im-

portant requirement in the construction
Fig. 68 Equivalent time-domain filters. of a variable optimum filter is that

it be composed of a finite number of

parts and a desirable feature is that the adjustment of these parts be as near independent

as possible. The synthesis of h(t) in sections which do not overlap would accomplish

this, and a condition which allowed the Kth adjustment to be independent of all previous

(O to K - 1) adjustments is

synthesis procedure is one

ht)

0 t Z S3t .t

Fig. 69 Unit impulse re-
sponse of network
in Fig. 66.

bers, "zero", "one", "two

and the consecutive number

these short-time correlatic

a near condition of independence. The use of delays in the

means of obtaining this property.

An example of a time-domain filter for use at

high frequencies which allows for independent adjust-

ment of portions of h(t) is shown in Fig. 71, where

transit time between the deflection plates of an

electron gun is used as an equivalent delay para-

meter.

5. 3 Autocorrelation Functions of Spoken Numbers

The autocorrelation functions of the spoken num-

", "three", "four", "five", six", "seven", "eight", "nine'

rs to "one hundred and fifty" are shown in Fig. 72. Each of

on curves was computed by the correlator on a relatively

long-time basis by first recording the designating word or words of each curve on two

and one-half minutes of magnetic tape. The tape was then played in a continuous loop

*The use of an electron gun in this manner was derived from a similar transit-time
problem originated by Prof. M. F. Gardner, M.I.T.

**Using a method designed at the Research Laboratory of Electronics, M.I.T., by
C. W. Callahan and J. B. Angell.
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on a Magnecord recorder and fed directly to the correlator for computation.

The first ten curves are short-time correlations of a single word and substantiate

the general comments of Sec. 5.2. Considerable variation is indicated for the different

numbers even for a maximum delay of only

fIN (t) Z. 2r 1.25 msec. The last curve for numbers
"zero" to "one hundred and fifty" was in-

00 I O7 07 ~r-'ytc eluded for comparison purposes.

, , ~F , I t r(t ,tt A problem which has been receiving an

· _ _ _ ._ increasing amount of general attention in
G__AIN _ CONTRSi ....__ _L 't research during the past two years is the
TIME

CONSTANT NTROLS_ I possibility of constructing devices which

will respond to spoken words (19). Two of

Fig.Fig . 70 A possible extension of the simpler and immediate applications
Fig. 66.

that have been suggested are (1) a type-

writer capable of responding to direct dictation and (2) a telephone circuit which would

respond to a spoken number. To accomplish such engineering feats, a measure of

individual words, which is invariant under conditions of change in accent, sex, age,

etc. of the speaker, is necessary.

The Bell Telephone Laboratories
Be., _,,,fi, A /1 \ f7i% ..1- -- %,I -

,out
(
'
)

IDEAL RESPONSE TO UNIT IMPULSE

h(t)

nH
t T1 I I t

uU
TO LEFT(4- SWITCHES SAND S4 SET TO RWMT(-)

So AND S5SET TO LEFTH4

ALL POTENTIOMETERS SET EQUAL

Fig. 71 Electron gun used as a variable
time-domain filter.

1.ave rC -pu'-LUU \I rI ulL :L llJCUlCJ

to this general problem. A plot of

frequency versus time, obtained

from a spectrograph, has been shown

to be sufficient information for a

trained person to differentiate words

and syllables from a visual-scope

presentation of the data. However,

some difficulty is encountered in

distinguishing between similar words

of high-frequency content such as

"nine" and "five". The analog in the

time domain of the spectrograph is a

short-time correlator. It was early

thought that since the correlation

function is more accurate at high

frequencies (due to the infinite-local

properties of the Fourier transform),

the difference between similar high-
LI naLjUVI1¾Y -WL'I -- 1W VVIJU±'A ch--w

11LI:ULt11Y Y UIL KILL WVLUAU WUULU .LJlL]W

more clearly in their autocorrelation

curves. This prediction is seen to be
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borne out in Fig. 72 where the "nine" and the "five" are practically identical except for

the presence and absence of a peak at=300 p.sec in the "nine" and "five" respectively.

It would appear that a combination spectrograph and short-time correlator would in-

crease the practical accuracy which this method of measure may have for distinguishing

words.

An important additional amount of data could be obtained through the use of correla-

tion functions in this general study. Crosscorrelation functions could well be used to

determine the differences introduced in a spectra measure of a word as a result of dif-

ference in accent, sex, age, or other variations relevant to the character of.a word.

5. 4 Correlation Functions in the Study of Random Noise through Linear Passive Filters

Detailed quantitative measurements of amplitude probability density distributions,

zero crossings, correlation functions and power density spectra of various noise

sources through broad- and narrow-band linear filters have been made and described

by N. Knudtzon (15). The correlation curves presented in this report were measured,

using the electronic correlator described in Sec. IV. Figures 73 and 74 have been re-

produced from Mr. Knudtzon's report and presented here as illustrations of the use of

the correlator in the study of filtered random noise. The following explanations of

Figs. 73 and 74 are taken from Mr. Knudtzon's report. Figure 73 shows the various

transfer characteristics through which the noise sources were measured. In addition

to these transfer characteristics, identified in the last column by a code number, a

single tuned variable Q-circuit centered at 20. 4 kc was provided, which could be in-

serted if desired.

In Fig. 74 the left-hand columns show autocorrelation curves as measured by the

correlator for two different ranges of maximum delay. These curves were computed

for the Si-crystal and 884 gas-tube noise sources for various filter transfer character-

istics, as indicated in the last column and identified by reference to Fig. 73.

It was pointed out in Sec. III that the Fourier transform of the autocorrelation func-

tion will give the power density spectrum ll(w) of a time series. The process of fitting

an analytical curve to an experimental autocorrelation curve and the evaluation of its

Fourier transform is a task which has only to be attempted once in order to demonstrate

a convincing argument for the expenditure of time and effort on the mechanization of the

process. Fortunately, an electronic differential analyzer capable of performing Fourier

transformations has been developed at the Research Laboratory of Electronics, M.I.T.,

by Dr. A. B. Macnee (20). The differential analyzer was used by Mr. Knudtzon to

transform some of the autocorrelation curves of Fig. 74. The curves to be trans-

formed were first plotted in linear coordinates and reproduced photographically as

masks for the function generator in the differential analyzer (20). Pictures of the cor-

responding traces on the scope are shown in Fig. 74 together with the power spectra

obtained.

A detailed analysis and interpretation of these curves is given by Mr. Knudtzon in
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TABLE 1-2: TRANSFER CHARACTERISTICS

EQUIPMENT

AMPLIFIER WITHOUT
BUTTERWORTH

BAND- PASS FILTER
(FIG. I- 8 )

AMPLIFIER WITH
BUTTERWORTH

BAND- PASS FILTER

(FIG. 1-8)

BALLANTINE AMPLIFIER
MODEL 300

(TABLE I -I )

BALLANTINE
DECADE AMPLIFIER

MODEL 220
(TABLE I-I)

TRANSFORMER
x BALLANTINE DECADE AMPL.
x BALLANTINE AMPLIFIER

(TABLE I-I)

G.R. AMPLIFIER
TYPE 1231-B

(TABLE I-I )

NORMALIZED CURVES
I._

1oc I

/

/

1.0

0.8 

0.2 20.4 kc
0.2

Oc 50 1Oc Q5 Ikc 5 IOkc 5sIOOkc 0Q5 

1.0 0.c 5 l Q I 20.4kc

O.2 

0.4 ~ ~ ~ ~ 20.4kc

Ic 50 IOOc 05 Ikc 5 IOkc 50 IOOkc 5 II

/ ---=

I
20.4kc

II

0.8

in e

nA

02

a

/
/

-7
\ T

\ ,4kcV 4X

-IOc 50 10OOc 5 Ikc 5 10kc
K__

50

Ic

5 IMI

Fig. 73 Transfer characteristics used in a study of filtered random
noise. (Reprinted from Technical Report No. 115, Research
Laboratory of Electronics, M.I.T. by permission of Mr. N.
Knudtzon. )
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his report, to which the reader is referred for further details. It is important here to

mention that the results obtained from the autocorrelation curves were important in

explaining certain peculiar properties betrayed by the Si-crystal and 884 gas-tube noise

sources in the other statistical measurements made, and served to complete an inte-

grated picture of the general and specific statistical properties of various noise sources.

5. 5 Correlation Functions of Random Noise through Nonlinear Devices

As pointed out in Sec. 3. 3, the experimental measurement of correlation functions

provides a possible strong initial method of attack on the general problem of nonlinear

systems. As a qualitative example of this method of analysis, Fig. 75 shows

Fig. 74 Autocorrelation functions and power sensity spectra for filtered ran-
dom noise. (Reprinted from Technical Report No. 115, Research
Laboratory of Electronics, M.I.T. by permission of Mr. N. Knudtzon. )
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autocorrelation functions and oscillograms of noise through linear and nonlinear cir-

cuits. The noise source used was two cascaded Ballantine meters having a relatively

broad bandwidth as indicated by their autocorrelation curve, shown in Fig. 67, Sec.

5. 22. The noise was passed through a single tuned circuit having a Q of about 15 and

then limited by two front-to-back biased 1N34 crystals for the case of symmetrical

limiting and by a single biased 1N34 crystal for the case of asymmetrical limiting.

Photographs of the input time functions and the multiplying pulses to the integrator are

also shown in Fig. 75 for qualitative comparison. The autocorrelation curves are in

general qualitative agreement with the theoretical results derived by Middleton (21).

The autocorrelation function of broad-band noise through a narrow-band single tuned

circuit is a damped cosine wave, whose frequency is very nearly that of the center fre-

quency of the tuned circuit and whose damping is proportional to the bandwidth of the

tuned circuit (11, 22). This general character is shown by the first autocorrelation

(i \t \E AT T \ 
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AUTOCORRELATION FUNCTIONS
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OUTPUT OF MULTIPLIER

Fig. 75 Autocorrelation functions and oscillograms of noise through linear and non-
linear circuits.
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curve of Fig. 75. Middleton's theoretical result that clipping always spreads the spec-

trum is illustrated in the second curve by the much increased damping factor. The

generation of smaller harmonic noise bands is not an obvious result to be seen directly

by inspection of the autocorrelation curve, but a Fourier transformation of the curve

would also place this result of Middleton's in evidence. In the third curve, the spec-

trum spread is noted to be less than for the second curve, but the asymmetrical shape

of the autocorrelation curve shows the presence of a d-c and low-frequency component

in the resulting spectrum, as predicted by Middleton.

An immediate practical application of this technique of analysis and study in the

field of communication is in the study of the operation of the various types of limiters

(and discriminators) used in f-m receivers in the presence of thermal and impulse

noise, both with and without a signal present.

5.6 Correlation Functions of Heartbeats for Use in the Detection of a Murmur

There has been a steadily increasing interest on the part of the medical profession

in the possible applications of the electronic correlator, not only in the classification

and analysis of channels and regions of information flow, as mentioned in Sec. 3.21,

but also in its use as an early warning detector for the presence of malfunctioning of

particular organs of the body.

As a result of various discussions and conferences with several heart specialists,

principally Dr. R. Streiper, House of Good Samaritan Hospital, Boston, Mass., the

writer has come to appreciate the difficulty involved in the early detection and classi-

fication of a heart murmur. In general, today's technique relies very heavily on a

doctor's stethoscope and his years of experience. There is very little evidence of an

objective criterion of measure. A reliable economic means of screening and examining

a large number of people quickly, as desired by the Army Medical or Public Health

Service, is not available. In addition, most methods that are actually used to test the

reserve strength and endurance of a suspected weakened heart require placing the sus-

pected heart under a moderate strain, which has often proved fatal due to an inaccurate

initial estimate.

A heart murmur is, in general, caused by a faulty operation of the heart valves. It

was reasonable to expect that this faulty operation would set up a transient sound that,

if detectable, could be used as a characteristic measure. The detection properties of

the correlator discussed in the first part of this section afford a practical method of

testing this hypothesis.

The experiments described here were of an exploratory and optimistic nature.

First, the maximum delay of the correlator without the modifications of Sec. IV, was

only of the order of 2. 5 msec, whereas the basic heart beat is roughly one per second.

For the autocorrelation function to show anything significant, the transient would have

to be in the range of about 400 cps. The experiments and measurements were per-

formed, however, with the viewpoint that even with a negative result an upper bound,
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of which later experiments could take advantage, would be established.

As a first experiment, the autocorrelation function of an EKG signal of a normal

heart (left wrist to right leg) was computed. The recording of the signal was made late

at night in a noise cage with considerable care taken to reduce all hum and pickup as

much as possible. The recorded signal was three minutes and forty seconds in length

and the correlation time set on the correlator was two minutes. The autocorrelation

curve, as measured and replotted on linear coordinates, is shown in Fig. 76. The
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Fig. 76 Autocorrelation function EKG normal heart (left wrist
to right leg).

shape of this curve was surprising, since it shows the presence of random-frequency

components up to possibly 1 kc. This curve gave evidence of high-frequency components

in the EKG signal, but it did not prove that they came from the heart, and the possibility

of the measured result being caused by muscle reactions or emissions from other

organs could not be ruled out.

A second measurement was then taken in an anti-echo chamber, using a very sensi-

tive microphone to pick up the direct heart sounds. This time the subject was a patient

having a known and severe heart condition. According to Dr. R. Streiper, the pertinent

medical facts were that the patient had suffered from rheumatic heart fever which later

developed into a so-called Grade 3 heart murmur, classified as aortic regurgitation

with a mitral involvement. This type of murmur is of relatively high pitch and therefore

*Professor Wiener has suggested that the crosscorrelation of signals from two points
be computed in order to reduce the effect of local and uncorrelated signals. Professor
J. B. Wiesner has initiated the construction of a twin-track and variable speed record-
ing unit for specific use in computing the crosscorrelation of such signals. This equip-
ment was not available, however, at the time of this experiment.
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well suited for the experiment. The appearance of the heart sounds on an oscilloscope

was much quieter between heart beats than for the EKG signal. There was, however,

a distinct transient noticeable at the end of each heartbeat, although an eye estimate

did not place it above 200 cps. The autocorrelation curve shown in Fig. 77 is in agree-

ment with these observations and shows that the interesting content of Fig. 76 is not a

result of the heart.

The maximum delay of Fig. 77 is 2 msec. It is recommended that further experi-

ments in this direction be with the computation of both autocorrelation and crosscorre-

lation functions carried out to approximately 10 msec.

5. 7 Crosscorrelation as a Means of Determining the Prediction or Delay Time between

Two Time Series

The importance of this property of crosscorrelation functions and the ability of the

electronic correlator to compute these functions have alreadybeen described. As an

illustration of the experimental applications of the electronic correlator in such meas-

urements, the reader is referred to Technical Report No. 129, Research Laboratory of

Electronics, M.I.T. ,"Statistical Prediction of Noise", by Y. W. Lee and C. A. Stutt.

This report describes the synthesis, design and construction of an optimum predictor

for filtered noise using Wiener's least mean-square-error criterion. Experimental

results are shown in the form of a simultaneous display on film of the input and output

waveforms of the predictor circuit, and in measured crosscorrelation functions between

the input and output. Some twelve crosscorrelation functions are shown as a function

-_ _ - _ - - - DELAY PER STEP 22.2os
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Fig. 77 Autocorrelation function of heart sounds recorded with
sensitive microphone in anti-echo chamber. Patient
known to have Grade 3 murmur.
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of both the Q of the filtered noise and the designed prediction values. Prediction times,

as recorded by the correlator in these curves, together with averages computed from

direct readings of the film, are compared with the design values.

Appendix I

The expectation of -log p(x) is a maximum if the variable x is distributed at random,

i.e. if p(x) = constant. The following proof parallels that given by Fry (8, p. 201). We

want to make

oo

E(-log p(x)) = - p(x) log p(x)dx = a maximum (1)

subject to the constraint that

00oO

5p(x)dx = 1 (2)

-oo

The desired curves satisfy the Euler equation for minimizing

[F(y) - XG(y)]dy, where X = a constant . (3)

The necessary condition is

OF aG a 8F] + k X 0 (4)
ay a -- cl 

where

aF OF
F y log y TFf 1 + log y 8 = 0

1 + log y - X = 0

or

logy= - 1 . (5)

Since log y is a constant, then y is a constant also. This proves that log y = con-

stant is an extremal. To show that it defines a maximum, let the solution to the prob-

lem be p(x) = P. Since this function makes the E(-log p(x)) a maximum, it follows that

any change made in p(x) must decrease E(-log p(x)).

For instance, a substitution of p(x) = P + 6(x) should decrease E(-log p(x)).

o0

- [P + 6(x og[P + 6(x)] -X]dx . (6)
-00
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Equation 6 can be analyzed by expanding the term log E + 6(x)J in a series

logP + 6(x)' = log P + 6(x) 6 (x) + 26 3 (x) 664(x)

2!P 3!P 4: P

Then

- P + 6(x)] og(P + 6(x))- ] = - P(log P - X) - 6(x)

62(x) 6) 64 (x)
3P 4P

2(6 
- 6(x) (log P - X) - (x)

63(x) 64(x)
+ 6(x) - - - + .... (8)

2P 3P

Since 6(x) is very small, we may neglect terms in 6(x) higher than 2nd order and write

as an approximate expression for Eq. 6

- P(log P - )dx - (log P + 1 - X) 6(x)dx -2 (Px dx + ... (9)
-o -o00 -00

The first term is a maximum by hypothesis and the third and all succeeding terms

can only decrease the sum. However, unless the second term is zero, a proper choice

of 6(x) can make the entire result larger than the first, which is contradictory. Hence

the second term must be zero and we arrive at the same condition of Eq. 5, i.e.

log y = X - 1 = constant, but with the additional specification that it defines a maximum.

Appendix II

Probability Density Distribution for the Product of Two Normally Distributed Variables

Let X and Y be two normally distributed variables, having a standard deviation al

and q2 respectively.

2x

p(x) = e (1)

2
Y

_ 2
p(y) = e de

We desire p(z), where z = xy. Since x and y are independent, the probability of

x, y is

-83-

� ·1 _1_1_1_�_�__� � 1_··11111�-----



1 _______

-2 2+

p(x, y) = 2 1 '2 _ e

To transform the above distribution function into a function of the defined variable z,

an additional variable of integration, u, may be defined as follows

z = xy

x
u =- .

y

The Jacobian of this transformation becomes

a(z, u) Y
a(, y) 1

y

x = -2-X = -2u
Y

-x
= +2 u (since the negative sign has no significance).

y

following relation holds between the old and new variables of the distribution func-

(z, u) = p(x, y)a(z, u)
a x, y)

(4)

and therefore

1
p(z, u')= 2r 1 2

z (Zul+ Z,)
e

2u'

, where u' = CT uwhere u = u

To determine p(z), we have only to integrate p(z, u) over all possible values of u. Since

u' = x/y a 2 /d , its limits are -oc to +o.

+ 

p(z) 41 a1 Sa e u 
-CO0

du' (5)

The signs of u' and z are always the same. Therefore, if we restrict u' to run from

O to Ao, we restrict z also to run from 0 to 00; since the function p(z) is symmetrical,

we may rewrite it as

z 1
00- (u + )

p(z) = I e u
0

u' = eY

du' = edy = u'dy

du', z > 0

limits u' = 

U1 = 00
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Then

U1 + = e + e - Y = 2 cosh yU' +-

-00

-z cosh y

1 2
dy, z>0 .

The above integral was recognized by Dr. M. Cerrillo as being in Watson: Bessel

Functions, Ch. VI, pp. 181-183, Macmillan Company, 1945, where it is found that
00

XK(z). =I ez cosht - vt dt
-00

Therefore

00 z cosh y

-00

dy

and the solution to Eq. 6 is seen to be

p(z) K 1l - )K-rz 0~o ~0

(8)

(9)

(10)

If the variables x and y are

so that independence holds,

from the same source, but sufficiently separated in time

then al can be taken as equal to az , and p(z) can be written

p(z) =1 K( z).
Ira -- or

(11)

All moments of p(z) can be

Cerrillo

evaluated from the following integral obtained by Dr. M.

5 K(x) x1 ldx = u-2 (u + v) u - v)
0

and, as a particular example, the second moment M 2 is found to be
00

0
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